experimental function ZSTD_compressBlock() is designed for very small data in mind,
for situation where saving the ~12 bytes of frame header can actually make a difference.
Some systems though may have to deal with small and large data entangled.
If it's larger than a block (> 128KB), compressBlock() cannot compress them in one round.
That's why it's possible to compress in multiple rounds.
This is a chain of compressed blocks.
Some users push this capability to the limit, encoding gigantic chain of blocks.
On crossing the 4GB limit, some internal overflow occurs.
This fix moves the overflow correction mechanism higher in the call chain,
so that it's applied also to gigantic chains of blocks.
Added a test case in fuzzer.c, which crashes before the fix, and pass now.
which can be probed using new function ZSTD_minCLevel().
Also : redefined ZSTD_TARGETLENGTH_MIN/MAX for consistency
used the opportunity to bump version number to v1.3.6
streaming decoders, such as ZSTD_decompressStream() or ZSTD_decompress_generic(),
may end up making no forward progress,
(aka no byte read from input __and__ no byte written to output),
due to unusual parameters conditions,
such as providing an output buffer already full.
In such case, the caller may be caught in an infinite loop,
calling the streaming decompression function again and again,
without making any progress.
This version detects such situation, and generates an error instead :
ZSTD_error_dstSize_tooSmall when output buffer is full,
ZSTD_error_srcSize_wrong when input buffer is empty.
The detection tolerates a number of attempts before triggering an error,
controlled by ZSTD_NO_FORWARD_PROGRESS_MAX macro constant,
which is set to 16 by default, and can be re-defined at compilation time.
This behavior tolerates potentially existing implementations
where such cases happen sporadically, like once or twice,
which is not dangerous (only infinite loops are),
without generating an error, hence without breaking these implementations.
result of ZSTD_compress_advanced()
is different from ZSTD_compress_generic()
when using negative compression levels
because the disabling of huffman compression is not passed in parameters.
when parameters are "equivalent",
the context is re-used in continue mode,
hence needed workspace size is not recalculated.
This incidentally also evades the size-down check and action.
This patch intercepts the "continue mode"
so that the size-down check and action is actually triggered.
ZSTD_decompress() can decompress multiple frames sent as a single input.
But the input size must be the exact sum of all compressed frames, no more.
In the case of a mistake on srcSize, being larger than required,
ZSTD_decompress() will try to decompress a new frame after current one, and fail.
As a consequence, it will issue an error code, ERROR(prefix_unknown).
While the error is technically correct
(the decoder could not recognise the header of _next_ frame),
it's confusing, as users will believe that the first header of the first frame is wrong,
which is not the case (it's correct).
It makes it more difficult to understand that the error is in the source size, which is too large.
This patch changes the error code provided in such a scenario.
If (at least) a first frame was successfully decoded,
and then following bytes are garbage values,
the decoder assumes the provided input size is wrong (too large),
and issue the error code ERROR(srcSize_wrong).
reported by @let-def.
It's actually a bug in ZSTD_compressBegin_usingCDict()
which would pass a wrong pledgedSrcSize value (0 instead of ZSTD_CONTENTSIZE_UNKNOWN)
resulting in wrong window size, resulting in downsized seqStore,
resulting in segfault when writing into the seqStore later in the process.
Added a test in fuzzer to cover this use case (fails before the patch).
The overflow protection is broken when the window log is `> (3U << 29)`, so 31.
It doesn't work when `current` isn't around `1U << windowLog` ahead of `lowLimit`,
and the the assertion `current > newCurrent` fails. This happens when the same
context is used many times over, but with a large window log, like in zstdmt.
Fix it by triggering correction based on `nextSrc - base` instead of `lowLimit`.
The added test fails before the patch, and passes after.
negative compression level trade compression ratio for more compression speed.
They turn off huffman compression of literals,
and use row 0 as baseline with a stepSize = -cLevel.
added associated test in fuzzer
also added : new advanced parameter ZSTD_p_literalCompression
This makes it easier to explain that nbWorkers=0 --> single-threaded mode,
while nbWorkers=1 --> asynchronous mode (one mode thread on top of the "main" caller thread).
No need for an additional asynchronous mode flag.
nbWorkers>=2 works the same as nbThreads>=2 previously.
ZSTD_create?Dict() is required to produce a ?Dict* return type
because `free()` does not accept a `const type*` argument.
If it wasn't for this restriction, I would have preferred to create a `const ?Dict*` object
to emphasize the fact that, once created, a dictionary never changes
(hence can be shared concurrently until the end of its lifetime).
There is no such limitation with initStatic?Dict() :
as stated in the doc, there is no corresponding free() function,
since `workspace` is provided, hence allocated, externally,
it can only be free() externally.
Which means, ZSTD_initStatic?Dict() can return a `const ZSTD_?Dict*` pointer.
Tested with `make all`, to catch initStatic's users,
which, incidentally, also updated zstd.h documentation.
Pathological samples may result in literal section being incompressible.
This case is now detected,
and literal distribution is replaced by one that can be written into the dictionary.
constants in zstd.h should not depend on MIN() macro which existence is not guaranteed.
Added a test to check the specific constants.
The test is a bit too specific.
But I have found no way to control a more generic "are all macro already defined" condition,
especially as this is a valid construction (the missing macro might be defined later, intentionnally).