The zstd format specification doesn't enforce that Huffman compressed
literals (including the table) have to be smaller than the uncompressed
literals. The compressor will never Huffman compress literals if the
compressed size is larger than the uncompressed size. The decompresser
doesn't accept Huffman compressed literals with 4 streams whose compressed
size is at least as large as the uncompressed size.
* Make the decompresser accept Huffman compressed literals whose size
increases.
* Add a test case that exposes the bug. The compressed file has to be
statically generated, since the compressor won't normally produce files
that expose the bug.
Note : all error codes are changed by this new version,
but it's expected to be the last change for existing codes.
Codes are now grouped by category, and receive a manually attributed value.
The objective is to guarantee that
error code values will not change in the future
when introducing new codes.
Intentionnal empty spaces and ranges are defined
in order to keep room for potential new codes.
Makes frame type (zstd,skippable) detection more straighforward.
ZSTD_getFrameHeader set frameContentSize=ZSTD_CONTENTSIZE_UNKNOWN to mean "field not present"
* `ZSTD_decompressStream_generic()` `ip` may be `NULL` for one of the calls
to `memcpy()`
* Assert the source is not `NULL` for calls to `memcpy()` where I believe
the source should not be `NULL`.
now ZSTD_customCMem is promoted as new default.
Advantages : ZSTD_customCMem = { NULL, NULL, NULL},
so it's natural default after a memset.
ZSTD_customCMem is public constant
(defaultCustomMem was private only).
Also : makes it possible to introduce ZSTD_calloc(),
which can now default to stdlib's calloc()
when it detects system default.
Fixed zlibwrapper which depended on defaultCustomMem.
memset() was a quick fix to initialization problems,
but initialize too much space (tables, buffers)
which show up in decompression speed of ZSTD_decompress()
since it needs to recreate DCtx at each invocation.
Fixed by only initialization relevant pointers and size fields.
They are now the same object.
It's recommended to keep both types in source code
as previous versions of library (<v1.3.0)
still need this differentiation.
ZSTD_frameParams => ZSTD_frameHeader
ZSTD_getFrameParams() -> ZSTD_getFrameHeader()
The new naming is more distinctive from ZSTD_frameParameters,
which is used during compression.
ZSTD_frameHeader is clearer in its intention to described frame header content.
It also implies we are decoding a ZSTD frame, hence we are at decoding stage.
This decoder variant is detrimental to x86 architecture
likely due to register pressure.
Note that the variant is disabled for all 32-bits targets.
It's unclear if it would help for different architectures,
such as ARM, MIPS or PowerPC.
XXH_STATIC_LINKING_ONLY protection macro is intended to be triggered just before the include.
The main idea is to keep this setting local :
user module shall explicitly understand and accept the static linking restriction
which becomes transparent when triggering the macro at project level.
Global definition also triggers redefinition warnings for user modules which do locally define the macro.
This new version compiles lib and cli without warning when the macro is set globally.
That's not a scenario to be recommended, since it trades a local effect for a global one,
but it was easy enough to provide from zstd side.
When ZSTD_decompressStream() detects
that there is enough space in dst
to complete decompression in a single pass,
delegates to ZSTD_decompress(),
for an extra ~5% speed boost
- Add ZSTD_findDecompressedSize
- Traverses multiple frames to find total output size
- Add ZSTD_getFrameContentSize
- Gets the decompressed size of a single frame by reading header
- Deprecate ZSTD_getDecompressedSize