/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /*-************************************ * Compiler specific **************************************/ #ifdef _MSC_VER /* Visual Studio */ # define _CRT_SECURE_NO_WARNINGS /* fgets */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */ #endif /*-************************************ * Includes **************************************/ #include /* free */ #include /* fgets, sscanf */ #include /* strcmp */ #include /* assert */ #include "mem.h" #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_maxCLevel, ZSTD_customMem, ZSTD_getDictID_fromFrame */ #include "zstd.h" /* ZSTD_compressBound */ #include "zstd_errors.h" /* ZSTD_error_srcSize_wrong */ #include "zstdmt_compress.h" #include "zdict.h" /* ZDICT_trainFromBuffer */ #include "datagen.h" /* RDG_genBuffer */ #define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */ #include "xxhash.h" /* XXH64_* */ #include "seqgen.h" #include "util.h" /*-************************************ * Constants **************************************/ #define KB *(1U<<10) #define MB *(1U<<20) #define GB *(1U<<30) static const U32 nbTestsDefault = 10000; static const U32 g_cLevelMax_smallTests = 10; #define COMPRESSIBLE_NOISE_LENGTH (10 MB) #define FUZ_COMPRESSIBILITY_DEFAULT 50 static const U32 prime32 = 2654435761U; /*-************************************ * Display Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { \ DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stderr); } static U32 g_displayLevel = 2; static const U64 g_refreshRate = SEC_TO_MICRO / 6; static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER; #define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \ if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \ { g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stderr); } } static U64 g_clockTime = 0; /*-******************************************************* * Check macros *********************************************************/ #undef MIN #undef MAX #define MIN(a,b) ((a)<(b)?(a):(b)) #define MAX(a,b) ((a)>(b)?(a):(b)) /*! FUZ_rand() : @return : a 27 bits random value, from a 32-bits `seed`. `seed` is also modified */ #define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r))) static unsigned int FUZ_rand(unsigned int* seedPtr) { static const U32 prime2 = 2246822519U; U32 rand32 = *seedPtr; rand32 *= prime32; rand32 += prime2; rand32 = FUZ_rotl32(rand32, 13); *seedPtr = rand32; return rand32 >> 5; } #define CHECK(cond, ...) { \ if (cond) { \ DISPLAY("Error => "); \ DISPLAY(__VA_ARGS__); \ DISPLAY(" (seed %u, test nb %u, line %u) \n", \ seed, testNb, __LINE__); \ goto _output_error; \ } } #define CHECK_Z(f) { \ size_t const err = f; \ CHECK(ZSTD_isError(err), "%s : %s ", \ #f, ZSTD_getErrorName(err)); \ } #define CHECK_RET(ret, cond, ...) { \ if (cond) { \ DISPLAY("Error %llu => ", (unsigned long long)ret); \ DISPLAY(__VA_ARGS__); \ DISPLAY(" (line %u)\n", __LINE__); \ return ret; \ } } #define CHECK_RET_Z(f) { \ size_t const err = f; \ CHECK_RET(err, ZSTD_isError(err), "%s : %s ", \ #f, ZSTD_getErrorName(err)); \ } /*====================================================== * Basic Unit tests *======================================================*/ typedef struct { void* start; size_t size; size_t filled; } buffer_t; static const buffer_t kBuffNull = { NULL, 0 , 0 }; static void FUZ_freeDictionary(buffer_t dict) { free(dict.start); } static buffer_t FUZ_createDictionary(const void* src, size_t srcSize, size_t blockSize, size_t requestedDictSize) { buffer_t dict = kBuffNull; size_t const nbBlocks = (srcSize + (blockSize-1)) / blockSize; size_t* const blockSizes = (size_t*)malloc(nbBlocks * sizeof(size_t)); if (!blockSizes) return kBuffNull; dict.start = malloc(requestedDictSize); if (!dict.start) { free(blockSizes); return kBuffNull; } { size_t nb; for (nb=0; nbcParams.windowLog)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_hashLog, (int*)&savedParams->cParams.hashLog)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_chainLog, (int*)&savedParams->cParams.chainLog)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_searchLog, (int*)&savedParams->cParams.searchLog)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_minMatch, (int*)&savedParams->cParams.minMatch)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_targetLength, (int*)&savedParams->cParams.targetLength)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_compressionStrategy, &value)); savedParams->cParams.strategy = value; CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_checksumFlag, &savedParams->fParams.checksumFlag)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_contentSizeFlag, &savedParams->fParams.contentSizeFlag)); CHECK_RET_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_dictIDFlag, &value)); savedParams->fParams.noDictIDFlag = !value; return 0; } static U32 badParameters(ZSTD_CCtx* zc, ZSTD_parameters const savedParams) { ZSTD_parameters params; if (ZSTD_isError(getCCtxParams(zc, ¶ms))) return 10; CHECK_RET(1, params.cParams.windowLog != savedParams.cParams.windowLog, "windowLog"); CHECK_RET(2, params.cParams.hashLog != savedParams.cParams.hashLog, "hashLog"); CHECK_RET(3, params.cParams.chainLog != savedParams.cParams.chainLog, "chainLog"); CHECK_RET(4, params.cParams.searchLog != savedParams.cParams.searchLog, "searchLog"); CHECK_RET(5, params.cParams.minMatch != savedParams.cParams.minMatch, "minMatch"); CHECK_RET(6, params.cParams.targetLength != savedParams.cParams.targetLength, "targetLength"); CHECK_RET(7, params.fParams.checksumFlag != savedParams.fParams.checksumFlag, "checksumFlag"); CHECK_RET(8, params.fParams.contentSizeFlag != savedParams.fParams.contentSizeFlag, "contentSizeFlag"); CHECK_RET(9, params.fParams.noDictIDFlag != savedParams.fParams.noDictIDFlag, "noDictIDFlag"); return 0; } static int basicUnitTests(U32 seed, double compressibility) { size_t const CNBufferSize = COMPRESSIBLE_NOISE_LENGTH; void* CNBuffer = malloc(CNBufferSize); size_t const skippableFrameSize = 200 KB; size_t const compressedBufferSize = (8 + skippableFrameSize) + ZSTD_compressBound(COMPRESSIBLE_NOISE_LENGTH); void* compressedBuffer = malloc(compressedBufferSize); size_t const decodedBufferSize = CNBufferSize; void* decodedBuffer = malloc(decodedBufferSize); size_t cSize; int testResult = 0; U32 testNb = 1; U32 coreSeed = 0; /* this name to conform with CHECK_Z macro display */ ZSTD_CStream* zc = ZSTD_createCStream(); ZSTD_DStream* zd = ZSTD_createDStream(); ZSTDMT_CCtx* mtctx = ZSTDMT_createCCtx(2); ZSTD_inBuffer inBuff, inBuff2; ZSTD_outBuffer outBuff; buffer_t dictionary = kBuffNull; size_t const dictSize = 128 KB; unsigned dictID = 0; /* Create compressible test buffer */ if (!CNBuffer || !compressedBuffer || !decodedBuffer || !zc || !zd) { DISPLAY("Not enough memory, aborting \n"); goto _output_error; } RDG_genBuffer(CNBuffer, CNBufferSize, compressibility, 0., seed); /* Create dictionary */ DISPLAYLEVEL(3, "creating dictionary for unit tests \n"); dictionary = FUZ_createDictionary(CNBuffer, CNBufferSize / 3, 16 KB, 48 KB); if (!dictionary.start) { DISPLAY("Error creating dictionary, aborting \n"); goto _output_error; } dictID = ZDICT_getDictID(dictionary.start, dictionary.filled); /* Basic compression test */ DISPLAYLEVEL(3, "test%3i : compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); CHECK_Z( ZSTD_initCStream(zc, 1 /* cLevel */) ); outBuff.dst = (char*)(compressedBuffer); outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ { size_t const r = ZSTD_endStream(zc, &outBuff); if (r != 0) goto _output_error; } /* error, or some data not flushed */ DISPLAYLEVEL(3, "OK (%u bytes)\n", (U32)outBuff.pos); /* generate skippable frame */ MEM_writeLE32(compressedBuffer, ZSTD_MAGIC_SKIPPABLE_START); MEM_writeLE32(((char*)compressedBuffer)+4, (U32)skippableFrameSize); cSize = skippableFrameSize + 8; /* Basic compression test using dict */ DISPLAYLEVEL(3, "test%3i : skipframe + compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); CHECK_Z( ZSTD_initCStream_usingDict(zc, CNBuffer, dictSize, 1 /* cLevel */) ); outBuff.dst = (char*)(compressedBuffer)+cSize; assert(compressedBufferSize > cSize); outBuff.size = compressedBufferSize - cSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ { size_t const r = ZSTD_endStream(zc, &outBuff); if (r != 0) goto _output_error; } /* error, or some data not flushed */ cSize += outBuff.pos; DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100); /* context size functions */ DISPLAYLEVEL(3, "test%3i : estimate CStream size : ", testNb++); { ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBufferSize, dictSize); size_t const cstreamSize = ZSTD_estimateCStreamSize_usingCParams(cParams); size_t const cdictSize = ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); /* uses ZSTD_initCStream_usingDict() */ if (ZSTD_isError(cstreamSize)) goto _output_error; if (ZSTD_isError(cdictSize)) goto _output_error; DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)(cstreamSize + cdictSize)); } DISPLAYLEVEL(3, "test%3i : check actual CStream size : ", testNb++); { size_t const s = ZSTD_sizeof_CStream(zc); if (ZSTD_isError(s)) goto _output_error; DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s); } /* Attempt bad compression parameters */ DISPLAYLEVEL(3, "test%3i : use bad compression parameters : ", testNb++); { size_t r; ZSTD_parameters params = ZSTD_getParams(1, 0, 0); params.cParams.minMatch = 2; r = ZSTD_initCStream_advanced(zc, NULL, 0, params, 0); if (!ZSTD_isError(r)) goto _output_error; DISPLAYLEVEL(3, "init error : %s \n", ZSTD_getErrorName(r)); } /* skippable frame test */ DISPLAYLEVEL(3, "test%3i : decompress skippable frame : ", testNb++); CHECK_Z( ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize) ); inBuff.src = compressedBuffer; inBuff.size = cSize; inBuff.pos = 0; outBuff.dst = decodedBuffer; outBuff.size = CNBufferSize; outBuff.pos = 0; { size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff); DISPLAYLEVEL(5, " ( ZSTD_decompressStream => %u ) ", (U32)r); if (r != 0) goto _output_error; } if (outBuff.pos != 0) goto _output_error; /* skippable frame output len is 0 */ DISPLAYLEVEL(3, "OK \n"); /* Basic decompression test */ inBuff2 = inBuff; DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize); CHECK_Z( ZSTD_DCtx_setParameter(zd, ZSTD_d_windowLogMax, ZSTD_WINDOWLOG_LIMIT_DEFAULT+1) ); /* large limit */ { size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff); if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */ if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */ if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */ DISPLAYLEVEL(3, "OK \n"); /* Re-use without init */ DISPLAYLEVEL(3, "test%3i : decompress again without init (re-use previous settings): ", testNb++); outBuff.pos = 0; { size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff2); if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */ if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */ if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */ DISPLAYLEVEL(3, "OK \n"); /* check regenerated data is byte exact */ DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++); { size_t i; for (i=0; i would trigger a no_forward_progress error */ inBuff.size = inBuff.pos + inSize; outBuff.size = outBuff.pos + outSize; r = ZSTD_decompressStream(zd, &outBuff, &inBuff); if (ZSTD_isError(r)) DISPLAYLEVEL(4, "ZSTD_decompressStream error : %s \n", ZSTD_getErrorName(r)); if (ZSTD_isError(r)) goto _output_error; } } if (outBuff.pos != CNBufferSize) DISPLAYLEVEL(4, "outBuff.pos != CNBufferSize : should have regenerated same amount ! \n"); if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */ if (inBuff.pos != cSize) DISPLAYLEVEL(4, "inBuff.pos != cSize : should have real all input ! \n"); if (inBuff.pos != cSize) goto _output_error; /* should have read the entire frame */ DISPLAYLEVEL(3, "OK \n"); /* check regenerated data is byte exact */ DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++); { size_t i; for (i=0; i 100 bytes */ DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r)); } ZSTD_DCtx_reset(zd, ZSTD_reset_session_and_parameters); /* leave zd in good shape for next tests */ DISPLAYLEVEL(3, "test%3i : dictionary source size and level : ", testNb++); { ZSTD_DCtx* const dctx = ZSTD_createDCtx(); int const maxLevel = 16; /* first level with zstd_opt */ int level; assert(maxLevel < ZSTD_maxCLevel()); CHECK_Z( ZSTD_DCtx_loadDictionary_byReference(dctx, dictionary.start, dictionary.filled) ); for (level = 1; level <= maxLevel; ++level) { ZSTD_CDict* const cdict = ZSTD_createCDict(dictionary.start, dictionary.filled, level); size_t const maxSize = MIN(1 MB, CNBufferSize); size_t size; for (size = 512; size <= maxSize; size <<= 1) { U64 const crcOrig = XXH64(CNBuffer, size, 0); ZSTD_CCtx* const cctx = ZSTD_createCCtx(); ZSTD_parameters savedParams; getCCtxParams(cctx, &savedParams); outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = size; inBuff.pos = 0; CHECK_Z(ZSTD_CCtx_refCDict(cctx, cdict)); CHECK_Z(ZSTD_compressStream2(cctx, &outBuff, &inBuff, ZSTD_e_end)); CHECK(badParameters(cctx, savedParams), "Bad CCtx params"); if (inBuff.pos != inBuff.size) goto _output_error; { ZSTD_outBuffer decOut = {decodedBuffer, size, 0}; ZSTD_inBuffer decIn = {outBuff.dst, outBuff.pos, 0}; CHECK_Z( ZSTD_decompressStream(dctx, &decOut, &decIn) ); if (decIn.pos != decIn.size) goto _output_error; if (decOut.pos != size) goto _output_error; { U64 const crcDec = XXH64(decOut.dst, decOut.pos, 0); if (crcDec != crcOrig) goto _output_error; } } ZSTD_freeCCtx(cctx); } ZSTD_freeCDict(cdict); } ZSTD_freeDCtx(dctx); } DISPLAYLEVEL(3, "OK\n"); DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_usingCDict_advanced with masked dictID : ", testNb++); { ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBufferSize, dictionary.filled); ZSTD_frameParameters const fParams = { 1 /* contentSize */, 1 /* checksum */, 1 /* noDictID */}; ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dct_auto, cParams, ZSTD_defaultCMem); size_t const initError = ZSTD_initCStream_usingCDict_advanced(zc, cdict, fParams, CNBufferSize); if (ZSTD_isError(initError)) goto _output_error; outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ { size_t const r = ZSTD_endStream(zc, &outBuff); if (r != 0) goto _output_error; } /* error, or some data not flushed */ cSize = outBuff.pos; ZSTD_freeCDict(cdict); DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100); } DISPLAYLEVEL(3, "test%3i : try retrieving dictID from frame : ", testNb++); { U32 const did = ZSTD_getDictID_fromFrame(compressedBuffer, cSize); if (did != 0) goto _output_error; } DISPLAYLEVEL(3, "OK (not detected) \n"); DISPLAYLEVEL(3, "test%3i : decompress without dictionary : ", testNb++); { size_t const r = ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize); if (!ZSTD_isError(r)) goto _output_error; /* must fail : dictionary not used */ DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r)); } DISPLAYLEVEL(3, "test%3i : compress with ZSTD_CCtx_refPrefix : ", testNb++); CHECK_Z( ZSTD_CCtx_refPrefix(zc, dictionary.start, dictionary.filled) ); outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream2(zc, &outBuff, &inBuff, ZSTD_e_end) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ cSize = outBuff.pos; DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100); DISPLAYLEVEL(3, "test%3i : decompress with ZSTD_DCtx_refPrefix : ", testNb++); CHECK_Z( ZSTD_DCtx_refPrefix(zd, dictionary.start, dictionary.filled) ); outBuff.dst = decodedBuffer; outBuff.size = CNBufferSize; outBuff.pos = 0; inBuff.src = compressedBuffer; inBuff.size = cSize; inBuff.pos = 0; CHECK_Z( ZSTD_decompressStream(zd, &outBuff, &inBuff) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ if (outBuff.pos != CNBufferSize) goto _output_error; /* must regenerate whole input */ DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : decompress without dictionary (should fail): ", testNb++); { size_t const r = ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize); if (!ZSTD_isError(r)) goto _output_error; /* must fail : dictionary not used */ DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r)); } DISPLAYLEVEL(3, "test%3i : compress again with ZSTD_compressStream2 : ", testNb++); outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream2(zc, &outBuff, &inBuff, ZSTD_e_end) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ cSize = outBuff.pos; DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100); DISPLAYLEVEL(3, "test%3i : decompress without dictionary (should work): ", testNb++); CHECK_Z( ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize) ); DISPLAYLEVEL(3, "OK \n"); /* Empty srcSize */ DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_advanced with pledgedSrcSize=0 and dict : ", testNb++); { ZSTD_parameters params = ZSTD_getParams(5, 0, 0); params.fParams.contentSizeFlag = 1; CHECK_Z( ZSTD_initCStream_advanced(zc, dictionary.start, dictionary.filled, params, 0 /* pledgedSrcSize==0 means "empty" when params.fParams.contentSizeFlag is set */) ); } /* cstream advanced shall write content size = 0 */ outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = 0; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error; cSize = outBuff.pos; if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != 0) goto _output_error; DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : pledgedSrcSize == 0 behaves properly : ", testNb++); { ZSTD_parameters params = ZSTD_getParams(5, 0, 0); params.fParams.contentSizeFlag = 1; CHECK_Z( ZSTD_initCStream_advanced(zc, NULL, 0, params, 0) ); } /* cstream advanced shall write content size = 0 */ inBuff.src = CNBuffer; inBuff.size = 0; inBuff.pos = 0; outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error; cSize = outBuff.pos; if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != 0) goto _output_error; ZSTD_resetCStream(zc, 0); /* resetCStream should treat 0 as unknown */ outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = 0; inBuff.pos = 0; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error; cSize = outBuff.pos; if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != ZSTD_CONTENTSIZE_UNKNOWN) goto _output_error; DISPLAYLEVEL(3, "OK \n"); /* Basic multithreading compression test */ DISPLAYLEVEL(3, "test%3i : compress %u bytes with multiple threads : ", testNb++, COMPRESSIBLE_NOISE_LENGTH); { ZSTD_parameters const params = ZSTD_getParams(1, 0, 0); unsigned jobSize; CHECK_Z( ZSTDMT_getMTCtxParameter(mtctx, ZSTDMT_p_jobSize, &jobSize)); CHECK(jobSize != 0, "job size non-zero"); CHECK_Z( ZSTDMT_initCStream_advanced(mtctx, CNBuffer, dictSize, params, CNBufferSize) ); CHECK_Z( ZSTDMT_getMTCtxParameter(mtctx, ZSTDMT_p_jobSize, &jobSize)); CHECK(jobSize != 0, "job size non-zero"); } outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = CNBufferSize; inBuff.pos = 0; { size_t const compressResult = ZSTDMT_compressStream_generic(mtctx, &outBuff, &inBuff, ZSTD_e_end); if (compressResult != 0) goto _output_error; /* compression must be completed in a single round */ } if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ { size_t const compressedSize = ZSTD_findFrameCompressedSize(compressedBuffer, outBuff.pos); if (compressedSize != outBuff.pos) goto _output_error; /* must be a full valid frame */ } DISPLAYLEVEL(3, "OK \n"); /* Complex multithreading + dictionary test */ { U32 const nbWorkers = 2; size_t const jobSize = 4 * 1 MB; size_t const srcSize = jobSize * nbWorkers; /* we want each job to have predictable size */ size_t const segLength = 2 KB; size_t const offset = 600 KB; /* must be larger than window defined in cdict */ size_t const start = jobSize + (offset-1); const BYTE* const srcToCopy = (const BYTE*)CNBuffer + start; BYTE* const dst = (BYTE*)CNBuffer + start - offset; DISPLAYLEVEL(3, "test%3i : compress %u bytes with multiple threads + dictionary : ", testNb++, (U32)srcSize); CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_c_compressionLevel, 3) ); CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_c_nbWorkers, nbWorkers) ); CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_c_jobSize, jobSize) ); assert(start > offset); assert(start + segLength < COMPRESSIBLE_NOISE_LENGTH); memcpy(dst, srcToCopy, segLength); /* create a long repetition at long distance