/** * Copyright (c) 2017-present, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ #include #include #include #include #include #include #include #include "zstd.h" #include "zstd_internal.h" #include "mem.h" // Direct access to internal compression functions is required #include "zstd_compress.c" #define XXH_STATIC_LINKING_ONLY #include "xxhash.h" /* XXH64 */ #ifndef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif #ifndef MAX_PATH #ifdef PATH_MAX #define MAX_PATH PATH_MAX #else #define MAX_PATH 256 #endif #endif /*-************************************ * DISPLAY Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } static U32 g_displayLevel = 0; #define DISPLAYUPDATE(...) \ do { \ if ((clockSpan(g_displayClock) > g_refreshRate) || \ (g_displayLevel >= 4)) { \ g_displayClock = clock(); \ DISPLAY(__VA_ARGS__); \ if (g_displayLevel >= 4) fflush(stderr); \ } \ } while (0) static const clock_t g_refreshRate = CLOCKS_PER_SEC / 6; static clock_t g_displayClock = 0; static clock_t clockSpan(clock_t cStart) { return clock() - cStart; /* works even when overflow; max span ~ 30mn */ } #define CHECKERR(code) \ do { \ if (ZSTD_isError(code)) { \ DISPLAY("Error occurred while generating data: %s\n", \ ZSTD_getErrorName(code)); \ exit(1); \ } \ } while (0) /*-******************************************************* * Random function *********************************************************/ #define CLAMP(x, a, b) ((x) < (a) ? (a) : ((x) > (b) ? (b) : (x))) static unsigned RAND(unsigned* src) { #define RAND_rotl32(x,r) ((x << r) | (x >> (32 - r))) static const U32 prime1 = 2654435761U; static const U32 prime2 = 2246822519U; U32 rand32 = *src; rand32 *= prime1; rand32 += prime2; rand32 = RAND_rotl32(rand32, 13); *src = rand32; return RAND_rotl32(rand32, 27); #undef RAND_rotl32 } #define DISTSIZE (8192) /* Write `size` bytes into `ptr`, all of which are less than or equal to `maxSymb` */ static void RAND_bufferMaxSymb(U32* seed, void* ptr, size_t size, int maxSymb) { size_t i; BYTE* op = ptr; for (i = 0; i < size; i++) { op[i] = RAND(seed) % (maxSymb + 1); } } /* Write `size` random bytes into `ptr` */ static void RAND_buffer(U32* seed, void* ptr, size_t size) { size_t i; BYTE* op = ptr; for (i = 0; i + 4 <= size; i += 4) { MEM_writeLE32(op + i, RAND(seed)); } for (; i < size; i++) { op[i] = RAND(seed) & 0xff; } } /* Write `size` bytes into `ptr` following the distribution `dist` */ static void RAND_bufferDist(U32* seed, BYTE* dist, void* ptr, size_t size) { size_t i; BYTE* op = ptr; for (i = 0; i < size; i++) { op[i] = dist[RAND(seed) % DISTSIZE]; } } /* Generate a random distribution where the frequency of each symbol follows a * geometric distribution defined by `weight` * `dist` should have size at least `DISTSIZE` */ static void RAND_genDist(U32* seed, BYTE* dist, double weight) { size_t i = 0; size_t statesLeft = DISTSIZE; BYTE symb = RAND(seed) % 256; BYTE step = (RAND(seed) % 256) | 1; /* force it to be odd so it's relatively prime to 256 */ while (i < DISTSIZE) { size_t states = ((size_t)(weight * statesLeft)) + 1; size_t j; for (j = 0; j < states && i < DISTSIZE; j++, i++) { dist[i] = symb; } symb += step; statesLeft -= states; } } /* Generates a random number in the range [min, max) */ static inline U32 RAND_range(U32* seed, U32 min, U32 max) { return (RAND(seed) % (max-min)) + min; } #define ROUND(x) ((U32)(x + 0.5)) /* Generates a random number in an exponential distribution with mean `mean` */ static double RAND_exp(U32* seed, double mean) { double const u = RAND(seed) / (double) UINT_MAX; return log(1-u) * (-mean); } /*-******************************************************* * Constants and Structs *********************************************************/ const char *BLOCK_TYPES[] = {"raw", "rle", "compressed"}; #define MAX_DECOMPRESSED_SIZE_LOG 20 #define MAX_DECOMPRESSED_SIZE (1ULL << MAX_DECOMPRESSED_SIZE_LOG) #define MAX_WINDOW_LOG 22 /* Recommended support is 8MB, so limit to 4MB + mantissa */ #define MAX_BLOCK_SIZE (128ULL * 1024) #define MIN_SEQ_LEN (3) #define MAX_NB_SEQ ((MAX_BLOCK_SIZE + MIN_SEQ_LEN - 1) / MIN_SEQ_LEN) BYTE CONTENT_BUFFER[MAX_DECOMPRESSED_SIZE]; BYTE FRAME_BUFFER[MAX_DECOMPRESSED_SIZE * 2]; BYTE LITERAL_BUFFER[MAX_BLOCK_SIZE]; seqDef SEQUENCE_BUFFER[MAX_NB_SEQ]; BYTE