as suggested in #1441.
generally U32 and unsigned are the same thing,
except when they are not ...
case : 32-bit compilation for MIPS (uint32_t == unsigned long)
A vast majority of transformation consists in transforming U32 into unsigned.
In rare cases, it's the other way around (typically for internal code, such as seeds).
Among a few issues this patches solves :
- some parameters were declared with type `unsigned` in *.h,
but with type `U32` in their implementation *.c .
- some parameters have type unsigned*,
but the caller user a pointer to U32 instead.
These fixes are useful.
However, the bulk of changes is about %u formating,
which requires unsigned type,
but generally receives U32 values instead,
often just for brevity (U32 is shorter than unsigned).
These changes are generally minor, or even annoying.
As a consequence, the amount of code changed is larger than I would expect for such a patch.
Testing is also a pain :
it requires manually modifying `mem.h`,
in order to lie about `U32`
and force it to be an `unsigned long` typically.
On a 64-bit system, this will break the equivalence unsigned == U32.
Unfortunately, it will also break a few static_assert(), controlling structure sizes.
So it also requires modifying `debug.h` to make `static_assert()` a noop.
And then reverting these changes.
So it's inconvenient, and as a consequence,
this property is currently not checked during CI tests.
Therefore, these problems can emerge again in the future.
I wonder if it is worth ensuring proper distinction of U32 != unsigned in CI tests.
It's another restriction for coding, adding more frustration during merge tests,
since most platforms don't need this distinction (hence contributor will not see it),
and while this can matter in theory, the number of platforms impacted seems minimal.
Thoughts ?
from overlapSizeLog.
Reasoning :
`overlapLog` is already used everwhere, in the code, command line and documentation.
`ZSTD_c_overlapSizeLog` feels unnecessarily different.
ZSTD_compress_generic() is renamed ZSTD_compressStream2().
Note that, for the time being,
the "stable" API and advanced one use different parameter planes :
setting parameters using the advanced API does not influence ZSTD_compressStream()
and using ZSTD_initCStream() does not influence parameters for ZSTD_compressStream2().
answering #1407.
Also : removed obsolete function ZSTD_setDStreamParameter()
which could only be used with one parameter (DStream_p_maxWindowSize).
Now replaced by ZSTD_DCtx_setWindowSize() (which exists since a few revisions)
We could allocate up to 2^28 bytes of memory when using 2 threads with
window log = 24. Now, we limit it to 2^26 bytes of memory when not running
big tests.
I chose max window log = 22 since that is the maximum source size when
big tests are disabled. Hopefully this will be enough to reduce or
eliminate the test failures.
The correct parameters are used once, but once `ZSTD_resetCStream()` is
called the default parameters (level 3) are used. Fix this by setting
`requestedParams` in the `ZSTD_initCStream*()` functions.
The added tests both fail before this patch and pass after.
[zstdmt] Fix jobsize bugs
* `ZSTDMT_serialState_reset()` should use `targetSectionSize`, not `jobSize` when sizing the seqstore.
Add an assert that checks that we sized the seqstore using the right job size.
* `ZSTDMT_compressionJob()` should check if `rawSeqStore.seq == NULL`.
* `ZSTDMT_initCStream_internal()` should not adjust `mtctx->params.jobSize` (clamping to MIN/MAX is okay).
streaming decoders, such as ZSTD_decompressStream() or ZSTD_decompress_generic(),
may end up making no forward progress,
(aka no byte read from input __and__ no byte written to output),
due to unusual parameters conditions,
such as providing an output buffer already full.
In such case, the caller may be caught in an infinite loop,
calling the streaming decompression function again and again,
without making any progress.
This version detects such situation, and generates an error instead :
ZSTD_error_dstSize_tooSmall when output buffer is full,
ZSTD_error_srcSize_wrong when input buffer is empty.
The detection tolerates a number of attempts before triggering an error,
controlled by ZSTD_NO_FORWARD_PROGRESS_MAX macro constant,
which is set to 16 by default, and can be re-defined at compilation time.
This behavior tolerates potentially existing implementations
where such cases happen sporadically, like once or twice,
which is not dangerous (only infinite loops are),
without generating an error, hence without breaking these implementations.
from zstreamtest.
This test is now integrated within --newapi,
which dynamically switches between the 2 modes randomly.
The main outcome is reduced testing time.
recently introduce into the new dictionary mode.
The bug could be reproduced with this command :
./zstreamtest -v --opaqueapi --no-big-tests -s4092 -t639
error was in function ZSTD_count_2segments() :
the beginning of the 2nd segment corresponds to prefixStart
and not the beginning of the current block (istart == src).
This would result in comparing the wrong byte.
The new advanced API basically set `requestedParams = appliedParams` when
using a dictionary. This halted all parameter adjustment, which can hurt
compression ratio if, for example, the window log is small for the first
call, but the rest of the files are large.
This patch fixes the bug, and checks that the `requestedParams` don't change
in the new advanced API when using a dictionary, and generally in the fuzzer.
This makes it easier to explain that nbWorkers=0 --> single-threaded mode,
while nbWorkers=1 --> asynchronous mode (one mode thread on top of the "main" caller thread).
No need for an additional asynchronous mode flag.
nbWorkers>=2 works the same as nbThreads>=2 previously.
When ZSTD_e_end directive is provided,
the question is not only "are internal buffers completely flushed",
it is also "is current frame completed".
In some rare cases,
it was possible for internal buffers to be completely flushed,
triggering a @return == 0,
but frame was not completed as it needed a last null-size block to mark the end,
resulting in an unfinished frame.