for job 2 */ outBuff.dst = compressedBuffer; outBuff.size = compressedBufferSize; outBuff.pos = 0; inBuff.src = CNBuffer; inBuff.size = srcSize; assert(srcSize < COMPRESSIBLE_NOISE_LENGTH); inBuff.pos = 0; } { ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, 4 KB, dictionary.filled); /* intentionnally lies on estimatedSrcSize, to push cdict into targeting a small window size */ ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dct_fullDict, cParams, ZSTD_defaultCMem); DISPLAYLEVEL(5, "cParams.windowLog = %u : ", cParams.windowLog); CHECK_Z( ZSTD_CCtx_refCDict(zc, cdict) ); CHECK_Z( ZSTD_compressStream2(zc, &outBuff, &inBuff, ZSTD_e_end) ); CHECK_Z( ZSTD_CCtx_refCDict(zc, NULL) ); /* do not keep a reference to cdict, as its lifetime ends */ ZSTD_freeCDict(cdict); } if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ cSize = outBuff.pos; DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : decompress large frame created from multiple threads + dictionary : ", testNb++); { ZSTD_DStream* const dstream = ZSTD_createDCtx(); ZSTD_frameHeader zfh; ZSTD_getFrameHeader(&zfh, compressedBuffer, cSize); DISPLAYLEVEL(5, "frame windowsize = %u : ", (U32)zfh.windowSize); outBuff.dst = decodedBuffer; outBuff.size = CNBufferSize; outBuff.pos = 0; inBuff.src = compressedBuffer; inBuff.pos = 0; CHECK_Z( ZSTD_initDStream_usingDict(dstream, dictionary.start, dictionary.filled) ); inBuff.size = 1; /* avoid shortcut to single-pass mode */ CHECK_Z( ZSTD_decompressStream(dstream, &outBuff, &inBuff) ); inBuff.size = cSize; CHECK_Z( ZSTD_decompressStream(dstream, &outBuff, &inBuff) ); if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */ ZSTD_freeDStream(dstream); } DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : check dictionary FSE tables can represent every code : ", testNb++); { unsigned const kMaxWindowLog = 24; unsigned value; ZSTD_compressionParameters cParams = ZSTD_getCParams(3, 1U << kMaxWindowLog, 1024); ZSTD_CDict* cdict; ZSTD_DDict* ddict; SEQ_stream seq = SEQ_initStream(0x87654321); SEQ_gen_type type; XXH64_state_t xxh; XXH64_reset(&xxh, 0); cParams.windowLog = kMaxWindowLog; cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dct_fullDict, cParams, ZSTD_defaultCMem); ddict = ZSTD_createDDict(dictionary.start, dictionary.filled); if (!cdict || !ddict) goto _output_error; ZSTD_CCtx_reset(zc, ZSTD_reset_session_only); ZSTD_resetDStream(zd); CHECK_Z(ZSTD_CCtx_refCDict(zc, cdict)); CHECK_Z(ZSTD_initDStream_usingDDict(zd, ddict)); CHECK_Z(ZSTD_DCtx_setParameter(zd, ZSTD_d_windowLogMax, kMaxWindowLog)); /* Test all values < 300 */ for (value = 0; value < 300; ++value) { for (type = (SEQ_gen_type)0; type < SEQ_gen_max; ++type) { CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value)); } } /* Test values 2^8 to 2^17 */ for (value = (1 << 8); value < (1 << 17); value <<= 1) { for (type = (SEQ_gen_type)0; type < SEQ_gen_max; ++type) { CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value)); CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value + (value >> 2))); } } /* Test offset values up to the max window log */ for (value = 8; value <= kMaxWindowLog; ++value) { CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, SEQ_gen_of, (1U << value) - 1)); } CHECK_Z(SEQ_roundTrip(zc, zd, &xxh, NULL, 0, ZSTD_e_end)); CHECK(SEQ_digest(&seq) != XXH64_digest(&xxh), "SEQ XXH64 does not match"); ZSTD_freeCDict(cdict); ZSTD_freeDDict(ddict); } DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_srcSize sets requestedParams : ", testNb++); { int level; CHECK_Z(ZSTD_initCStream_srcSize(zc, 11, ZSTD_CONTENTSIZE_UNKNOWN)); CHECK_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_compressionLevel, &level)); CHECK(level != 11, "Compression level does not match"); ZSTD_resetCStream(zc, ZSTD_CONTENTSIZE_UNKNOWN); CHECK_Z(ZSTD_CCtx_getParameter(zc, ZSTD_c_compressionLevel, &level)); CHECK(level != 11, "Compression level does not match"); } DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_advanced sets requestedParams : ", testNb++); { ZSTD_parameters const params = ZSTD_getParams(9, 0, 0); CHECK_Z(ZSTD_initCStream_advanced(zc, NULL, 0, params, ZSTD_CONTENTSIZE_UNKNOWN)); CHECK(badParameters(zc, params), "Compression parameters do not match"); ZSTD_resetCStream(zc, ZSTD_CONTENTSIZE_UNKNOWN); CHECK(badParameters(zc, params), "Compression parameters do not match"); } DISPLAYLEVEL(3, "OK \n"); /* Overlen overwriting window data bug */ DISPLAYLEVEL(3, "test%3i : wildcopy doesn't overwrite potential match data : ", testNb++); { /* This test has a window size of 1024 bytes and consists of 3 blocks: 1. 'a' repeated 517 times 2. 'b' repeated 516 times 3. a compressed block with no literals and 3 sequence commands: litlength = 0, offset = 24, match length = 24 litlength = 0, offset = 24, match length = 3 (this one creates an overlength write of length 2*WILDCOPY_OVERLENGTH - 3) litlength = 0, offset = 1021, match length = 3 (this one will try to read from overwritten data if the buffer is too small) */ const char* testCase = "\x28\xB5\x2F\xFD\x04\x00\x4C\x00\x00\x10\x61\x61\x01\x00\x00\x2A" "\x80\x05\x44\x00\x00\x08\x62\x01\x00\x00\x2A\x20\x04\x5D\x00\x00" "\x00\x03\x40\x00\x00\x64\x60\x27\xB0\xE0\x0C\x67\x62\xCE\xE0"; ZSTD_DStream* const zds = ZSTD_createDStream(); if (zds==NULL) goto _output_error; CHECK_Z( ZSTD_initDStream(zds) ); inBuff.src = testCase; inBuff.size = 47; inBuff.pos = 0; outBuff.dst = decodedBuffer; outBuff.size = CNBufferSize; outBuff.pos = 0; while (inBuff.pos < inBuff.size) { CHECK_Z( ZSTD_decompressStream(zds, &outBuff, &inBuff) ); } ZSTD_freeDStream(zds); } DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : dictionary + uncompressible block + reusing tables checks offset table validity: ", testNb++); { ZSTD_CDict* const cdict = ZSTD_createCDict_advanced( dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dct_fullDict, ZSTD_getCParams(3, 0, dictionary.filled), ZSTD_defaultCMem); const size_t inbufsize = 2 * 128 * 1024; /* 2 blocks */ const size_t outbufsize = ZSTD_compressBound(inbufsize); size_t inbufpos = 0; size_t cursegmentlen; BYTE *inbuf = (BYTE *)malloc(inbufsize); BYTE *outbuf = (BYTE *)malloc(outbufsize); BYTE *checkbuf = (BYTE *)malloc(inbufsize); size_t ret; CHECK(cdict == NULL, "failed to alloc cdict"); CHECK(inbuf == NULL, "failed to alloc input buffer"); /* first block is uncompressible */ cursegmentlen = 128 * 1024; RDG_genBuffer(inbuf + inbufpos, cursegmentlen, 0., 0., seed); inbufpos += cursegmentlen; /* second block is compressible */ cursegmentlen = 128 * 1024 - 256; RDG_genBuffer(inbuf + inbufpos, cursegmentlen, 0.05, 0., seed); inbufpos += cursegmentlen; /* and includes a very long backref */ cursegmentlen = 128; memcpy(inbuf + inbufpos, dictionary.start + 256, cursegmentlen); inbufpos += cursegmentlen; /* and includes a very long backref */ cursegmentlen = 128; memcpy(inbuf + inbufpos, dictionary.start + 128, cursegmentlen); inbufpos += cursegmentlen; ret = ZSTD_compress_usingCDict(zc, outbuf, outbufsize, inbuf, inbufpos, cdict); CHECK_Z(ret); ret = ZSTD_decompress_usingDict(zd, checkbuf, inbufsize, outbuf, ret, dictionary.start, dictionary.filled); CHECK_Z(ret); CHECK(memcmp(inbuf, checkbuf, inbufpos), "start and finish buffers don't match"); ZSTD_freeCDict(cdict); free(inbuf); free(outbuf); free(checkbuf); } DISPLAYLEVEL(3, "OK \n"); DISPLAYLEVEL(3, "test%3i : dictionary + small blocks + reusing tables checks offset table validity: ", testNb++); { ZSTD_CDict* const cdict = ZSTD_createCDict_advanced( dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dct_fullDict, ZSTD_getCParams(3, 0, dictionary.filled), ZSTD_defaultCMem); ZSTD_outBuffer out = {compressedBuffer, compressedBufferSize, 0}; int remainingInput = 256 * 1024; int offset; CHECK_Z(ZSTD_CCtx_reset(zc, ZSTD_reset_session_and_parameters)); CHECK_Z(ZSTD_CCtx_refCDict(zc, cdict)); CHECK_Z(ZSTD_CCtx_setParameter(zc, ZSTD_c_checksumFlag, 1)); /* Write a bunch of 6 byte blocks */ while (remainingInput > 0) { char testBuffer[6] = "\xAA\xAA\xAA\xAA\xAA\xAA"; const size_t kSmallBlockSize = sizeof(testBuffer); ZSTD_inBuffer in = {testBuffer, kSmallBlockSize, 0}; CHECK_Z(ZSTD_compressStream2(zc, &out, &in, ZSTD_e_flush)); CHECK(in.pos != in.size, "input not fully consumed"); remainingInput -= kSmallBlockSize; } /* Write several very long offset matches into the dictionary */ for (offset = 1024; offset >= 0; offset -= 128) { ZSTD_inBuffer in = {dictionary.start + offset, 128, 0}; ZSTD_EndDirective flush = offset > 0 ? ZSTD_e_continue : ZSTD_e_end; CHECK_Z(ZSTD_compressStream2(zc, &out, &in, flush)); CHECK(in.pos != in.size, "input not fully consumed"); } /* Ensure decompression works */ CHECK_Z(ZSTD_decompress_usingDict(zd, decodedBuffer, CNBufferSize, out.dst, out.pos, dictionary.start, dictionary.filled)); ZSTD_freeCDict(cdict); } DISPLAYLEVEL(3, "OK \n"); _end: FUZ_freeDictionary(dictionary); ZSTD_freeCStream(zc); ZSTD_freeDStream(zd); ZSTDMT_freeCCtx(mtctx); free(CNBuffer); free(compressedBuffer); free(decodedBuffer); return testResult; _output_error: testResult = 1; DISPLAY("Error detected in Unit tests ! \n"); goto _end; } /* ====== Fuzzer tests ====== */ static size_t findDiff(const void* buf1, const void* buf2, size_t max) { const BYTE* b1 = (const BYTE*)buf1; const BYTE* b2 = (const BYTE*)buf2; size_t u; for (u=0; u No difference detected within %u bytes \n", (U32)max); return u; } DISPLAY("Error at position %u / %u \n", (U32)u, (U32)max); if (u>=3) DISPLAY(" %02X %02X %02X ", b1[u-3], b1[u-2], b1[u-1]); DISPLAY(" :%02X: %02X %02X %02X %02X %02X \n", b1[u], b1[u+1], b1[u+2], b1[u+3], b1[u+4], b1[u+5]); if (u>=3) DISPLAY(" %02X %02X %02X ", b2[u-3], b2[u-2], b2[u-1]); DISPLAY(" :%02X: %02X %02X %02X %02X %02X \n", b2[u], b2[u+1], b2[u+2], b2[u+3], b2[u+4], b2[u+5]); return u; } static size_t FUZ_rLogLength(U32* seed, U32 logLength) { size_t const lengthMask = ((size_t)1 << logLength) - 1; return (lengthMask+1) + (FUZ_rand(seed) & lengthMask); } static size_t FUZ_randomLength(U32* seed, U32 maxLog) { U32 const logLength = FUZ_rand(seed) % maxLog; return FUZ_rLogLength(seed, logLength); } /* Return value in range minVal <= v <= maxVal */ static U32 FUZ_randomClampedLength(U32* seed, U32 minVal, U32 maxVal) { U32 const mod = maxVal < minVal ? 1 : (maxVal + 1) - minVal; return (U32)((FUZ_rand(seed) % mod) + minVal); } static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, double compressibility, int bigTests) { U32 const maxSrcLog = bigTests ? 24 : 22; static const U32 maxSampleLog = 19; size_t const srcBufferSize = (size_t)1<= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } /* states full reset (deliberately not synchronized) */ /* some issues can only happen when reusing states */ if ((FUZ_rand(&lseed) & 0xFF) == 131) { ZSTD_freeCStream(zc); zc = ZSTD_createCStream(); CHECK(zc==NULL, "ZSTD_createCStream : allocation error"); resetAllowed=0; } if ((FUZ_rand(&lseed) & 0xFF) == 132) { ZSTD_freeDStream(zd); zd = ZSTD_createDStream(); CHECK(zd==NULL, "ZSTD_createDStream : allocation error"); CHECK_Z( ZSTD_initDStream_usingDict(zd, NULL, 0) ); /* ensure at least one init */ } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* compression init */ if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */ && oldTestLog /* at least one test happened */ && resetAllowed) { maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2); maxTestSize = MIN(maxTestSize, srcBufferSize-16); { U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? 0 : maxTestSize; CHECK_Z( ZSTD_resetCStream(zc, pledgedSrcSize) ); } } else { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog; U32 const cLevelCandidate = ( FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (MAX(testLog, dictLog) / 3))) + 1; U32 const cLevel = MIN(cLevelCandidate, cLevelMax); maxTestSize = FUZ_rLogLength(&lseed, testLog); oldTestLog = testLog; /* random dictionary selection */ dictSize = ((FUZ_rand(&lseed)&7)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0; { size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize); dict = srcBuffer + dictStart; } { U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize; ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize); params.fParams.checksumFlag = FUZ_rand(&lseed) & 1; params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1; params.fParams.contentSizeFlag = FUZ_rand(&lseed) & 1; CHECK_Z ( ZSTD_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize) ); } } /* multi-segments compression test */ XXH64_reset(&xxhState, 0); { ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ; U32 n; for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) { /* compress random chunks into randomly sized dst buffers */ { size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const srcSize = MIN(maxTestSize-totalTestSize, randomSrcSize); size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize); ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 }; outBuff.size = outBuff.pos + dstBuffSize; CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) ); XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos); memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos); totalTestSize += inBuff.pos; } /* random flush operation, to mess around */ if ((FUZ_rand(&lseed) & 15) == 0) { size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize); outBuff.size = outBuff.pos + adjustedDstSize; CHECK_Z( ZSTD_flushStream(zc, &outBuff) ); } } /* final frame epilogue */ { size_t remainingToFlush = (size_t)(-1); while (remainingToFlush) { size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize); outBuff.size = outBuff.pos + adjustedDstSize; remainingToFlush = ZSTD_endStream(zc, &outBuff); CHECK (ZSTD_isError(remainingToFlush), "end error : %s", ZSTD_getErrorName(remainingToFlush)); } } crcOrig = XXH64_digest(&xxhState); cSize = outBuff.pos; } /* multi - fragments decompression test */ if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) { CHECK_Z ( ZSTD_resetDStream(zd) ); } else { CHECK_Z ( ZSTD_initDStream_usingDict(zd, dict, dictSize) ); } { size_t decompressionResult = 1; ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 }; ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 }; for (totalGenSize = 0 ; decompressionResult ; ) { size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize); inBuff.size = inBuff.pos + readCSrcSize; outBuff.size = outBuff.pos + dstBuffSize; decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff); if (ZSTD_getErrorCode(decompressionResult) == ZSTD_error_checksum_wrong) { DISPLAY("checksum error : \n"); findDiff(copyBuffer, dstBuffer, totalTestSize); } CHECK( ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult) ); } CHECK (decompressionResult != 0, "frame not fully decoded"); CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize); CHECK (inBuff.pos != cSize, "compressed data should be fully read") { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize); CHECK (crcDest!=crcOrig, "decompressed data corrupted"); } } /*===== noisy/erroneous src decompression test =====*/ /* add some noise */ { U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2; U32 nn; for (nn=0; nn= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } lseed = coreSeed ^ prime32; /* states full reset (deliberately not synchronized) */ /* some issues can only happen when reusing states */ if ((FUZ_rand(&lseed) & 0xFF) == 131) { nbThreads = (FUZ_rand(&lseed) % nbThreadsMax) + 1; DISPLAYLEVEL(5, "Creating new context with %u threads \n", nbThreads); ZSTDMT_freeCCtx(zc); zc = ZSTDMT_createCCtx(nbThreads); CHECK(zc==NULL, "ZSTDMT_createCCtx allocation error") } if ((FUZ_rand(&lseed) & 0xFF) == 132) { ZSTD_freeDStream(zd); zd = ZSTD_createDStream(); CHECK(zd==NULL, "ZSTDMT_createCCtx allocation error") ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */ } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* compression init */ { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog; int const cLevelCandidate = ( FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (MAX(testLog, dictLog) / 2)) ) + 1; int const cLevelThreadAdjusted = cLevelCandidate - (nbThreads * 2) + 2; /* reduce cLevel when multiple threads to reduce memory consumption */ int const cLevelMin = MAX(cLevelThreadAdjusted, 1); /* no negative cLevel yet */ int const cLevel = MIN(cLevelMin, cLevelMax); maxTestSize = FUZ_rLogLength(&lseed, testLog); if (FUZ_rand(&lseed)&1) { /* simple init */ int const compressionLevel = (FUZ_rand(&lseed) % 5) + 1; DISPLAYLEVEL(5, "Init with compression level = %i \n", compressionLevel); CHECK_Z( ZSTDMT_initCStream(zc, compressionLevel) ); } else { /* advanced init */ /* random dictionary selection */ dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0; { size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize); dict = srcBuffer + dictStart; } { U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize; ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize); DISPLAYLEVEL(5, "Init with windowLog = %u, pledgedSrcSize = %u, dictSize = %u \n", params.cParams.windowLog, (U32)pledgedSrcSize, (U32)dictSize); params.fParams.checksumFlag = FUZ_rand(&lseed) & 1; params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1; params.fParams.contentSizeFlag = FUZ_rand(&lseed) & 1; DISPLAYLEVEL(5, "checksumFlag : %u \n", params.fParams.checksumFlag); CHECK_Z( ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_overlapSectionLog, FUZ_rand(&lseed) % 12) ); CHECK_Z( ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_jobSize, FUZ_rand(&lseed) % (2*maxTestSize+1)) ); /* custome job size */ CHECK_Z( ZSTDMT_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize) ); } } } /* multi-segments compression test */ XXH64_reset(&xxhState, 0); { ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ; U32 n; for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) { /* compress random chunks into randomly sized dst buffers */ { size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const srcSize = MIN (maxTestSize-totalTestSize, randomSrcSize); size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize); ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 }; outBuff.size = outBuff.pos + dstBuffSize; DISPLAYLEVEL(6, "Sending %u bytes to compress \n", (U32)srcSize); CHECK_Z( ZSTDMT_compressStream(zc, &outBuff, &inBuff) ); DISPLAYLEVEL(6, "%u bytes read by ZSTDMT_compressStream \n", (U32)inBuff.pos); XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos); memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos); totalTestSize += inBuff.pos; } /* random flush operation, to mess around */ if ((FUZ_rand(&lseed) & 15) == 0) { size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize); size_t const previousPos = outBuff.pos; outBuff.size = outBuff.pos + adjustedDstSize; DISPLAYLEVEL(5, "Flushing into dst buffer of size %u \n", (U32)adjustedDstSize); CHECK_Z( ZSTDMT_flushStream(zc, &outBuff) ); assert(outBuff.pos >= previousPos); DISPLAYLEVEL(6, "%u bytes flushed by ZSTDMT_flushStream \n", (U32)(outBuff.pos-previousPos)); } } /* final frame epilogue */ { size_t remainingToFlush = (size_t)(-1); while (remainingToFlush) { size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize); size_t const previousPos = outBuff.pos; outBuff.size = outBuff.pos + adjustedDstSize; DISPLAYLEVEL(5, "Ending into dst buffer of size %u \n", (U32)adjustedDstSize); remainingToFlush = ZSTDMT_endStream(zc, &outBuff); CHECK (ZSTD_isError(remainingToFlush), "ZSTDMT_endStream error : %s", ZSTD_getErrorName(remainingToFlush)); assert(outBuff.pos >= previousPos); DISPLAYLEVEL(6, "%u bytes flushed by ZSTDMT_endStream \n", (U32)(outBuff.pos-previousPos)); DISPLAYLEVEL(5, "endStream : remainingToFlush : %u \n", (U32)remainingToFlush); } } crcOrig = XXH64_digest(&xxhState); cSize = outBuff.pos; DISPLAYLEVEL(5, "Frame completed : %u bytes compressed into %u bytes \n", (U32)totalTestSize, (U32)cSize); } /* multi - fragments decompression test */ assert(totalTestSize < dstBufferSize); memset(dstBuffer, 170, totalTestSize); /* init dest area */ if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) { CHECK_Z( ZSTD_resetDStream(zd) ); } else { CHECK_Z( ZSTD_initDStream_usingDict(zd, dict, dictSize) ); } { size_t decompressionResult = 1; ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 }; ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 }; for (totalGenSize = 0 ; decompressionResult ; ) { size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize); inBuff.size = inBuff.pos + readCSrcSize; outBuff.size = outBuff.pos + dstBuffSize; DISPLAYLEVEL(6, "ZSTD_decompressStream input %u bytes into outBuff %u bytes \n", (U32)readCSrcSize, (U32)dstBuffSize); decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff); if (ZSTD_isError(decompressionResult)) { DISPLAY("ZSTD_decompressStream error : %s \n", ZSTD_getErrorName(decompressionResult)); findDiff(copyBuffer, dstBuffer, totalTestSize); } CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult)); DISPLAYLEVEL(6, "total ingested (inBuff.pos) = %u and produced (outBuff.pos) = %u \n", (U32)inBuff.pos, (U32)outBuff.pos); } CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize); CHECK (inBuff.pos != cSize, "compressed data should be fully read (%u != %u)", (U32)inBuff.pos, (U32)cSize); { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize); CHECK (crcDest!