Introduces a new utility function `ZSTD_findFrameCompressedSize_internal` which
is equivalent to `ZSTD_findFrameCompressSize`, but accepts an additional output
parameter `bound` that computes an upper-bound for the compressed data in the frame.
The new API function is named `ZSTD_decompressBound` to be consistent with
`zstd_compressBound` (the inverse operation). Clients will now be able to compute an upper-bound for
their compressed payloads instead of guessing a large size.
Implements https://github.com/facebook/zstd/issues/1536.
* Move all ZSTDMT parameter setting code to ZSTD_CCtxParams_*Parameter().
ZSTDMT now calls these functions, so we can keep all the logic in the
same place.
* Clean up `ZSTD_CCtx_setParameter()` to only add extra checks where needed.
* Clean up `ZSTDMT_initJobCCtxParams()` by copying all parameters by default,
and then zeroing the ones that need to be zeroed. We've missed adding several
parameters here, and it makes more sense to only have to update it if you
change something in ZSTDMT.
* Add `ZSTDMT_cParam_clampBounds()` to clamp a parameter into its valid
range. Use this to keep backwards compatibility when setting ZSTDMT parameters,
which clamp into the valid range.
as suggested in #1441.
generally U32 and unsigned are the same thing,
except when they are not ...
case : 32-bit compilation for MIPS (uint32_t == unsigned long)
A vast majority of transformation consists in transforming U32 into unsigned.
In rare cases, it's the other way around (typically for internal code, such as seeds).
Among a few issues this patches solves :
- some parameters were declared with type `unsigned` in *.h,
but with type `U32` in their implementation *.c .
- some parameters have type unsigned*,
but the caller user a pointer to U32 instead.
These fixes are useful.
However, the bulk of changes is about %u formating,
which requires unsigned type,
but generally receives U32 values instead,
often just for brevity (U32 is shorter than unsigned).
These changes are generally minor, or even annoying.
As a consequence, the amount of code changed is larger than I would expect for such a patch.
Testing is also a pain :
it requires manually modifying `mem.h`,
in order to lie about `U32`
and force it to be an `unsigned long` typically.
On a 64-bit system, this will break the equivalence unsigned == U32.
Unfortunately, it will also break a few static_assert(), controlling structure sizes.
So it also requires modifying `debug.h` to make `static_assert()` a noop.
And then reverting these changes.
So it's inconvenient, and as a consequence,
this property is currently not checked during CI tests.
Therefore, these problems can emerge again in the future.
I wonder if it is worth ensuring proper distinction of U32 != unsigned in CI tests.
It's another restriction for coding, adding more frustration during merge tests,
since most platforms don't need this distinction (hence contributor will not see it),
and while this can matter in theory, the number of platforms impacted seems minimal.
Thoughts ?