Fixes:
Enable RLE blocks for superblock mode
Fix the limitation that the literals block must shrink. Instead, when we're within 200 bytes of the next header byte size, we will just use the next one up. That way we should (almost?) always have space for the table.
Remove the limitation that the first sub-block MUST have compressed literals and be compressed. Now one sub-block MUST be compressed (otherwise we fall back to raw block which is okay, since that is streamable). If no block has compressed literals that is okay, we will fix up the next Huffman table.
Handle the case where the last sub-block is uncompressed (maybe it is very small). Before it would skip superblock in this case, now we allow the last sub-block to be uncompressed. To do this we need to regenerate the correct repcodes.
Respect disableLiteralsCompression in superblock mode
Fix superblock mode to handle a block consisting of only compressed literals
Fix a off by 1 error in superblock mode that disabled it whenever there were last literals
Fix superblock mode with long literals/matches (> 0xFFFF)
Allow superblock mode to repeat Huffman tables
Respect ZSTD_minGain().
Tests:
Simple check for the condition in #2096.
When the simple_round_trip fuzzer enables superblock mode, it checks that the compressed size isn't expanded too much.
Remaining limitations:
O(targetCBlockSize^2) because we recompute statistics every sequence
Unable to split literals of length > targetCBlockSize into multiple sequences
Refuses to generate sub-blocks that don't shrink the compressed data, so we could end up with large sub-blocks. We should emit those sections as uncompressed blocks instead.
...
Fixes#2096
* All copyright lines now have -2020 instead of -present
* All copyright lines include "Facebook, Inc"
* All licenses are now standardized
The copyright in `threading.{h,c}` is not changed because it comes from
zstdmt.
The copyright and license of `divsufsort.{h,c}` is not changed.
Super blocks must never violate the zstd block bound of input_size + ZSTD_blockHeaderSize. The individual sub-blocks may, but not the super block. If the superblock violates the block bound we are liable to violate ZSTD_compressBound(), which we must not do. Whenever the super block violates the block bound we instead emit an uncompressed block.
This means we increase the latency because of the single uncompressed block. I fix this by enabling streaming an uncompressed block, so the latency of an uncompressed block is 1 byte. This doesn't reduce the latency of the buffer-less API, but I don't think we really care.
* I added a test case that verifies that the decompression has 1 byte latency.
* I rely on existing zstreamtest / fuzzer / libfuzzer regression tests for correctness. During development I had several correctness bugs, and they easily caught them.
* The added assert that the superblock doesn't violate the block bound will help us discover any missed conditions (though I think I got them all).
Credit to OSS-Fuzz.