/* zstd - standard compression library Copyright (C) 2014-2016, Yann Collet. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You can contact the author at : - zstd homepage : http://www.zstd.net */ /* *************************************************************** * Tuning parameters *****************************************************************/ /*! * HEAPMODE : * Select how default decompression function ZSTD_decompress() will allocate memory, * in memory stack (0), or in memory heap (1, requires malloc()) */ #ifndef ZSTD_HEAPMODE # define ZSTD_HEAPMODE 1 #endif /*! * LEGACY_SUPPORT : * if set to 1, ZSTD_decompress() can decode older formats (v0.1+) */ #ifndef ZSTD_LEGACY_SUPPORT # define ZSTD_LEGACY_SUPPORT 0 #endif /*-******************************************************* * Dependencies *********************************************************/ #include /* calloc */ #include /* memcpy, memmove */ #include /* debug only : printf */ #include "mem.h" /* low level memory routines */ #include "zstd_internal.h" #include "fse_static.h" #include "huf_static.h" #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1) # include "zstd_legacy.h" #endif /*-******************************************************* * Compiler specifics *********************************************************/ #ifdef _MSC_VER /* Visual Studio */ # define FORCE_INLINE static __forceinline # include /* For Visual 2005 */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4324) /* disable: C4324: padded structure */ #else # ifdef __GNUC__ # define FORCE_INLINE static inline __attribute__((always_inline)) # else # define FORCE_INLINE static inline # endif #endif /*_******************************************************* * Memory operations **********************************************************/ static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } /*-************************************* * Error Management ***************************************/ unsigned ZSTD_versionNumber (void) { return ZSTD_VERSION_NUMBER; } /*-************************************************************* * Context management ***************************************************************/ typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage; struct ZSTD_DCtx_s { FSE_DTable LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)]; FSE_DTable OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)]; FSE_DTable MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)]; unsigned hufTableX4[HUF_DTABLE_SIZE(HufLog)]; const void* previousDstEnd; const void* base; const void* vBase; const void* dictEnd; size_t expected; size_t headerSize; ZSTD_frameParams fParams; blockType_t bType; /* used in ZSTD_decompressContinue(), to transfer blockType between header decoding and block decoding stages */ ZSTD_dStage stage; U32 flagRepeatTable; const BYTE* litPtr; size_t litBufSize; size_t litSize; BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH]; BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; }; /* typedef'd to ZSTD_DCtx within "zstd_static.h" */ size_t ZSTD_sizeofDCtx (void) { return sizeof(ZSTD_DCtx); } /* non published interface */ size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) { dctx->expected = ZSTD_frameHeaderSize_min; dctx->stage = ZSTDds_getFrameHeaderSize; dctx->previousDstEnd = NULL; dctx->base = NULL; dctx->vBase = NULL; dctx->dictEnd = NULL; dctx->hufTableX4[0] = HufLog; dctx->flagRepeatTable = 0; return 0; } ZSTD_DCtx* ZSTD_createDCtx(void) { ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx)); if (dctx==NULL) return NULL; ZSTD_decompressBegin(dctx); return dctx; } size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) { free(dctx); return 0; /* reserved as a potential error code in the future */ } void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) { memcpy(dstDCtx, srcDCtx, sizeof(ZSTD_DCtx) - (ZSTD_BLOCKSIZE_MAX+WILDCOPY_OVERLENGTH + ZSTD_frameHeaderSize_max)); /* no need to copy workspace */ } /*-************************************************************* * Decompression section ***************************************************************/ /* Frame format description Frame Header - [ Block Header - Block ] - Frame End 