SEQUENCE_LITERAL_BUFFER[MAX_BLOCK_SIZE]; /* storeSeq expects a place to copy literals to */ BYTE SEQUENCE_LLCODE[MAX_BLOCK_SIZE]; BYTE SEQUENCE_MLCODE[MAX_BLOCK_SIZE]; BYTE SEQUENCE_OFCODE[MAX_BLOCK_SIZE]; unsigned WKSP[1024]; typedef struct { size_t contentSize; /* 0 means unknown (unless contentSize == windowSize == 0) */ unsigned windowSize; /* contentSize >= windowSize means single segment */ } frameHeader_t; /* For repeat modes */ typedef struct { U32 rep[ZSTD_REP_NUM]; int hufInit; /* the distribution used in the previous block for repeat mode */ BYTE hufDist[DISTSIZE]; U32 hufTable [256]; /* HUF_CElt is an incomplete type */ int fseInit; FSE_CTable offcodeCTable [FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)]; FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)]; FSE_CTable litlengthCTable [FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)]; /* Symbols that were present in the previous distribution, for use with * set_repeat */ BYTE litlengthSymbolSet[36]; BYTE offsetSymbolSet[29]; BYTE matchlengthSymbolSet[53]; } cblockStats_t; typedef struct { void* data; void* dataStart; void* dataEnd; void* src; void* srcStart; void* srcEnd; frameHeader_t header; cblockStats_t stats; cblockStats_t oldStats; /* so they can be rolled back if uncompressible */ } frame_t; /*-******************************************************* * Generator Functions *********************************************************/ struct { int contentSize; /* force the content size to be present */ } opts; /* advanced options on generation */ /* Generate and write a random frame header */ static void writeFrameHeader(U32* seed, frame_t* frame) { BYTE* const op = frame->data; size_t pos = 0; frameHeader_t fh; BYTE windowByte = 0; int singleSegment = 0; int contentSizeFlag = 0; int fcsCode = 0; memset(&fh, 0, sizeof(fh)); /* generate window size */ { /* Follow window algorithm from specification */ int const exponent = RAND(seed) % (MAX_WINDOW_LOG - 10); int const mantissa = RAND(seed) % 8; windowByte = (exponent << 3) | mantissa; fh.windowSize = (1U << (exponent + 10)); fh.windowSize += fh.windowSize / 8 * mantissa; } { /* Generate random content size */ size_t highBit; if (RAND(seed) & 7) { /* do content of at least 128 bytes */ highBit = 1ULL << RAND_range(seed, 7, MAX_DECOMPRESSED_SIZE_LOG); } else if (RAND(seed) & 3) { /* do small content */ highBit = 1ULL << RAND_range(seed, 0, 7); } else { /* 0 size frame */ highBit = 0; } fh.contentSize = highBit ? highBit + (RAND(seed) % highBit) : 0; /* provide size sometimes */ contentSizeFlag = opts.contentSize | (RAND(seed) & 1); if (contentSizeFlag && (fh.contentSize == 0 || !(RAND(seed) & 7))) { /* do single segment sometimes */ fh.windowSize = fh.contentSize; singleSegment = 1; } } if (contentSizeFlag) { /* Determine how large fcs field has to be */ int minFcsCode = (fh.contentSize >= 256) + (fh.contentSize >= 65536 + 256) + (fh.contentSize > 0xFFFFFFFFU); if (!singleSegment && !minFcsCode) { minFcsCode = 1; } fcsCode = minFcsCode + (RAND(seed) % (4 - minFcsCode)); if (fcsCode == 1 && fh.contentSize < 256) fcsCode++; } /* write out the header */ MEM_writeLE32(op + pos, ZSTD_MAGICNUMBER); pos += 4; { BYTE const frameHeaderDescriptor = (fcsCode << 6) | (singleSegment << 5) | (1 << 2); op[pos++] = frameHeaderDescriptor; } if (!singleSegment) { op[pos++] = windowByte; } if (contentSizeFlag) { switch (fcsCode) { default: /* Impossible */ case 0: op[pos++] = fh.contentSize; break; case 1: MEM_writeLE16(op + pos, fh.contentSize - 256); pos += 2; break; case 2: MEM_writeLE32(op + pos, fh.contentSize); pos += 4; break; case 3: MEM_writeLE64(op + pos, fh.contentSize); pos += 8; break; } } DISPLAYLEVEL(2, " frame content size:\t%zu\n", fh.contentSize); DISPLAYLEVEL(2, " frame window size:\t%u\n", fh.windowSize); DISPLAYLEVEL(2, " content size flag:\t%d\n", contentSizeFlag); DISPLAYLEVEL(2, " single segment flag:\t%d\n", singleSegment); frame->data = op + pos; frame->header = fh; } /* Write a literal block in either raw or RLE form, return the literals size */ static size_t writeLiteralsBlockSimple(U32* seed, frame_t* frame, size_t contentSize) { BYTE* op = (BYTE*)frame->data; int const type = RAND(seed) % 2; int const sizeFormatDesc = RAND(seed) % 8; size_t litSize; size_t maxLitSize = MIN(contentSize, MAX_BLOCK_SIZE); if (sizeFormatDesc == 0) { /* Size_FormatDesc = ?0 */ maxLitSize = MIN(maxLitSize, 31); } else if (sizeFormatDesc <= 4) { /* Size_FormatDesc = 01 */ maxLitSize = MIN(maxLitSize, 4095); } else { /* Size_Format = 11 */ maxLitSize = MIN(maxLitSize, 1048575); } litSize = RAND(seed) % (maxLitSize + 1); if (frame->src == frame->srcStart && litSize == 0) { litSize = 1; /* no empty literals if there's nothing preceding this block */ } if (litSize + 3 > contentSize) { litSize = contentSize; /* no matches shorter than 3 are allowed */ } /* use smallest size format that fits */ if (litSize < 32) { op[0] = (type | (0 << 2) | (litSize << 3)) & 0xff; op += 1; } else if (litSize < 4096) { op[0] = (type | (1 << 2) | (litSize << 4)) & 0xff; op[1] = (litSize >> 4) & 0xff; op += 2; } else { op[0] = (type | (3 << 2) | (litSize << 4)) & 0xff; op[1] = (litSize >> 4) & 0xff; op[2] = (litSize >> 12) & 0xff; op += 3; } if (type == 0) { /* Raw literals */ DISPLAYLEVEL(4, " raw literals\n"); RAND_buffer(seed, LITERAL_BUFFER, litSize); memcpy(op, LITERAL_BUFFER, litSize); op += litSize; } else { /* RLE literals */ BYTE const symb = RAND(seed) % 256; DISPLAYLEVEL(4, " rle literals: 0x%02x\n", (U32)symb); memset(LITERAL_BUFFER, symb, litSize); op[0] = symb; op++; } frame->data = op; return litSize; } /* Generate a Huffman header for the given source */ static size_t writeHufHeader(U32* seed, HUF_CElt* hufTable, void* dst, size_t dstSize, const void* src, size_t srcSize) { BYTE* const ostart = (BYTE*)dst; BYTE* op = ostart; unsigned huffLog = 11; U32 maxSymbolValue = 255; U32 count[HUF_SYMBOLVALUE_MAX+1]; /* Scan input and build symbol stats */ { size_t const largest = FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, WKSP); if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 0; } /* single symbol, rle */ if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */ } /* Build Huffman Tree */ /* Max Huffman log is 11, min is highbit(maxSymbolValue)+1 */ huffLog = RAND_range(seed, ZSTD_highbit32(maxSymbolValue)+1, huffLog+1); DISPLAYLEVEL(6, " huffman log: %u\n", huffLog); { size_t const maxBits = HUF_buildCTable_wksp (hufTable, count, maxSymbolValue, huffLog, WKSP, sizeof(WKSP)); CHECKERR(maxBits); huffLog = (U32)maxBits; } /* Write table description header */ { size_t const hSize = HUF_writeCTable (op, dstSize, hufTable, maxSymbolValue, huffLog); if (hSize + 12 >= srcSize) return 0; /* not useful to try compression */ op += hSize; } return op - ostart; } /* Write a Huffman coded literals block and return the litearls size */ static size_t writeLiteralsBlockCompressed(U32* seed, frame_t* frame, size_t contentSize) { BYTE* origop = (BYTE*)frame->data; BYTE* opend = (BYTE*)frame->dataEnd; BYTE* op; BYTE* const ostart = origop; int const sizeFormat = RAND(seed) % 4; size_t litSize; size_t hufHeaderSize = 0; size_t compressedSize = 0; size_t maxLitSize = MIN(contentSize-3, MAX_BLOCK_SIZE); symbolEncodingType_e hType; if (contentSize < 64) { /* make sure we get reasonably-sized literals for compression */ return ERROR(GENERIC); } DISPLAYLEVEL(4, " compressed literals\n"); switch (sizeFormat) { case 0: /* fall through, size is the same as case 1 */ case 1: maxLitSize = MIN(maxLitSize, 1023); origop += 3; break; case 2: maxLitSize = MIN(maxLitSize, 16383); origop += 4; break; case 3: maxLitSize = MIN(maxLitSize, 262143); origop += 5; break; default:; /* impossible */ } do { op = origop; do { litSize = RAND(seed) % (maxLitSize + 1); } while (litSize < 32); /* avoid small literal sizes */ if (litSize + 3 > contentSize) { litSize = contentSize; /* no matches shorter than 3 are allowed */ } /* most of the time generate a new distribution */ if ((RAND(seed) & 3) || !frame->stats.hufInit) { do { if (RAND(seed) & 3) { /* add 10 to ensure some compressability */ double const weight = ((RAND(seed) % 90) + 10) / 100.0; DISPLAYLEVEL(5, " distribution weight: %d%%\n", (int)(weight * 100)); RAND_genDist(seed, frame->stats.hufDist, weight); } else { /* sometimes do restricted range literals to force * non-huffman headers */ DISPLAYLEVEL(5, " small range literals\n"); RAND_bufferMaxSymb(seed, frame->stats.hufDist, DISTSIZE, 15); } RAND_bufferDist(seed, frame->stats.hufDist, LITERAL_BUFFER, litSize); /* generate the header from the distribution instead of the * actual