Additional constraint checking
Minor fixes
more param parsing
Add Memory
Change paramVariation
work on feasibility
reformat bench
Changed Paramgrill to use bench.c benchmarking
customlevel macro
Printing Flag
Minor changes
Explicit casting
Makefile fix
casting, type fix
Printing Flag
Minor Changes
comments, helper fn's
The correct parameters are used once, but once `ZSTD_resetCStream()` is
called the default parameters (level 3) are used. Fix this by setting
`requestedParams` in the `ZSTD_initCStream*()` functions.
The added tests both fail before this patch and pass after.
OpenBSD's port building infrastructure is able to build in a privilege
separated mode. It uses a privilege drop model. Regression tests fail in
this mode as xz/lzma is unable to set file group and errors out with:
xz: tmp.xz: Cannot set the file group: Operation not permitted
gmake[1]: *** [Makefile:307: zstd-playTests] Error 2
Actually it is not a xz/lzma error but a warning causing zstd's
regression test to fail. Proposed fix is to have xz/lzma not set the
exit status to 2 even if a condition worth a warning was detected (-Q
flag).
https://github.com/facebook/zstd/pull/1124 fixes an issue with GNU/Hurd
being unable to write to /dev/zero. Implemented fix is writing to
/dev/random instead.
On OpenBSD a regular user is unable to write to /dev/random because of
permissions set on this device. Result is failing a regression test.
Proposed solution should work for all platforms.
[zstdmt] Fix jobsize bugs
* `ZSTDMT_serialState_reset()` should use `targetSectionSize`, not `jobSize` when sizing the seqstore.
Add an assert that checks that we sized the seqstore using the right job size.
* `ZSTDMT_compressionJob()` should check if `rawSeqStore.seq == NULL`.
* `ZSTDMT_initCStream_internal()` should not adjust `mtctx->params.jobSize` (clamping to MIN/MAX is okay).
streaming decoders, such as ZSTD_decompressStream() or ZSTD_decompress_generic(),
may end up making no forward progress,
(aka no byte read from input __and__ no byte written to output),
due to unusual parameters conditions,
such as providing an output buffer already full.
In such case, the caller may be caught in an infinite loop,
calling the streaming decompression function again and again,
without making any progress.
This version detects such situation, and generates an error instead :
ZSTD_error_dstSize_tooSmall when output buffer is full,
ZSTD_error_srcSize_wrong when input buffer is empty.
The detection tolerates a number of attempts before triggering an error,
controlled by ZSTD_NO_FORWARD_PROGRESS_MAX macro constant,
which is set to 16 by default, and can be re-defined at compilation time.
This behavior tolerates potentially existing implementations
where such cases happen sporadically, like once or twice,
which is not dangerous (only infinite loops are),
without generating an error, hence without breaking these implementations.
Seperate syntheticTest and fileTableTest (now renamed as benchFiles)
Add incremental display to benchMem
Change to only iterMode for benchFunction
Make Synthetic test's compressibility configurable from cli (using -P#)
from zstreamtest.
This test is now integrated within --newapi,
which dynamically switches between the 2 modes randomly.
The main outcome is reduced testing time.
-Remove global variables
-Remove gv setting functions
-Add advancedParams struct
-Add defaultAdvancedParams();
-Change return type of bench Files
-Change cli to use new interface
-Changed error returns to own struct value
-Change default compression benchmark to use decompress_generic
-Add CustomBench function
-Add Documentation for new functions
There were 2 competing set of debug functions
within zstd_internal.h and bitstream.h.
They were mostly duplicate, and required care to avoid messing with each other.
There is now a single implementation, shared by both.
Significant change :
The macro variable ZSTD_DEBUG does no longer exist,
it has been replaced by DEBUGLEVEL,
which required modifying several source files.
result of ZSTD_compress_advanced()
is different from ZSTD_compress_generic()
when using negative compression levels
because the disabling of huffman compression is not passed in parameters.
when parameters are "equivalent",
the context is re-used in continue mode,
hence needed workspace size is not recalculated.
This incidentally also evades the size-down check and action.
This patch intercepts the "continue mode"
so that the size-down check and action is actually triggered.
recently introduce into the new dictionary mode.
The bug could be reproduced with this command :
./zstreamtest -v --opaqueapi --no-big-tests -s4092 -t639
error was in function ZSTD_count_2segments() :
the beginning of the 2nd segment corresponds to prefixStart
and not the beginning of the current block (istart == src).