1) Frame Header - 4 bytes - Magic Number : ZSTD_MAGICNUMBER (defined within zstd_static.h) - 1 byte - Frame Descriptor 2) Block Header - 3 bytes, starting with a 2-bits descriptor Uncompressed, Compressed, Frame End, unused 3) Block See Block Format Description 4) Frame End - 3 bytes, compatible with Block Header */ /* Frame descriptor 1 byte, using : bit 0-3 : windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN (see zstd_internal.h) bit 4 : minmatch 4(0) or 3(1) bit 5 : reserved (must be zero) bit 6-7 : Frame content size : unknown, 1 byte, 2 bytes, 8 bytes Optional : content size (0, 1, 2 or 8 bytes) 0 : unknown 1 : 0-255 bytes 2 : 256 - 65535+256 8 : up to 16 exa */ /* Compressed Block, format description Block = Literal Section - Sequences Section Prerequisite : size of (compressed) block, maximum size of regenerated data 1) Literal Section 1.1) Header : 1-5 bytes flags: 2 bits 00 compressed by Huff0 01 unused 10 is Raw (uncompressed) 11 is Rle Note : using 01 => Huff0 with precomputed table ? Note : delta map ? => compressed ? 1.1.1) Huff0-compressed literal block : 3-5 bytes srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream srcSize < 1 KB => 3 bytes (2-2-10-10) srcSize < 16KB => 4 bytes (2-2-14-14) else => 5 bytes (2-2-18-18) big endian convention 1.1.2) Raw (uncompressed) literal block header : 1-3 bytes size : 5 bits: (IS_RAW<<6) + (0<<4) + size 12 bits: (IS_RAW<<6) + (2<<4) + (size>>8) size&255 20 bits: (IS_RAW<<6) + (3<<4) + (size>>16) size>>8&255 size&255 1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes size : 5 bits: (IS_RLE<<6) + (0<<4) + size 12 bits: (IS_RLE<<6) + (2<<4) + (size>>8) size&255 20 bits: (IS_RLE<<6) + (3<<4) + (size>>16) size>>8&255 size&255 1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream srcSize < 1 KB => 3 bytes (2-2-10-10) srcSize < 16KB => 4 bytes (2-2-14-14) else => 5 bytes (2-2-18-18) big endian convention 1- CTable available (stored into workspace ?) 2- Small input (fast heuristic ? Full comparison ? depend on clevel ?) 1.2) Literal block content 1.2.1) Huff0 block, using sizes from header See Huff0 format 1.2.2) Huff0 block, using prepared table 1.2.3) Raw content 1.2.4) single byte 2) Sequences section TO DO */ /** ZSTD_frameHeaderSize() : * srcSize must be >= ZSTD_frameHeaderSize_min. * @return : size of the Frame Header */ static size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) { U32 fcsId; if (srcSize < ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); fcsId = (((const BYTE*)src)[4]) >> 6; return ZSTD_frameHeaderSize_min + ZSTD_fcs_fieldSize[fcsId]; } /** ZSTD_getFrameParams() : * decode Frame Header, or provide expected `srcSize`. * @return : 0, `fparamsPtr` is correctly filled, * >0, `srcSize` is too small, result is expected `srcSize`, * or an error code, which can be tested using ZSTD_isError() */ size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_min; if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown); /* ensure there is enough `srcSize` to fully read/decode frame header */ { size_t const fhsize = ZSTD_frameHeaderSize(src, srcSize); if (srcSize < fhsize) return fhsize; } memset(fparamsPtr, 0, sizeof(*fparamsPtr)); { BYTE const frameDesc = ip[4]; fparamsPtr->windowLog = (frameDesc & 0xF) + ZSTD_WINDOWLOG_ABSOLUTEMIN; if ((frameDesc & 0x20) != 0) return ERROR(frameParameter_unsupported); /* reserved 1 bit */ switch(frameDesc >> 6) /* fcsId */ { default: /* impossible */ case 0 : fparamsPtr->frameContentSize = 0; break; case 1 : fparamsPtr->frameContentSize = ip[5]; break; case 2 : fparamsPtr->frameContentSize = MEM_readLE16(ip+5)+256; break; case 3 : fparamsPtr->frameContentSize = MEM_readLE64(ip+5); break; } } return 0; } /** ZSTD_decodeFrameHeader() : * `srcSize` must be the size provided by ZSTD_frameHeaderSize(). * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* zc, const void* src, size_t srcSize) { size_t const result = ZSTD_getFrameParams(&(zc->fParams), src, srcSize); if ((MEM_32bits()) && (zc->fParams.windowLog > 25)) return ERROR(frameParameter_unsupportedBy32bits); return result; } typedef struct { blockType_t blockType; U32 origSize; } blockProperties_t; /*! ZSTD_getcBlockSize() : * Provides the size of compressed