=crcOrig, "decompressed data corrupted"); } } /*===== noisy/erroneous src decompression test =====*/ /* add some noise */ { U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2; U32 nn; for (nn=0; nn= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } FUZ_rand(&coreSeed); lseed = coreSeed ^ prime32; DISPLAYLEVEL(5, " *** Test %u *** \n", testNb); opaqueAPI = FUZ_rand(&lseed) & 1; /* states full reset (deliberately not synchronized) */ /* some issues can only happen when reusing states */ if ((FUZ_rand(&lseed) & 0xFF) == 131) { DISPLAYLEVEL(5, "Creating new context \n"); ZSTD_freeCCtx(zc); zc = ZSTD_createCCtx(); CHECK(zc == NULL, "ZSTD_createCCtx allocation error"); resetAllowed = 0; } if ((FUZ_rand(&lseed) & 0xFF) == 132) { ZSTD_freeDStream(zd); zd = ZSTD_createDStream(); CHECK(zd == NULL, "ZSTD_createDStream allocation error"); ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */ } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* compression init */ CHECK_Z( ZSTD_CCtx_loadDictionary(zc, NULL, 0) ); /* cancel previous dict /*/ if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */ && oldTestLog /* at least one test happened */ && resetAllowed) { /* just set a compression level */ maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2); if (maxTestSize >= srcBufferSize) maxTestSize = srcBufferSize-1; { int const compressionLevel = (FUZ_rand(&lseed) % 5) + 1; DISPLAYLEVEL(5, "t%u : compression level : %i \n", testNb, compressionLevel); CHECK_Z (setCCtxParameter(zc, cctxParams, ZSTD_c_compressionLevel, compressionLevel, opaqueAPI) ); } } else { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog; U32 const cLevelCandidate = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (MAX(testLog, dictLog) / 2))) + 1; U32 const cLevel = MIN(cLevelCandidate, cLevelMax); DISPLAYLEVEL(5, "t%u: base cLevel : %u \n", testNb, cLevel); maxTestSize = FUZ_rLogLength(&lseed, testLog); DISPLAYLEVEL(5, "t%u: maxTestSize : %u \n", testNb, (U32)maxTestSize); oldTestLog = testLog; /* random dictionary selection */ dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0; { size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize); dict = srcBuffer + dictStart; if (!dictSize) dict=NULL; } { U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize; ZSTD_compressionParameters cParams = ZSTD_getCParams(cLevel, pledgedSrcSize, dictSize); const U32 windowLogMax = bigTests ? 24 : 20; const U32 searchLogMax = bigTests ? 15 : 13; if (dictSize) DISPLAYLEVEL(5, "t%u: with dictionary of size : %zu \n", testNb, dictSize); /* mess with compression parameters */ cParams.windowLog += (FUZ_rand(&lseed) & 3) - 1; cParams.windowLog = MIN(windowLogMax, cParams.windowLog); cParams.hashLog += (FUZ_rand(&lseed) & 3) - 1; cParams.chainLog += (FUZ_rand(&lseed) & 3) - 1; cParams.searchLog += (FUZ_rand(&lseed) & 3) - 1; cParams.searchLog = MIN(searchLogMax, cParams.searchLog); cParams.minMatch += (FUZ_rand(&lseed) & 3) - 1; cParams.targetLength = (U32)((cParams.targetLength + 1 ) * (0.5 + ((double)(FUZ_rand(&lseed) & 127) / 128))); cParams = ZSTD_adjustCParams(cParams, pledgedSrcSize, dictSize); if (FUZ_rand(&lseed) & 1) { DISPLAYLEVEL(5, "t%u: windowLog : %u \n", testNb, cParams.windowLog); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_windowLog, cParams.windowLog, opaqueAPI) ); assert(cParams.windowLog >= ZSTD_WINDOWLOG_MIN); /* guaranteed by ZSTD_adjustCParams() */ windowLogMalus = (cParams.windowLog - ZSTD_WINDOWLOG_MIN) / 5; } if (FUZ_rand(&lseed) & 1) { DISPLAYLEVEL(5, "t%u: hashLog : %u \n", testNb, cParams.hashLog); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_hashLog, cParams.hashLog, opaqueAPI) ); } if (FUZ_rand(&lseed) & 1) { DISPLAYLEVEL(5, "t%u: chainLog : %u \n", testNb, cParams.chainLog); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_chainLog, cParams.chainLog, opaqueAPI) ); } if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_searchLog, cParams.searchLog, opaqueAPI) ); if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_minMatch, cParams.minMatch, opaqueAPI) ); if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_targetLength, cParams.targetLength, opaqueAPI) ); /* mess with long distance matching parameters */ if (bigTests) { if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_enableLongDistanceMatching, FUZ_rand(&lseed) & 63, opaqueAPI) ); if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_ldmHashLog, FUZ_randomClampedLength(&lseed, ZSTD_HASHLOG_MIN, 23), opaqueAPI) ); if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_ldmMinMatch, FUZ_randomClampedLength(&lseed, ZSTD_LDM_MINMATCH_MIN, ZSTD_LDM_MINMATCH_MAX), opaqueAPI) ); if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_ldmBucketSizeLog, FUZ_randomClampedLength(&lseed, ZSTD_LDM_BUCKETSIZELOG_MIN, ZSTD_LDM_BUCKETSIZELOG_MAX), opaqueAPI) ); if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_ldmHashRateLog, FUZ_randomClampedLength(&lseed, ZSTD_LDM_HASHRATELOG_MIN, ZSTD_LDM_HASHRATELOG_MAX), opaqueAPI) ); } /* mess with frame parameters */ if (FUZ_rand(&lseed) & 1) { U32 const checksumFlag = FUZ_rand(&lseed) & 1; DISPLAYLEVEL(5, "t%u: frame checksum : %u \n", testNb, checksumFlag); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_checksumFlag, checksumFlag, opaqueAPI) ); } if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_dictIDFlag, FUZ_rand(&lseed) & 1, opaqueAPI) ); if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_contentSizeFlag, FUZ_rand(&lseed) & 1, opaqueAPI) ); if (FUZ_rand(&lseed) & 1) { DISPLAYLEVEL(5, "t%u: pledgedSrcSize : %u \n", testNb, (U32)pledgedSrcSize); CHECK_Z( ZSTD_CCtx_setPledgedSrcSize(zc, pledgedSrcSize) ); } /* multi-threading parameters. Only adjust ocassionally for small tests. */ if (bigTests || (FUZ_rand(&lseed) & 0xF) == 0xF) { U32 const