This would result in comparing the wrong byte.
ensure that, when frequency[symbol]==0,
result is (tableLog + 1) bits
with both upper-bit and fractional-bit estimates.
Also : enable BIT_DEBUG in /tests
ZSTD_decompress() can decompress multiple frames sent as a single input.
But the input size must be the exact sum of all compressed frames, no more.
In the case of a mistake on srcSize, being larger than required,
ZSTD_decompress() will try to decompress a new frame after current one, and fail.
As a consequence, it will issue an error code, ERROR(prefix_unknown).
While the error is technically correct
(the decoder could not recognise the header of _next_ frame),
it's confusing, as users will believe that the first header of the first frame is wrong,
which is not the case (it's correct).
It makes it more difficult to understand that the error is in the source size, which is too large.
This patch changes the error code provided in such a scenario.
If (at least) a first frame was successfully decoded,
and then following bytes are garbage values,
the decoder assumes the provided input size is wrong (too large),
and issue the error code ERROR(srcSize_wrong).
distance between levels is slightly increased
to compensate for level 1 speed improvements
and the will to have stronger level 19
extending the range of speed to cover.
reported by @let-def.
It's actually a bug in ZSTD_compressBegin_usingCDict()
which would pass a wrong pledgedSrcSize value (0 instead of ZSTD_CONTENTSIZE_UNKNOWN)
resulting in wrong window size, resulting in downsized seqStore,
resulting in segfault when writing into the seqStore later in the process.
Added a test in fuzzer to cover this use case (fails before the patch).
The new advanced API basically set `requestedParams = appliedParams` when
using a dictionary. This halted all parameter adjustment, which can hurt
compression ratio if, for example, the window log is small for the first
call, but the rest of the files are large.
This patch fixes the bug, and checks that the `requestedParams` don't change
in the new advanced API when using a dictionary, and generally in the fuzzer.
OpenBSD uses md5 instead of md5sum, and has no device called full.
With this patch, make check runs until #1088. With the assumption made
in the issue make check runs succesfully.
Summary:
Allocate a single input buffer large enough to house each job, as well as
enough space for the IO thread to write 2 extra buffers. One goes in the
`POOL` queue, and one to fill, and then block on a full `POOL` queue.
Since we can't overlap with the prefix, we allocate space for 3 extra
input buffers.
Test Plan:
* CI
* With and without ASAN/UBSAN run zstdmt with different number of threads
on two large binaries, and verify that their checksums match.
* Test on the tip of the zstdmt ldm integration.
Reviewers: cyan
Differential Revision: https://phabricator.intern.facebook.com/D7284007
Tasks: T25664120
The overflow protection is broken when the window log is `> (3U << 29)`, so 31.
It doesn't work when `current` isn't around `1U << windowLog` ahead of `lowLimit`,
and the the assertion `current > newCurrent` fails. This happens when the same
context is used many times over, but with a large window log, like in zstdmt.
Fix it by triggering correction based on `nextSrc - base` instead of `lowLimit`.
The added test fails before the patch, and passes after.
access negative compression levels from command line
for both compression and benchmark modes.
also : ensure proper propagation of parameters
through ZSTD_compress_generic() interface.
added relevant cli tests.
negative compression level trade compression ratio for more compression speed.
They turn off huffman compression of literals,
and use row 0 as baseline with a stepSize = -cLevel.
added associated test in fuzzer
also added : new advanced parameter ZSTD_p_literalCompression
This makes it easier to explain that nbWorkers=0 --> single-threaded mode,
while nbWorkers=1 --> asynchronous mode (one mode thread on top of the "main" caller thread).
No need for an additional asynchronous mode flag.
nbWorkers>=2 works the same as nbThreads>=2 previously.
When ZSTD_e_end directive is provided,
the question is not only "are internal buffers completely flushed",
it is also "is current frame completed".
In some rare cases,
it was possible for internal buffers to be completely flushed,
triggering a @return == 0,
but frame was not completed as it needed a last null-size block to mark the end,
resulting in an unfinished frame.
added some test
also updated relevant doc
+ fixed a mistake in `lz4` symlink support :
lz4 utility doesn't remove source files by default (like zstd, but unlike gzip).
The symlink must behave the same.
ZSTD_create?Dict() is required to produce a ?Dict* return type
because `free()` does not accept a `const type*` argument.