block from block header `src` */ size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) { const BYTE* const in = (const BYTE* const)src; U32 cSize; if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); bpPtr->blockType = (blockType_t)((*in) >> 6); cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16); bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; if (bpPtr->blockType == bt_end) return 0; if (bpPtr->blockType == bt_rle) return 1; return cSize; } static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall); memcpy(dst, src, srcSize); return srcSize; } /*! ZSTD_decodeLiteralsBlock() : @return : nb of bytes read from src (< srcSize ) */ size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ { const BYTE* const istart = (const BYTE*) src; /* any compressed block with literals segment must be at least this size */ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); switch(istart[0]>> 6) { case IS_HUF: { size_t litSize, litCSize, singleStream=0; U32 lhSize = ((istart[0]) >> 4) & 3; if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */ switch(lhSize) { case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ /* 2 - 2 - 10 - 10 */ lhSize=3; singleStream = istart[0] & 16; litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2); litCSize = ((istart[1] & 3) << 8) + istart[2]; break; case 2: /* 2 - 2 - 14 - 14 */ lhSize=4; litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6); litCSize = ((istart[2] & 63) << 8) + istart[3]; break; case 3: /* 2 - 2 - 18 - 18 */ lhSize=5; litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2); litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4]; break; } if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected); if (litCSize + lhSize > srcSize) return ERROR(corruption_detected); if (HUF_isError(singleStream ? HUF_decompress1X2(dctx->litBuffer, litSize, istart+lhSize, litCSize) : HUF_decompress (dctx->litBuffer, litSize, istart+lhSize, litCSize) )) return ERROR(corruption_detected); dctx->litPtr = dctx->litBuffer; dctx->litBufSize = ZSTD_BLOCKSIZE_MAX+8; dctx->litSize = litSize; return litCSize + lhSize; } case IS_PCH: { size_t litSize, litCSize; U32 lhSize = ((istart[0]) >> 4) & 3; if (lhSize != 1) /* only case supported for now : small litSize, single stream */ return ERROR(corruption_detected); if (!dctx->flagRepeatTable) return ERROR(dictionary_corrupted); /* 2 - 2 - 10 - 10 */ lhSize=3; litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2); litCSize = ((istart[1] & 3) << 8) + istart[2]; { size_t const errorCode = HUF_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTableX4); if (HUF_isError(errorCode)) return ERROR(corruption_detected); } dctx->litPtr = dctx->litBuffer; dctx->litBufSize = ZSTD_BLOCKSIZE_MAX+WILDCOPY_OVERLENGTH; dctx->litSize = litSize; return litCSize + lhSize; } case IS_RAW: { size_t litSize; U32 lhSize = ((istart[0]) >> 4) & 3; switch(lhSize) { case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ lhSize=1; litSize = istart[0] & 31; break; case 2: litSize = ((istart[0] & 15) << 8) + istart[1]; break; case 3: litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2]; break; } if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ if (litSize+lhSize > srcSize) return ERROR(corruption_detected); memcpy(dctx->litBuffer, istart+lhSize, litSize); dctx->litPtr = dctx->litBuffer; dctx->litBufSize = ZSTD_BLOCKSIZE_MAX+8; dctx->litSize = litSize; return lhSize+litSize; } /* direct reference into compressed stream */ dctx->litPtr = istart+lhSize; dctx->litBufSize = srcSize-lhSize; dctx->litSize = litSize; return lhSize+litSize; } case IS_RLE: { size_t litSize; U32 lhSize = ((istart[0]) >> 4) & 3; switch(lhSize) { case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ lhSize = 1; litSize = istart[0] & 31; break; case 2: litSize = ((istart[0] & 15) << 8) + istart[1]; break; case 3: litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2]; if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */ break; } if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected); memset(dctx->litBuffer, istart[lhSize], litSize); dctx->litPtr = dctx->litBuffer; dctx->litBufSize = ZSTD_BLOCKSIZE_MAX+WILDCOPY_OVERLENGTH; dctx->litSize = litSize; return lhSize+1; } default: return ERROR(corruption_detected); /* impossible */ } } /*! ZSTD_buildSeqTable() : @return : nb bytes read from src, or an error code if it fails, testable with ZSTD_isError() */ FORCE_INLINE size_t ZSTD_buildSeqTable(FSE_DTable* DTable, U32 type, U32 max, U32 maxLog, const void* src, size_t srcSize, const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable) { switch(type) { case FSE_ENCODING_RLE : if (!srcSize) return ERROR(srcSize_wrong); if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected); FSE_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */ return 1; case FSE_ENCODING_RAW : FSE_buildDTable(DTable, defaultNorm, max, defaultLog); return 0; case FSE_ENCODING_STATIC: if (!flagRepeatTable) return ERROR(corruption_detected); return 0; default : /* impossible */ case FSE_ENCODING_DYNAMIC : { U32 tableLog; S16 norm[MaxSeq+1]; size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); if (FSE_isError(headerSize)) return ERROR(corruption_detected); if (tableLog > maxLog) return ERROR(corruption_detected); FSE_buildDTable(DTable, norm, max, tableLog); return headerSize; } } } size_t ZSTD_decodeSeqHeaders(int* nbSeqPtr, FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb, U32 flagRepeatTable, const void* src, size_t srcSize) { const BYTE* const istart = (const BYTE* const)src; const BYTE* const iend = istart + srcSize; const BYTE* ip = istart; /* check */ if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong); /* SeqHead */ { int nbSeq = *ip++; if (!nbSeq) { *nbSeqPtr=0; return 1; } if (nbSeq > 0x7F) { if (nbSeq == 0xFF) nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2; else nbSeq = ((nbSeq-0x80)<<8) + *ip++; } *nbSeqPtr = nbSeq; } /* FSE table descriptors */ { U32 const LLtype = *ip >> 6; U32 const Offtype = (*ip >> 4) & 3; U32 const MLtype = (*ip >> 2) & 3; ip++; /* check */ if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ /* Build DTables */ { size_t const bhSize = ZSTD_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable); if (ZSTD_isError(bhSize)) return ERROR(corruption_detected); ip += bhSize; } { size_t const bhSize = ZSTD_buildSeqTable(DTableOffb, Offtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable); if (ZSTD_isError(bhSize)) return ERROR(corruption_detected); ip += bhSize; } { size_t const bhSize = ZSTD_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable); if (ZSTD_isError(bhSize)) return ERROR(corruption_detected); ip += bhSize; } } return ip-istart; } typedef struct { size_t litLength; size_t matchLength; size_t offset; } seq_t; typedef struct { BIT_DStream_t DStream; FSE_DState_t stateLL; FSE_DState_t stateOffb; FSE_DState_t stateML; size_t prevOffset[ZSTD_REP_INIT]; } seqState_t; static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState) { /* Literal length */ U32 const llCode = FSE_peekSymbol(&(seqState->stateLL)); U32 const mlCode = FSE_peekSymbol(&(seqState->stateML)); U32 const ofCode = FSE_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */ U32 const llBits = LL_bits[llCode]; U32 const mlBits = ML_bits[mlCode]; U32 const ofBits = ofCode; U32 const totalBits = llBits+mlBits+ofBits; static const U32 LL_base[MaxLL+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 }; static const U32 ML_base[MaxML+1] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 44, 48, 56, 64, 80, 96, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000 }; static const U32 OF_base[MaxOff+1] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, /*fake*/ 1, 1 }; /* sequence */ { size_t offset; if (!ofCode) offset = 0; else { offset = OF_base[ofCode] + BIT_readBits(&(seqState->DStream), ofBits); /* <= 26 bits */ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); } if (offset < ZSTD_REP_NUM) { if (llCode == 0 && offset <= 1) offset = 1-offset; if (offset != 0) { size_t temp = seqState->prevOffset[offset]; if (offset != 1) { seqState->prevOffset[2] = seqState->prevOffset[1]; } seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset = temp; } else { offset = seqState->prevOffset[0]; } } else { offset -= ZSTD_REP_MOVE; seqState->prevOffset[2] = seqState->prevOffset[1]; seqState->prevOffset[1] = seqState->prevOffset[0]; seqState->prevOffset[0] = offset; } seq->offset = offset; } seq->matchLength = ML_base[mlCode] + MINMATCH + ((mlCode>31) ? BIT_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */ if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&(seqState->DStream)); seq->litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */ if (MEM_32bits() || (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&(seqState->DStream)); /* ANS state update */ FSE_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */ FSE_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */ if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream)); /* <= 18 bits */ FSE_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */ } FORCE_INLINE size_t ZSTD_execSequence(BYTE* op, BYTE* const oend, seq_t sequence, const BYTE** litPtr, const BYTE* const litLimit_8, const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) { BYTE* const oLitEnd = op + sequence.litLength; size_t const sequenceLength = sequence.litLength + sequence.matchLength; BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ BYTE* const oend_8 = oend-8; const BYTE* const iLitEnd = *litPtr + sequence.litLength; const BYTE* match = oLitEnd - sequence.offset; /* check */ if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */ if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */ if (iLitEnd > litLimit_8) return ERROR(corruption_detected); /* over-read beyond lit buffer */ /* copy Literals */ ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */ op = oLitEnd; *litPtr = iLitEnd; /* update for next sequence */ /* copy Match */ if (sequence.offset > (size_t)(oLitEnd - base)) { /* offset beyond prefix */ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); match = dictEnd - (base-match); if (match + sequence.matchLength <= dictEnd) { memmove(oLitEnd, match, sequence.matchLength); return sequenceLength; } /* span extDict & currentPrefixSegment */ { size_t const length1 = dictEnd - match; memmove(oLitEnd, match, length1); op = oLitEnd + length1; sequence.matchLength -= length1; match = base; } } /* match within prefix */ if (sequence.offset < 8) { /* close range match, overlap */ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */ int const sub2 = dec64table[sequence.offset]; op[0] = match[0]; op[1] = match[1]; op[2] = match[2]; op[3] = match[3]; match += dec32table[sequence.offset]; ZSTD_copy4(op+4, match); match -= sub2; } else { ZSTD_copy8(op, match); } op += 8; match += 8; if (oMatchEnd > oend-(16-MINMATCH)) { if (op < oend_8) { ZSTD_wildcopy(op, match, oend_8 - op); match += oend_8 - op; op = oend_8; } while (op < oMatchEnd) *op++ = *match++; } else { ZSTD_wildcopy(op, match, sequence.matchLength-8); /* works even if matchLength < 8 */ } return sequenceLength; } static size_t ZSTD_decompressSequences( ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* seqStart, size_t seqSize) { const BYTE* ip = (const BYTE*)seqStart; const BYTE* const iend = ip + seqSize; BYTE* const ostart = (BYTE* const)dst; BYTE* const oend = ostart + maxDstSize; BYTE* op = ostart; const BYTE* litPtr = dctx->litPtr; const BYTE* const litLimit_8 = litPtr + dctx->litBufSize - 8; const BYTE* const litEnd = litPtr + dctx->litSize; FSE_DTable* DTableLL = dctx->LLTable; FSE_DTable* DTableML = dctx->MLTable; FSE_DTable* DTableOffb = dctx->OffTable; const BYTE* const base = (const BYTE*) (dctx->base); const BYTE* const vBase = (const BYTE*) (dctx->vBase); const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); int nbSeq; /* Build Decoding Tables */ { size_t const seqHSize = ZSTD_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->flagRepeatTable, ip, seqSize); if (ZSTD_isError(seqHSize)) return seqHSize; ip += seqHSize; dctx->flagRepeatTable = 0; } /* Regen sequences */ if (nbSeq) { seq_t sequence; seqState_t seqState; memset(&sequence, 0, sizeof(sequence)); sequence.offset = REPCODE_STARTVALUE; { U32 i; for (i=0; i= 5810037) && (pos < 5810400)) printf("Dpos %6u :%5u literals & match %3u bytes at distance %6u \n", pos, (U32)sequence.litLength, (U32)sequence.matchLength, (U32)sequence.offset); #endif { size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litLimit_8, base, vBase, dictEnd); if (ZSTD_isError(oneSeqSize)) return