nbThreadsCandidate = (FUZ_rand(&lseed) & 4) + 1; U32 const nbThreadsAdjusted = (windowLogMalus < nbThreadsCandidate) ? nbThreadsCandidate - windowLogMalus : 1; U32 const nbThreads = MIN(nbThreadsAdjusted, nbThreadsMax); DISPLAYLEVEL(5, "t%u: nbThreads : %u \n", testNb, nbThreads); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_nbWorkers, nbThreads, opaqueAPI) ); if (nbThreads > 1) { U32 const jobLog = FUZ_rand(&lseed) % (testLog+1); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_overlapSizeLog, FUZ_rand(&lseed) % 10, opaqueAPI) ); CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_jobSize, (U32)FUZ_rLogLength(&lseed, jobLog), opaqueAPI) ); } } /* Enable rsyncable mode 1 in 4 times. */ setCCtxParameter(zc, cctxParams, ZSTD_c_rsyncable, (FUZ_rand(&lseed) % 4 == 0), opaqueAPI); if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_c_forceMaxWindow, FUZ_rand(&lseed) & 1, opaqueAPI) ); /* Apply parameters */ if (opaqueAPI) { DISPLAYLEVEL(5, "t%u: applying CCtxParams \n", testNb); CHECK_Z (ZSTD_CCtx_setParametersUsingCCtxParams(zc, cctxParams) ); } if (FUZ_rand(&lseed) & 1) { if (FUZ_rand(&lseed) & 1) { CHECK_Z( ZSTD_CCtx_loadDictionary(zc, dict, dictSize) ); } else { CHECK_Z( ZSTD_CCtx_loadDictionary_byReference(zc, dict, dictSize) ); } if (dict && dictSize) { /* test that compression parameters are rejected (correctly) after loading a non-NULL dictionary */ if (opaqueAPI) { size_t const setError = ZSTD_CCtx_setParametersUsingCCtxParams(zc, cctxParams); CHECK(!ZSTD_isError(setError), "ZSTD_CCtx_setParametersUsingCCtxParams should have failed"); } else { size_t const setError = ZSTD_CCtx_setParameter(zc, ZSTD_c_windowLog, cParams.windowLog-1); CHECK(!ZSTD_isError(setError), "ZSTD_CCtx_setParameter should have failed"); } } } else { CHECK_Z( ZSTD_CCtx_refPrefix(zc, dict, dictSize) ); } } } CHECK_Z(getCCtxParams(zc, &savedParams)); /* multi-segments compression test */ XXH64_reset(&xxhState, 0); { ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ; for (cSize=0, totalTestSize=0 ; (totalTestSize < maxTestSize) ; ) { /* compress random chunks into randomly sized dst buffers */ size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const srcSize = MIN(maxTestSize-totalTestSize, randomSrcSize); size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog+1); size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize); ZSTD_EndDirective const flush = (FUZ_rand(&lseed) & 15) ? ZSTD_e_continue : ZSTD_e_flush; ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 }; outBuff.size = outBuff.pos + dstBuffSize; CHECK_Z( ZSTD_compressStream2(zc, &outBuff, &inBuff, flush) ); DISPLAYLEVEL(6, "t%u: compress consumed %u bytes (total : %u) ; flush: %u (total : %u) \n", testNb, (U32)inBuff.pos, (U32)(totalTestSize + inBuff.pos), (U32)flush, (U32)outBuff.pos); XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos); memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos); totalTestSize += inBuff.pos; } /* final frame epilogue */ { size_t remainingToFlush = 1; while (remainingToFlush) { ZSTD_inBuffer inBuff = { NULL, 0, 0 }; size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog+1); size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize); outBuff.size = outBuff.pos + adjustedDstSize; DISPLAYLEVEL(6, "t%u: End-flush into dst buffer of size %u \n", testNb, (U32)adjustedDstSize); remainingToFlush = ZSTD_compressStream2(zc, &outBuff, &inBuff, ZSTD_e_end); DISPLAYLEVEL(6, "t%u: Total flushed so far : %u bytes \n", testNb, (U32)outBuff.pos); CHECK( ZSTD_isError(remainingToFlush), "ZSTD_compressStream2 w/ ZSTD_e_end error : %s", ZSTD_getErrorName(remainingToFlush) ); } } crcOrig = XXH64_digest(&xxhState); cSize = outBuff.pos; DISPLAYLEVEL(5, "Frame completed : %zu bytes \n", cSize); } CHECK(badParameters(zc, savedParams), "CCtx params are wrong"); /* multi - fragments decompression test */ if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) { DISPLAYLEVEL(5, "resetting DCtx (dict:%08X) \n", (U32)(size_t)dict); CHECK_Z( ZSTD_resetDStream(zd) ); } else { if (dictSize) DISPLAYLEVEL(5, "using dictionary of size %zu \n", dictSize); CHECK_Z( ZSTD_initDStream_usingDict(zd, dict, dictSize) ); } { size_t decompressionResult = 1; ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 }; ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 }; for (totalGenSize = 0 ; decompressionResult ; ) { size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog); size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize); inBuff.size = inBuff.pos + readCSrcSize; outBuff.size = outBuff.pos + dstBuffSize; DISPLAYLEVEL(6, "decompression presented %u new bytes (pos:%u/%u)\n", (U32)readCSrcSize, (U32)inBuff.pos, (U32)cSize); decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff); DISPLAYLEVEL(6, "so far: consumed = %u, produced = %u \n", (U32)inBuff.pos, (U32)outBuff.pos); if (ZSTD_isError(decompressionResult)) { DISPLAY("ZSTD_decompressStream error : %s \n", ZSTD_getErrorName(decompressionResult)); findDiff(copyBuffer, dstBuffer, totalTestSize); } CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult)); CHECK (inBuff.pos > cSize, "ZSTD_decompressStream consumes too much input : %u > %u ", (U32)inBuff.pos, (U32)cSize); } CHECK (inBuff.pos != cSize, "compressed data should be fully read (%u != %u)", (U32)inBuff.pos, (U32)cSize); CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize); { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize); CHECK (crcDest!=crcOrig, "decompressed data corrupted"); } } /*===== noisy/erroneous src decompression test =====*/ /* add some noise */ { U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2; U32 nn; for (nn=0; nn='0') && (*argument<='9')) { nbTests *= 10; nbTests += *argument - '0'; argument++; } break; case 'T': /* limit tests by time */ argument++; nbTests=0; g_clockTime=0; while ((*argument>='0') && (*argument<='9')) { g_clockTime *= 10; g_clockTime += *argument - '0'; argument++; } if (*argument=='m') { /* -T1m == -T60 */ g_clockTime *=60, argument++; if (*argument=='n') argument++; /* -T1mn == -T60 */ } else if (*argument=='s') argument++; /* -T10s == -T10 */ g_clockTime *= SEC_TO_MICRO; break; case 's': /* manually select seed */ argument++; seedset=1; seed=0; while ((*argument>='0') && (*argument<='9')) { seed *= 10; seed += *argument - '0'; argument++; } break; case 't': /* select starting test number */ argument++; testNb=0; while ((*argument>='0') && (*argument<='9')) { testNb *= 10; testNb += *argument - '0'; argument++; } break; case 'P': /* compressibility % */ argument++; proba=0; while ((*argument>='0') && (*argument<='9')) { proba *= 10; proba += *argument - '0'; argument++; } if (proba<0) proba=0; if (proba>100) proba=100; break; default: return FUZ_usage(programName); } } } } /* for(argNb=1; argNb