If it wasn't for this restriction, I would have preferred to create a `const ?Dict*` object
to emphasize the fact that, once created, a dictionary never changes
(hence can be shared concurrently until the end of its lifetime).
There is no such limitation with initStatic?Dict() :
as stated in the doc, there is no corresponding free() function,
since `workspace` is provided, hence allocated, externally,
it can only be free() externally.
Which means, ZSTD_initStatic?Dict() can return a `const ZSTD_?Dict*` pointer.
Tested with `make all`, to catch initStatic's users,
which, incidentally, also updated zstd.h documentation.
it still fallbacks to single-thread blocking invocation
when input is small (<1job)
or when invoking ZSTDMT_compress(), which is blocking.
Also : fixed a bug in new block-granular compression routine.
Pathological samples may result in literal section being incompressible.
This case is now detected,
and literal distribution is replaced by one that can be written into the dictionary.
constants in zstd.h should not depend on MIN() macro which existence is not guaranteed.
Added a test to check the specific constants.
The test is a bit too specific.
But I have found no way to control a more generic "are all macro already defined" condition,
especially as this is a valid construction (the missing macro might be defined later, intentionnally).
we want the dictionary table to be fully sorted,
not just lazily filled.
Dictionary loading is a bit more intensive,
but it saves cpu cycles for match search during compression.
Recipe in /tests rebuild everything from source for each target.
zstd is still a "small" project, so it's not prohibitive,
yet, rebuilding same files over and over represents substantial redundant work.
This patch replaces *.c files from /lib by their corresponding *.o files.
They cannot be compiled and stored directly within /lib,
since /tests triggers additional debug capabilities unwelcome in release binary.
So the resulting *.o are stored directly within /tests.
It turns out, it's difficult to find several target using *exactly* the same rules.
Using only the default rules (debug enabled, multi-threading disabled, no legacy)
a surprisingly small amount of targets share their work.
It's because, in many cases there are additional modifications requested :
some targets are 32-bits, some enable multi-threading, some enable legacy support,
some disable asserts, some want different kind of sanitizer, etc.
I created 2 sets of object files : with and without multithreading.
Several targets share their work, saving compilation time when running `make all`.
Also, obviously, when modifying one source file, only this one needs rebuilding.
For targets requiring some different setting, build from source *.c remain the rule.
The new rules have been tested within `-j` parallel compilation, and work fine with it.
params1 was swapped with params2.
This used to be a non-issue when testing for strict equality,
but now that some tests look for "sufficient size" `<=`, order matters.
zstd streaming API was adding a null-block at end of frame for small input.
Reason is : on small input, a single block is enough.
ZSTD_CStream would size its input buffer to expect a single block of this size,
automatically triggering a flush on reaching this size.
Unfortunately, that last byte was generally received before the "end" directive (at least in `fileio`).
The later "end" directive would force the creation of a 3-bytes last block to indicate end of frame.
The solution is to not flush automatically, which is btw the expected behavior.
It happens in this case because blocksize is defined with exactly the same size as input.
Just adding one-byte is enough to stop triggering the automatic flush.
I initially looked at another solution, solving the problem directly in the compression context.
But it felt awkward.
Now, the underlying compression API `ZSTD_compressContinue()` would take the decision the close a frame
on reaching its expected end (`pledgedSrcSize`).
This feels awkward, a responsability over-reach, beyond the definition of this API.
ZSTD_compressContinue() is clearly documented as a guaranteed flush,
with ZSTD_compressEnd() generating a guaranteed end.
I faced similar issue when trying to port a similar mechanism at the higher streaming layer.
Having ZSTD_CStream end a frame automatically on reaching `pledgedSrcSize` can surprise the caller,
since it did not explicitly requested an end of frame.
The only sensible action remaining after that is to end the frame with no additional input.
This adds additional logic in the ZSTD_CStream state to check this condition.
Plus some potential confusion on the meaning of ZSTD_endStream() with no additional input (ending confirmation ? new 0-size frame ?)
In the end, just enlarging input buffer by 1 byte feels the least intrusive change.
It's also a contract remaining inside the streaming layer, so the logic is contained in this part of the code.
The patch also introduces a new test checking that size of small frame is as expected, without additional 3-bytes null block.
- building cli from /tests preserves potential flags in MOREFLAGS (such as asan/usan)
- MT dictionary tests check for MT capability (MT is not enabled by default for zstd32)