On my laptop:
Before:
./zstd32 -b --zstd=wlog=27 silesia.tar enwik8 -S
3#silesia.tar : 211984896 -> 66683478 (3.179), 97.6 MB/s , 400.7 MB/s
3#enwik8 : 100000000 -> 35643153 (2.806), 76.5 MB/s , 303.2 MB/s
After:
./zstd32 -b --zstd=wlog=27 silesia.tar enwik8 -S
3#silesia.tar : 211984896 -> 66683478 (3.179), 97.4 MB/s , 435.0 MB/s
3#enwik8 : 100000000 -> 35643153 (2.806), 76.2 MB/s , 338.1 MB/s
Mileage vary, depending on file, and cpu type.
But a generic rule is : x86 benefits less from "long-offset mode" than x64,
maybe due to register pressure.
On "entropy", long-mode is _never_ a win for x86.
On my laptop though, it may, depending on file and compression level
(enwik8 benefits more from "long-mode" than silesia).
ZSTD_create?Dict() is required to produce a ?Dict* return type
because `free()` does not accept a `const type*` argument.
If it wasn't for this restriction, I would have preferred to create a `const ?Dict*` object
to emphasize the fact that, once created, a dictionary never changes
(hence can be shared concurrently until the end of its lifetime).
There is no such limitation with initStatic?Dict() :
as stated in the doc, there is no corresponding free() function,
since `workspace` is provided, hence allocated, externally,
it can only be free() externally.
Which means, ZSTD_initStatic?Dict() can return a `const ZSTD_?Dict*` pointer.
Tested with `make all`, to catch initStatic's users,
which, incidentally, also updated zstd.h documentation.
it still fallbacks to single-thread blocking invocation
when input is small (<1job)
or when invoking ZSTDMT_compress(), which is blocking.
Also : fixed a bug in new block-granular compression routine.
It used to stop on reaching extDict, for simplification.
As a consequence, there was a small loss of performance each time the round buffer would restart from beginning.
It's not a large difference though, just several hundreds of bytes on silesia.
This patch fixes it.
It does not feel "right" from a dependency perspective.
ZSTD_initDCtx_internal() is triggered once, on DCtx creation,
while ZSTD_decompressBegin() is invoked at the beginning of each new frame,
and is also a user-facing prototype.
Downside : a DCtx must be init before first usage !
This was always the intention by the way, and is documented as such.
This stage is automatically done within ZSTD_decompress() and variants,
and also within ZSTD_decompressStream().
Only ZSTD_decompressContinue() is impacted,
it must be preceded by a ZSTD_decompressBegin(), as detailed in doc.
A test has been fixed, to no longer rely on undocumented assumption that ZSTD_decompressBegin() is invoked during init.
decoder output buffer would receive a wrong size.
In previous version, ZSTD_decompressStream() would blindly trust the caller that pos <= size.
In this version, this condition is actively checked,
and the function returns an error code if this condition is not respected.
This check could also be done with an assert(),
but since this is a user-facing interface, it seems better to keep this check at runtime.
* Maximum window size in 32-bit mode is 1GB, since allocations for 2GB fail
on my Mac.
* Maximum window size in 64-bit mode is 2GB, since that is the largest
power of 2 that works with the overflow prevention.
* Allow `--long=windowLog` to set the window log, along with
`--zstd=wlog=#`. These options also set the window size during
decompression, but don't override `--memory=#` if it is set.
* Present a helpful error message when the window size is too large during
decompression.
* The long range matcher defaults to a hash log 7 less than the window log,
which keeps it at 20 for window log 27.
* Keep the default long range matcher window size and the default maximum
window size at 27 for the API and CLI.
* Add tests that use the maximum window size and hash size for compression
and decompression.