Bugs:
* `ZSTD_DCtx_refPrefix()` didn't clear the dictionary after the first
use. Fix and add a test case.
* `ZSTD_DCtx_reset()` always cleared the dictionary. Fix and add a test
case.
* After calling `ZSTD_resetDStream()` you could no longer load a
dictionary, since the stage was set to `zdss_loadHeader`. Fix and add
a test case.
Cleanup:
* Make `ZSTD_initDStream*()` and `ZSTD_resetDStream()` wrap the new
advanced API, and add test cases.
* Document the equivalent of these functions in the advanced API and
document the unstable functions as deprecated.
`ZSTD_compress2()` wouldn't wait for multithreaded compression to
finish. We didn't find this because ZSTDMT will block when it can
compress all in one go, but it can't do that if it doesn't have enough
output space, or if `ZSTD_c_rsyncable` is enabled.
Since we will already sometimes block when using `ZSTD_e_end`, I've
changed `ZSTD_e_end` and `ZSTD_e_flush` to guarantee maximum forward
progress. This simplifies the API, and helps users avoid the easy bug
that was made in `ZSTD_compress2()`
* Found by the libfuzzer fuzzers.
* Added a test case that catches the problem.
* I will make the fuzzers sometimes allocate less than
`ZSTD_compressBound()` output space.
This commit moves the candidate advanced API to the stable section.
It makes some minor whitespace changes, but it doesn't change any
of the wording of the documentation.
I'll put up a separate PR that tweaks some of the documentation
once this lands, so that it is easier to review.
NOTE: Even though these functions are now in stable, they aren't
stable until the next release (in under 1 month). It is possible
that they change until then.
The order you set parameters in the advanced API is not supposed to matter.
However, once you call `ZSTD_CCtx_refCDict()` the compression parameters
cannot be changed. Remove that restriction, and document what parameters
are used when using a CDict.
If the CCtx is in dictionary mode, then the CDict's parameters are used.
If the CCtx is not in dictionary mode, then its requested parameters are
used.
Introduces a new utility function `ZSTD_findFrameCompressedSize_internal` which
is equivalent to `ZSTD_findFrameCompressSize`, but accepts an additional output
parameter `bound` that computes an upper-bound for the compressed data in the frame.
The new API function is named `ZSTD_decompressBound` to be consistent with
`zstd_compressBound` (the inverse operation). Clients will now be able to compute an upper-bound for
their compressed payloads instead of guessing a large size.
Implements https://github.com/facebook/zstd/issues/1536.