last such side-effect was modifying cctx->loadedDictEnd on setting forceWindow.
It is no a useless operation, so it's removed.
No side-effect left when setting a compression parameter.
Any ZSTD_CCtx_setParameter() shall just write the requested parameter, without further action.
Any action shall be taken at parameter application only (during init).
It makes it possible to just copy CCtxParams from external container to internal state,
and get rid of the more complex code which was trying to compensate for missing actions.
There was a flaw in the formula
which compared literal cost with match cost :
at a given position,
a non-null literal suite is going to be part of next sequence,
while if position ends a previous match, to immediately start another match,
next sequence will have a litlength of zero.
A litlength of zero has a non-null cost.
It follows that literals cost should be compared to match cost + litlength==0.
Not doing so gave a structural advantage to matches, which would be selected more often.
I believe that's what led to the creation of the strange heuristic which added a complex cost to matches.
The heuristic was actually compensating.
It was probably created through multiple trials, settling for best outcome on a given scenario (I suspect silesia.tar).
The problem with this heuristic is that it's hard to understand,
and unfortunately, any future change in the parser would impact the way it should be calculated and its effects.
The "proper" formula makes it possible to remove this heuristic.
Now, the problem is : in a head to head comparison, it's sometimes better, sometimes worse.
Note that all differences are small (< 0.01 ratio).
In general, the newer formula is better for smaller files (for example, calgary.tar and enwik7).
I suspect that's because starting statistics are pretty poor (another area of improvement).
However, for silesia.tar specifically, it's worse at level 22 (while being better at level 17, so even compression level has an impact ...).
It's a pity that zstd -22 gets worse on silesia.tar.
That being said, I like that the new code gets rid of strange variables,
which were introducing complexity for any future evolution (faster variants being in mind).
Therefore, in spite of this detrimental side effect, I tend to be in favor of it.
optState was used both to evaluate price
and to cache cost of previously calculated literals.
This created a strong dependency, forcing parser to request cost in a strict order.
This limitation is forbids future parser with skipping capabilities.
After this patch, caching literals price still exists,
but is now explicit, in a stack structure.
merging of repcode search into btsearch introduced a small compression ratio regressio at max level :
1.3.2 : 52728769
after repMerge patch : 52760789 (+32020)
A few minor changes have produced this difference.
They can be hard to spot.
This patch buys back about half of the difference,
by no longer inserting position at hc3 when a long match is found there.
It feels strangely counter-intuitive, but works :
after this patch : 52742555 (-18234)
Fixed : multithreading to compress some small data with dictionary
Fixed : ZSTD_initCStream_usingCDict()
Improved streaming memory usage when pledgedSrcSize is known.
ZSTD_updateTree() expected to be followed by a Bt match finder, which would update zc->nextToUpdate.
With the new optimal match finder, it's not necessarily the case : a match might be found during repcode or hash3, and stops there because it reaches sufficient_len, without even entering the binary tree.
Previous policy was to nonetheless update zc->nextToUpdate, but the current position would not be inserted, creating "holes" in the btree, aka positions that will no longer be searched.
Now, when current position is not inserted, zc->nextToUpdate is not update, expecting ZSTD_updateTree() to fill the tree later on.
Solution selected is that ZSTD_updateTree() takes care of properly setting zc->nextToUpdate,
so that it no longer depends on a future function to do this job.
It took time to get there, as the issue started with a memory sanitizer error.
The pb would have been easier to spot with a proper `assert()`.
So this patch add a few of them.
Additionnally, I discovered that `make test` does not enable `assert()` during CLI tests.
This patch enables them.
Unfortunately, these `assert()` triggered other (unrelated) bugs during CLI tests, mostly within zstdmt.
So this patch also fixes them.
- Changed packed structure for gcc memory access : memory sanitizer would complain that a read "might" reach out-of-bound position on the ground that the `union` is larger than the type accessed.
Now, to avoid this issue, each type is independent.
- ZSTD_CCtxParams_setParameter() : @return provides the value of parameter, clamped/fixed appropriately.
- ZSTDMT : changed constant name to ZSTDMT_JOBSIZE_MIN
- ZSTDMT : multithreading is automatically disabled when srcSize <= ZSTDMT_JOBSIZE_MIN, since only one thread will be used in this case (saves memory and runtime).
- ZSTDMT : nbThreads is automatically clamped on setting the value.
this version has same speed as branch `opt`
which is itself 5-10% slower than branch `dev`
(no identified reason)
It does not compress exactly the same as `opt` or `dev`,
maybe because it doesn't stop search after repcodes,
leading to sometimes better compression, sometimes worse
(by a small margin).
warning : _extDict path does not work for the time being
This means that benchmark module works,
but file module will fail with large files (and high compression level).
Objective is to fuse _extDict path into current one,
in order to have a single parser to maintain.
ZSTD_getPrice() and ZSTD_updatePrice() accept normal matchlength as argument
instead of matchlength-MINMATCH,
which makes them easier / more logical to use and read.
Conversion is simply done internally.
added some traces and assert
related to hunting a potential ubsan error in 32-bits more
(it ends up being a compiler-side issue : https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82802).
Modified one pointer arithmetic expression for a more conformant way.
as per documentation, on ZSTD_setPledgedSrcSize() :
> If all data is provided and consumed in a single round,
> this value (pledgedSrcSize) is overriden by srcSize instead.
This wasn't applied before compression level is transformed into compression parameters.
As a consequence, small input missed compression parameters adaptation.
It seems to work fine now : compression was compared with ZSTD_compress_advanced(),
results were the same.