data to avoid bugs with symbols that were in the * distribution but never showed up in the output */ hufHeaderSize = writeHufHeader( seed, (HUF_CElt*)frame->stats.hufTable, op, opend - op, frame->stats.hufDist, DISTSIZE); CHECKERR(hufHeaderSize); /* repeat until a valid header is written */ } while (hufHeaderSize == 0); op += hufHeaderSize; hType = set_compressed; frame->stats.hufInit = 1; } else { /* repeat the distribution/table from last time */ DISPLAYLEVEL(5, " huffman repeat stats\n"); RAND_bufferDist(seed, frame->stats.hufDist, LITERAL_BUFFER, litSize); hufHeaderSize = 0; hType = set_repeat; } do { compressedSize = sizeFormat == 0 ? HUF_compress1X_usingCTable( op, opend - op, LITERAL_BUFFER, litSize, (HUF_CElt*)frame->stats.hufTable) : HUF_compress4X_usingCTable( op, opend - op, LITERAL_BUFFER, litSize, (HUF_CElt*)frame->stats.hufTable); CHECKERR(compressedSize); /* this only occurs when it could not compress or similar */ } while (compressedSize <= 0); op += compressedSize; compressedSize += hufHeaderSize; DISPLAYLEVEL(5, " regenerated size: %zu\n", litSize); DISPLAYLEVEL(5, " compressed size: %zu\n", compressedSize); if (compressedSize >= litSize) { DISPLAYLEVEL(5, " trying again\n"); /* if we have to try again, reset the stats so we don't accidentally * try to repeat a distribution we just made */ frame->stats = frame->oldStats; } else { break; } } while (1); /* write header */ switch (sizeFormat) { case 0: /* fall through, size is the same as case 1 */ case 1: { U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) | ((U32)compressedSize << 14); MEM_writeLE24(ostart, header); break; } case 2: { U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) | ((U32)compressedSize << 18); MEM_writeLE32(ostart, header); break; } case 3: { U32 const header = hType | (sizeFormat << 2) | ((U32)litSize << 4) | ((U32)compressedSize << 22); MEM_writeLE32(ostart, header); ostart[4] = (BYTE)(compressedSize >> 10); break; } default:; /* impossible */ } frame->data = op; return litSize; } static size_t writeLiteralsBlock(U32* seed, frame_t* frame, size_t contentSize) { /* only do compressed for larger segments to avoid compressibility issues */ if (RAND(seed) & 7 && contentSize >= 64) { return writeLiteralsBlockCompressed(seed, frame, contentSize); } else { return writeLiteralsBlockSimple(seed, frame, contentSize); } } static inline void initSeqStore(seqStore_t *seqStore) { seqStore->sequencesStart = SEQUENCE_BUFFER; seqStore->litStart = SEQUENCE_LITERAL_BUFFER; seqStore->llCode = SEQUENCE_LLCODE; seqStore->mlCode = SEQUENCE_MLCODE; seqStore->ofCode = SEQUENCE_OFCODE; ZSTD_resetSeqStore(seqStore); } /* Randomly generate sequence commands */ static U32 generateSequences(U32* seed, frame_t* frame, seqStore_t* seqStore, size_t contentSize, size_t literalsSize) { /* The total length of all the matches */ size_t const remainingMatch = contentSize - literalsSize; size_t excessMatch = 0; U32 numSequences = 0; U32 i; const BYTE* literals = LITERAL_BUFFER; BYTE* srcPtr = frame->src; if (literalsSize != contentSize) { /* each match must be at least MIN_SEQ_LEN, so this is the maximum * number of sequences we can have */ U32 const maxSequences = (U32)remainingMatch / MIN_SEQ_LEN; numSequences = (RAND(seed) % maxSequences) + 1; /* the extra match lengths we have to allocate to each sequence */ excessMatch = remainingMatch - numSequences * MIN_SEQ_LEN; } DISPLAYLEVEL(5, " total match lengths: %zu\n", remainingMatch); for (i = 0; i < numSequences; i++) { /* Generate match and literal lengths by exponential distribution to * ensure nice numbers */ U32 matchLen = MIN_SEQ_LEN + ROUND(RAND_exp(seed, excessMatch / (double)(numSequences - i))); U32 literalLen = (RAND(seed) & 7) ? ROUND(RAND_exp(seed, literalsSize / (double)(numSequences - i))) : 0; /* actual offset, code to send, and point to copy up to when shifting * codes in the repeat offsets history */ U32 offset, offsetCode, repIndex; /* bounds checks */ matchLen = MIN(matchLen, excessMatch + MIN_SEQ_LEN); literalLen = MIN(literalLen, literalsSize); if (i == 0 && srcPtr == frame->srcStart && literalLen == 0) literalLen = 1; if (i + 1 == numSequences) matchLen = MIN_SEQ_LEN + excessMatch; memcpy(srcPtr, literals, literalLen); srcPtr += literalLen; do { if (RAND(seed) & 7) { /* do a normal offset */ offset = (RAND(seed) % MIN(frame->header.windowSize, (size_t)((BYTE*)srcPtr - (BYTE*)frame->srcStart))) + 1; offsetCode = offset + ZSTD_REP_MOVE; repIndex = 2; } else { /* do a repeat offset */ offsetCode = RAND(seed) % 3; if (literalLen > 0) { offset = frame->stats.rep[offsetCode]; repIndex = offsetCode; } else { /* special case */ offset = offsetCode == 2 ? frame->stats.rep[0] - 1 : frame->stats.rep[offsetCode + 1]; repIndex = MIN(2, offsetCode + 1); } } } while (offset > (size_t)((BYTE*)srcPtr - (BYTE*)frame->srcStart) || offset == 0); { size_t j; for (j = 0; j < matchLen; j++) { *srcPtr = *(srcPtr-offset); srcPtr++; } } { int r; for (r = repIndex; r > 0; r--) { frame->stats.rep[r] = frame->stats.rep[r - 1]; } frame->stats.rep[0] = offset; } DISPLAYLEVEL(6, " LL: %5u OF: %5u ML: %5u", literalLen, offset, matchLen); DISPLAYLEVEL(7, " srcPos: %8tu seqNb: %3u", (BYTE*)srcPtr - (BYTE*)frame->srcStart, i); DISPLAYLEVEL(6, "\n"); if (offsetCode < 3) { DISPLAYLEVEL(7, " repeat offset: %d\n", repIndex); } /* use libzstd sequence handling */ ZSTD_storeSeq(seqStore, literalLen, literals, offsetCode, matchLen - MINMATCH); literalsSize -= literalLen; excessMatch -= (matchLen - MIN_SEQ_LEN); literals += literalLen; } memcpy(srcPtr, literals, literalsSize); srcPtr += literalsSize; DISPLAYLEVEL(6, " excess literals: %5zu", literalsSize); DISPLAYLEVEL(7, " srcPos: %8tu", (BYTE*)srcPtr - (BYTE*)frame->srcStart); DISPLAYLEVEL(6, "\n"); return numSequences; } static void initSymbolSet(const BYTE* symbols, size_t len, BYTE* set, BYTE maxSymbolValue) { size_t i; memset(set, 0, (size_t)maxSymbolValue+1); for (i = 0; i < len; i++) { set[symbols[i]] = 1; } } static int isSymbolSubset(const BYTE* symbols, size_t len, const BYTE* set, BYTE maxSymbolValue) { size_t i; for (i = 0; i < len; i++) { if (symbols[i] > maxSymbolValue || !set[symbols[i]]) { return 0; } } return 1; } static size_t writeSequences(U32* seed, frame_t* frame, seqStore_t* seqStorePtr, size_t nbSeq) { /* This code is mostly copied from ZSTD_compressSequences in zstd_compress.c */ U32 count[MaxSeq+1]; S16 norm[MaxSeq+1]; FSE_CTable* CTable_LitLength = frame->stats.litlengthCTable; FSE_CTable* CTable_OffsetBits = frame->stats.offcodeCTable; FSE_CTable* CTable_MatchLength = frame->stats.matchlengthCTable; U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */ const seqDef* const sequences = seqStorePtr->sequencesStart; const BYTE* const ofCodeTable = seqStorePtr->ofCode; const BYTE* const llCodeTable = seqStorePtr->llCode; const BYTE* const mlCodeTable = seqStorePtr->mlCode; BYTE* const oend = (BYTE*)frame->dataEnd; BYTE* op = (BYTE*)frame->data; BYTE* seqHead; BYTE scratchBuffer[1<>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; /* seqHead : flags for FSE encoding type */ seqHead = op++; if (nbSeq==0) { frame->data = op; return 0; } /* convert length/distances into codes */ ZSTD_seqToCodes(seqStorePtr); /* CTable for Literal Lengths */ { U32 max = MaxLL; size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, WKSP); if (mostFrequent == nbSeq) { /* do RLE if we have the chance */ *op++ = llCodeTable[0]; FSE_buildCTable_rle(CTable_LitLength, (BYTE)max); LLtype = set_rle; } else if (frame->stats.fseInit && !(RAND(seed) & 3) && isSymbolSubset(llCodeTable, nbSeq, frame->stats.litlengthSymbolSet, 35)) { /* maybe do repeat mode if we're allowed to */ LLtype = set_repeat; } else if (!(RAND(seed) & 3)) { /* maybe use the default distribution */ FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); LLtype = set_basic; } else { /* fall back on a full table */ size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max); if (count[llCodeTable[nbSeq-1]]>1) { count[llCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return ERROR(GENERIC); op += NCountSize; } FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); LLtype = set_compressed; } } /* CTable for Offsets */ /* see Literal Lengths for descriptions of mode choices */ { U32 max = MaxOff; size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, WKSP); if (mostFrequent == nbSeq) { *op++ = ofCodeTable[0]; FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max); Offtype = set_rle; } else if (frame->stats.fseInit && !(RAND(seed) & 3) && isSymbolSubset(ofCodeTable, nbSeq, frame->stats.offsetSymbolSet, 28)) { Offtype = set_repeat; } else if (!