Also : minor speed optimization :
shortcut to ZSTD_reset_matchState() rather than the full reset process.
It still needs to be completed with ZSTD_continueCCtx() for proper initialization.
Also : changed position of LDM hash tables in the context,
so that the "regular" hash tables can be at a predictable position,
hence allowing the shortcut to ZSTD_reset_matchState() without complex conditions.
* Extract the overflow correction into a helper function.
* Load the dictionary `ZSTD_CHUNKSIZE_MAX = 512 MB` bytes at a time
and overflow correct between each chunk.
Data corruption could happen when all these conditions are true:
* You are using multithreading mode
* Your overlap size is >= 512 MB (implies window size >= 512 MB)
* You are using a strategy >= ZSTD_btlazy
* You are compressing more than 4 GB
The problem is that when loading a large dictionary we don't do
overflow correction. We can only load 512 MB at a time, and may
need to do overflow correction before each chunk.
We would only skip at most 192 bytes at a time before this diff.
This was added to optimize long matches and skip the middle of the
match. However, it doesn't handle the case of repetitive data.
This patch keeps the optimization, but also handles repetitive data
by taking the max of the two return values.
```
> for n in $(seq 9); do echo strategy=$n; dd status=none if=/dev/zero bs=1024k count=1000 | command time -f %U ./zstd --zstd=strategy=$n >/dev/null; done
strategy=1
0.27
strategy=2
0.23
strategy=3
0.27
strategy=4
0.43
strategy=5
0.56
strategy=6
0.43
strategy=7
0.34
strategy=8
0.34
strategy=9
0.35
```
At level 19 with multithreading the compressed size of `silesia.tar` regresses 300 bytes, and `enwik8` regresses 100 bytes.
In single threaded mode `enwik8` is also within 100 bytes, and I didn't test `silesia.tar`.
Fixes Issue #1634.
fast mode does the same thing as before :
it pre-emptively invalidates any index that could lead to offset > maxDistance.
It's supposed to help speed.
But this logic is performed inside zstd_fast,
so that other strategies can select a different behavior.
It's re-synchronized with nextToUpdate at beginning of each block.
It only needs to be tracked from within zstd_opt block parser.
Made the logic clear, so that no code tried to maintain this variable.
An even better solution would be to make nextToUpdate3
an internal variable of ZSTD_compressBlock_opt_generic().
That would make it possible to remove it from ZSTD_matchState_t,
thus restricting its visibility to only where it's actually useful.
This would require deeper changes though,
since the matchState is the natural structure to transport parameters into and inside the parser.
* Version <= 0.5 could read beyond the end of `dumps`, which points into
the input buffer.
* Check the validity of `dumps` before using it, if it is out of bounds
return garbage values. There is no return code for this function.
* Introduce `MEM_readLE24()` for simplicity, since I don't want to trust
that there is an extra byte after `dumps`.
ZSTDMT was broken when compiled without ZSTD_MULTITHREAD defined,
because `ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, nbWorkerss)`
failed. It was detected by the MSVC test which runs the fuzzer with
multithreading disabled.
This is a very niche use case of a deprecated API, because the API is
inefficient and synchronous, since `threading.h` will be synchronous.
Users almost certainly don't want this, and anyone who tested their code
should realize that it is broken. Therefore, I think it is safe to
require `ZSTD_MULTITHREAD` to be defined to use ZSTDMT.
Bugs:
* `ZSTD_DCtx_refPrefix()` didn't clear the dictionary after the first
use. Fix and add a test case.
* `ZSTD_DCtx_reset()` always cleared the dictionary. Fix and add a test
case.
* After calling `ZSTD_resetDStream()` you could no longer load a
dictionary, since the stage was set to `zdss_loadHeader`. Fix and add
a test case.
Cleanup:
* Make `ZSTD_initDStream*()` and `ZSTD_resetDStream()` wrap the new
advanced API, and add test cases.
* Document the equivalent of these functions in the advanced API and
document the unstable functions as deprecated.
* `ZSTD_decompressDCtx()` did not use the dictionary loaded by
`ZSTD_DCtx_loadDictionary()`.
* Add a unit test.
* A stacked diff uses `ZSTD_decompressDCtx()` in the
`dictionary_round_trip` and `dictionary_decompress` fuzzers.
`ZSTD_compress2()` wouldn't wait for multithreaded compression to
finish. We didn't find this because ZSTDMT will block when it can
compress all in one go, but it can't do that if it doesn't have enough
output space, or if `ZSTD_c_rsyncable` is enabled.
Since we will already sometimes block when using `ZSTD_e_end`, I've
changed `ZSTD_e_end` and `ZSTD_e_flush` to guarantee maximum forward
progress. This simplifies the API, and helps users avoid the easy bug
that was made in `ZSTD_compress2()`
* Found by the libfuzzer fuzzers.
* Added a test case that catches the problem.
* I will make the fuzzers sometimes allocate less than
`ZSTD_compressBound()` output space.
When `FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION` is defined don't check
the dictID. This check makes the fuzzers job harder, and it is at the
very beginning.