(RAND(seed) & 3)) { FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); Offtype = set_basic; } else { size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max); if (count[ofCodeTable[nbSeq-1]]>1) { count[ofCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return ERROR(GENERIC); op += NCountSize; } FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); Offtype = set_compressed; } } /* CTable for MatchLengths */ /* see Literal Lengths for descriptions of mode choices */ { U32 max = MaxML; size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, WKSP); if (mostFrequent == nbSeq) { *op++ = *mlCodeTable; FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max); MLtype = set_rle; } else if (frame->stats.fseInit && !(RAND(seed) & 3) && isSymbolSubset(mlCodeTable, nbSeq, frame->stats.matchlengthSymbolSet, 52)) { MLtype = set_repeat; } else if (!(RAND(seed) & 3)) { /* sometimes do default distribution */ FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, scratchBuffer, sizeof(scratchBuffer)); MLtype = set_basic; } else { /* fall back on table */ size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max); if (count[mlCodeTable[nbSeq-1]]>1) { count[mlCodeTable[nbSeq-1]]--; nbSeq_1--; } FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max); { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return ERROR(GENERIC); op += NCountSize; } FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer)); MLtype = set_compressed; } } frame->stats.fseInit = 1; initSymbolSet(llCodeTable, nbSeq, frame->stats.litlengthSymbolSet, 35); initSymbolSet(ofCodeTable, nbSeq, frame->stats.offsetSymbolSet, 28); initSymbolSet(mlCodeTable, nbSeq, frame->stats.matchlengthSymbolSet, 52); DISPLAYLEVEL(5, " LL type: %d OF type: %d ML type: %d\n", LLtype, Offtype, MLtype); *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); /* Encoding Sequences */ { BIT_CStream_t blockStream; FSE_CState_t stateMatchLength; FSE_CState_t stateOffsetBits; FSE_CState_t stateLitLength; CHECK_E(BIT_initCStream(&blockStream, op, oend-op), dstSize_tooSmall); /* not enough space remaining */ /* first symbols */ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); if (MEM_32bits()) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); BIT_flushBits(&blockStream); { size_t n; for (n=nbSeq-2 ; n= 64-7-(LLFSELog+MLFSELog+OffFSELog))) BIT_flushBits(&blockStream); /* (7)*/ BIT_addBits(&blockStream, sequences[n].litLength, llBits); if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ BIT_flushBits(&blockStream); /* (7)*/ } } FSE_flushCState(&blockStream, &stateMatchLength); FSE_flushCState(&blockStream, &stateOffsetBits); FSE_flushCState(&blockStream, &stateLitLength); { size_t const streamSize = BIT_closeCStream(&blockStream); if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */ op += streamSize; } } frame->data = op; return 0; } static size_t writeSequencesBlock(U32* seed, frame_t* frame, size_t contentSize, size_t literalsSize) { seqStore_t seqStore; size_t numSequences; initSeqStore(&seqStore); /* randomly generate sequences */ numSequences = generateSequences(seed, frame, &seqStore, contentSize, literalsSize); /* write them out to the frame data */ CHECKERR(writeSequences(seed, frame, &seqStore, numSequences)); return numSequences; } static size_t writeCompressedBlock(U32* seed, frame_t* frame, size_t contentSize) { BYTE* const blockStart = (BYTE*)frame->data; size_t literalsSize; size_t nbSeq; DISPLAYLEVEL(4, " compressed block:\n"); literalsSize = writeLiteralsBlock(seed, frame, contentSize); DISPLAYLEVEL(4, " literals size: %zu\n", literalsSize); nbSeq = writeSequencesBlock(seed, frame, contentSize, literalsSize); DISPLAYLEVEL(4, " number of sequences: %zu\n", nbSeq); return (BYTE*)frame->data - blockStart; } static void writeBlock(U32* seed, frame_t* frame, size_t contentSize, int lastBlock) { int const blockTypeDesc = RAND(seed) % 8; size_t blockSize; int blockType; BYTE *const header = (BYTE*)frame->data; BYTE *op = header + 3; DISPLAYLEVEL(3, " block:\n"); DISPLAYLEVEL(3, " block content size: %zu\n", contentSize); DISPLAYLEVEL(3, " last block: %s\n", lastBlock ? "yes" : "no"); if (blockTypeDesc == 0) { /* Raw data frame */ RAND_buffer(seed, frame->src, contentSize); memcpy(op, frame->src, contentSize); op += contentSize; blockType = 0; blockSize = contentSize; } else if (blockTypeDesc == 1) { /* RLE */ BYTE const symbol = RAND(seed) & 0xff; op[0] = symbol; memset(frame->src, symbol, contentSize); op++; blockType = 1; blockSize = contentSize; } else { /* compressed, most common */ size_t compressedSize; blockType = 2; frame->oldStats = frame->stats; frame->data = op; compressedSize = writeCompressedBlock(seed, frame, contentSize); if (compressedSize > contentSize) { blockType = 0; memcpy(op, frame->src, contentSize); op += contentSize; blockSize = contentSize; /* fall back on raw block if data doesn't compress */ frame->stats = frame->oldStats; /* don't update the stats */ } else { op += compressedSize; blockSize = compressedSize; } } frame->src = (BYTE*)frame->src + contentSize; DISPLAYLEVEL(3, " block type: %s\n", BLOCK_TYPES[blockType]); DISPLAYLEVEL(3, " block size field: %zu\n", blockSize); header[0] = (lastBlock | (blockType << 1) | (blockSize << 3)) & 0xff; MEM_writeLE16(header + 1, blockSize >> 5); frame->data = op; } static void writeBlocks(U32* seed, frame_t* frame) { size_t contentLeft = frame->header.contentSize; size_t const maxBlockSize = MIN(MAX_BLOCK_SIZE, frame->header.windowSize); while (1) { /* 1 in 4 chance of ending frame */ int const lastBlock = contentLeft > maxBlockSize ? 0 : !(RAND(seed) & 3); size_t blockContentSize; if (lastBlock) { blockContentSize = contentLeft; } else { if (contentLeft > 0 && (RAND(seed) & 7)) { /* some variable size blocks */ blockContentSize = RAND(seed) % (MIN(maxBlockSize, contentLeft)+1); } else if (contentLeft > maxBlockSize && (RAND(seed) & 1)) { /* some full size blocks */ blockContentSize = maxBlockSize; } else { /* some empty blocks */ blockContentSize = 0; } } writeBlock(seed, frame, blockContentSize, lastBlock); contentLeft -= blockContentSize; if (lastBlock) break; } } static void writeChecksum(frame_t* frame) { /* write checksum so implementations can verify their output */ U64 digest = XXH64(frame->srcStart, (BYTE*)frame->src-(BYTE*)frame->srcStart, 0); DISPLAYLEVEL(2, " checksum: %08x\n", (U32)digest); MEM_writeLE32(frame->data, (U32)digest); frame->data = (BYTE*)frame->data + 4; } static void outputBuffer(const void* buf, size_t size, const char* const path) { /* write data out to file */ const BYTE* ip = (const BYTE*)buf; FILE* out; if (path) { out = fopen(path, "wb"); } else { out = stdout; } if (!out) { fprintf(stderr, "Failed to open file at %s: ", path); perror(NULL); exit(1); } { size_t fsize = size; size_t written = 0; while (written < fsize) { written += fwrite(ip + written, 1, fsize - written, out); if (ferror(out)) { fprintf(stderr, "Failed to write to file at %s: ", path); perror(NULL); exit(1); } } } if (path) { fclose(out); } } static void initFrame(frame_t* fr) { memset(fr, 0, sizeof(*fr)); fr->data = fr->dataStart = FRAME_BUFFER; fr->dataEnd = FRAME_BUFFER + sizeof(FRAME_BUFFER); fr->src = fr->srcStart = CONTENT_BUFFER; fr->srcEnd = CONTENT_BUFFER + sizeof(CONTENT_BUFFER); /* init repeat codes */ fr->stats.rep[0] = 1; fr->stats.rep[1] = 4; fr->stats.rep[2] = 8; } /* Return the final seed */ static U32 generateFrame(U32 seed, frame_t* fr) { /* generate a complete frame */ DISPLAYLEVEL(1, "frame seed: %u\n", seed); initFrame(fr); writeFrameHeader(&seed, fr); writeBlocks(&seed, fr); writeChecksum(fr); return seed; } /*-******************************************************* * Test Mode *********************************************************/ BYTE DECOMPRESSED_BUFFER[MAX_DECOMPRESSED_SIZE]; static size_t testDecodeSimple(frame_t* fr) { /* test decoding the generated data with the simple API */ size_t const ret = ZSTD_decompress(DECOMPRESSED_BUFFER, MAX_DECOMPRESSED_SIZE, fr->dataStart, (BYTE*)fr->data - (BYTE*)fr->dataStart); if (ZSTD_isError(ret)) return ret; if (memcmp(DECOMPRESSED_BUFFER, fr->srcStart, (BYTE*)fr->src - (BYTE*)fr->srcStart) != 0) { return ERROR(corruption_detected); } return ret; } static size_t testDecodeStreaming(frame_t* fr) { /* test decoding the generated data with the streaming API */ ZSTD_DStream* zd = ZSTD_createDStream(); ZSTD_inBuffer in; ZSTD_outBuffer out; size_t ret; if (!zd) return ERROR(memory_allocation); in.src = fr->dataStart; in.pos = 0; in.size = (BYTE*)fr->data - (BYTE*)fr->dataStart; out.dst = DECOMPRESSED_BUFFER; out.pos = 0; out.size = ZSTD_DStreamOutSize(); ZSTD_initDStream(zd); while (1) { ret = ZSTD_decompressStream(zd, &out, &in); if (ZSTD_isError(ret)) goto cleanup; /* error */ if (ret == 0) break; /* frame is done */ /* force decoding to be done in chunks */ out.size += MIN(ZSTD_DStreamOutSize(), MAX_DECOMPRESSED_SIZE - out.size); } ret = out.pos; if (memcmp(out.dst, fr->srcStart, out.pos) != 0) { return ERROR(corruption_detected); } cleanup: ZSTD_freeDStream(zd); return ret; } static int runTestMode(U32 seed, unsigned numFiles, unsigned const testDurationS) { unsigned fnum; clock_t const startClock = clock(); clock_t const maxClockSpan = testDurationS * CLOCKS_PER_SEC; if (numFiles == 0 && !testDurationS) numFiles = 1; DISPLAY("seed: %u\n", seed); for (fnum = 0; fnum < numFiles || clockSpan(startClock) < maxClockSpan; fnum++) { frame_t fr; if (fnum < numFiles) DISPLAYUPDATE("\r%u/%u ", fnum, numFiles); else DISPLAYUPDATE("\r%u ", fnum); seed = generateFrame(seed, &fr); { size_t const r = testDecodeSimple(&fr); if (ZSTD_isError(r)) { DISPLAY("Error in simple mode on test seed %u: %s\n", seed + fnum, ZSTD_getErrorName(r)); return 1; } } { size_t const r = testDecodeStreaming(&fr); if (ZSTD_isError(r)) { DISPLAY("Error in streaming mode on test seed %u: %s\n", seed + fnum, ZSTD_getErrorName(r)); return 1; } } } DISPLAY("\r%u tests completed: ", fnum); DISPLAY("OK\n"); return 0; } /*-******************************************************* * File I/O *********************************************************/ static int generateFile(U32 seed, const char* const path, const char* const origPath) { frame_t fr; DISPLAY("seed: %u\n", seed); generateFrame(seed, &fr); outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, path); if (origPath) { outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, origPath); } return 0; } static int generateCorpus(U32 seed, unsigned numFiles, const char* const path, const char* const origPath) { char outPath[MAX_PATH]; unsigned fnum; DISPLAY("seed: %u\n", seed); for (fnum = 0; fnum < numFiles; fnum++) { frame_t fr; DISPLAYUPDATE("\r%u/%u ", fnum, numFiles); seed = generateFrame(seed, &fr); if (snprintf(outPath, MAX_PATH, "%s/z%06u.zst", path, fnum) + 1 > MAX_PATH) { DISPLAY("Error: path too long\n"); return 1; } outputBuffer(fr.dataStart, (BYTE*)fr.data - (BYTE*)fr.dataStart, outPath); if (origPath) { if (snprintf(outPath, MAX_PATH, "%s/z%06u", origPath, fnum) + 1 > MAX_PATH) { DISPLAY("Error: path too long\n"); return 1; } outputBuffer(fr.srcStart, (BYTE*)fr.src - (BYTE*)fr.srcStart, outPath); } } DISPLAY("\r%u/%u \n", fnum, numFiles); return 0; } /*_******************************************************* * Command line *********************************************************/ static U32 makeSeed(void) { U32 t = time(NULL); return XXH32(&t, sizeof(t), 0) % 65536; } static unsigned readInt(const char** argument) { unsigned val = 0; while ((**argument>='0') && (**argument<='9')) { val *= 10; val += **argument - '0'; (*argument)++; } return val; } static void usage(const char* programName) { DISPLAY( "Usage :\n"); DISPLAY( " %s [args]\n", programName); DISPLAY( "\n"); DISPLAY( "Arguments :\n"); DISPLAY( " -p : select output path (default:stdout)\n"); DISPLAY( " in multiple files mode this should be a directory\n"); DISPLAY( " -o : select path to output original file (default:no output)\n"); DISPLAY( " in multiple files mode this should be a directory\n"); DISPLAY( " -s# : select seed (default:random based on time)\n"); DISPLAY( " -n# : number of files to generate (default:1)\n"); DISPLAY( " -t : activate test mode (test files against libzstd instead of outputting them)\n"); DISPLAY( " -T# : length of time to run tests for\n"); DISPLAY( " -v : increase verbosity level (default:0, max:7)\n"); DISPLAY( " -h/H : display help/long help and exit\n"); } static void advancedUsage(const char* programName) { usage(programName); DISPLAY( "\n"); DISPLAY( "Advanced arguments :\n"); DISPLAY( " --content-size : always include the content size in the frame header\n"); } int main(int argc, char** argv) { U32 seed = 0; int seedset = 0; unsigned numFiles = 0; unsigned testDuration = 0; int testMode = 0; const char* path = NULL; const char* origPath = NULL; int argNb; /* Check command line */ for (argNb=1; argNb