oneSeqSize; op += oneSeqSize; } } /* check if reached exact end */ if (nbSeq) return ERROR(corruption_detected); } /* last literal segment */ { size_t const lastLLSize = litEnd - litPtr; if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */ if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall); memcpy(op, litPtr, lastLLSize); op += lastLLSize; } return op-ostart; } static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst) { if (dst != dctx->previousDstEnd) { /* not contiguous */ dctx->dictEnd = dctx->previousDstEnd; dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); dctx->base = dst; dctx->previousDstEnd = dst; } } static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { /* blockType == blockCompressed */ const BYTE* ip = (const BYTE*)src; if (srcSize >= ZSTD_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* Decode literals sub-block */ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize); if (ZSTD_isError(litCSize)) return litCSize; ip += litCSize; srcSize -= litCSize; } return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize); } size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_checkContinuity(dctx, dst); return ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); } /*! ZSTD_decompress_continueDCtx() : * `dctx` must have been properly initialized */ static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { const BYTE* ip = (const BYTE*)src; const BYTE* iend = ip + srcSize; BYTE* const ostart = (BYTE* const)dst; BYTE* op = ostart; BYTE* const oend = ostart + dstCapacity; size_t remainingSize = srcSize; blockProperties_t blockProperties = { bt_compressed, 0 }; /* check */ if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); #if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT==1) { const U32 magicNumber = MEM_readLE32(src); if (ZSTD_isLegacy(magicNumber)) return ZSTD_decompressLegacy(dst, dstCapacity, src, srcSize, magicNumber); } #endif /* Frame Header */ { size_t const frameHeaderSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_min); if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); if (ZSTD_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected); ip += frameHeaderSize; remainingSize -= frameHeaderSize; } /* Loop on each block */ while (1) { size_t decodedSize=0; size_t const cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties); if (ZSTD_isError(cBlockSize)) return cBlockSize; ip += ZSTD_blockHeaderSize; remainingSize -= ZSTD_blockHeaderSize; if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); switch(blockProperties.blockType) { case bt_compressed: decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize); break; case bt_raw : decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize); break; case bt_rle : return ERROR(GENERIC); /* not yet supported */ break; case bt_end : /* end of frame */ if (remainingSize) return ERROR(srcSize_wrong); break; default: return ERROR(GENERIC); /* impossible */ } if (cBlockSize == 0) break; /* bt_end */ if (ZSTD_isError(decodedSize)) return decodedSize; op += decodedSize; ip += cBlockSize; remainingSize -= cBlockSize; } return op-ostart; } size_t ZSTD_decompress_usingPreparedDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* refDCtx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { ZSTD_copyDCtx(dctx, refDCtx); ZSTD_checkContinuity(dctx, dst); return ZSTD_decompressFrame(dctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize) { ZSTD_decompressBegin_usingDict(dctx, dict, dictSize); ZSTD_checkContinuity(dctx, dst); return ZSTD_decompressFrame(dctx, dst, dstCapacity, src, srcSize); } size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) { return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0); } size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) { #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1) size_t regenSize; ZSTD_DCtx* dctx = ZSTD_createDCtx(); if (dctx==NULL) return ERROR(memory_allocation); regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); ZSTD_freeDCtx(dctx); return regenSize; #else ZSTD_DCtx dctx; return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); #endif } /*_****************************** * Streaming Decompression API ********************************/ size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) { /* Sanity check */ if (srcSize != dctx->expected) return ERROR(srcSize_wrong); ZSTD_checkContinuity(dctx, dst); /* Decompress : frame header; part 1 */ switch (dctx->stage) { case ZSTDds_getFrameHeaderSize : { if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */ dctx->headerSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_min); if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_min); if (dctx->headerSize > ZSTD_frameHeaderSize_min) { dctx->expected = dctx->headerSize - ZSTD_frameHeaderSize_min; dctx->stage = ZSTDds_decodeFrameHeader; return 0; } dctx->expected = 0; /* not necessary to copy more */ } case ZSTDds_decodeFrameHeader: { size_t result; memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_min, src, dctx->expected); result = ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize); if (ZSTD_isError(result)) return result; dctx->expected = ZSTD_blockHeaderSize; dctx->stage = ZSTDds_decodeBlockHeader; return 0; } case ZSTDds_decodeBlockHeader: { blockProperties_t bp; size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); if (ZSTD_isError(cBlockSize)) return cBlockSize; if (bp.blockType == bt_end) { dctx->expected = 0; dctx->stage = ZSTDds_getFrameHeaderSize; } else { dctx->expected = cBlockSize; dctx->bType = bp.blockType; dctx->stage = ZSTDds_decompressBlock; } return 0; } case ZSTDds_decompressBlock: { /* Decompress : block content */ size_t rSize; switch(dctx->bType) { case bt_compressed: rSize = ZSTD_decompressBlock_internal(dctx, dst, maxDstSize, src, srcSize); break; case bt_raw : rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize); break; case bt_rle : return ERROR(GENERIC); /* not yet handled */ break; case bt_end : /* should never happen (filtered at phase 1) */ rSize = 0; break; default: return ERROR(GENERIC); /* impossible */ } dctx->stage = ZSTDds_decodeBlockHeader; dctx->expected = ZSTD_blockHeaderSize; dctx->previousDstEnd = (char*)dst + rSize; return rSize; } default: return ERROR(GENERIC); /* impossible */ } } static void ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { dctx->dictEnd = dctx->previousDstEnd; dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); dctx->base = dict; dctx->previousDstEnd = (const char*)dict + dictSize; } static size_t ZSTD_loadEntropy(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { size_t hSize, offcodeHeaderSize, matchlengthHeaderSize, errorCode, litlengthHeaderSize; short offcodeNCount[MaxOff+1]; U32 offcodeMaxValue=MaxOff, offcodeLog=OffFSELog; short matchlengthNCount[MaxML+1]; unsigned matchlengthMaxValue = MaxML, matchlengthLog = MLFSELog; short litlengthNCount[MaxLL+1]; unsigned litlengthMaxValue = MaxLL, litlengthLog = LLFSELog; hSize = HUF_readDTableX4(dctx->hufTableX4, dict, dictSize); if (HUF_isError(hSize)) return ERROR(dictionary_corrupted); dict = (const char*)dict + hSize; dictSize -= hSize; offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dict, dictSize); if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted); errorCode = FSE_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog); if (FSE_isError(errorCode)) return ERROR(dictionary_corrupted); dict = (const char*)dict + offcodeHeaderSize; dictSize -= offcodeHeaderSize; matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dict, dictSize); if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted); errorCode = FSE_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog); if (FSE_isError(errorCode)) return ERROR(dictionary_corrupted); dict = (const char*)dict + matchlengthHeaderSize; dictSize -= matchlengthHeaderSize; litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dict, dictSize); if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted); errorCode = FSE_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog); if (FSE_isError(errorCode)) return ERROR(dictionary_corrupted); dctx->flagRepeatTable = 1; return hSize + offcodeHeaderSize + matchlengthHeaderSize + litlengthHeaderSize; } static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { size_t eSize; U32 const magic = MEM_readLE32(dict); if (magic != ZSTD_DICT_MAGIC) { /* pure content mode */ ZSTD_refDictContent(dctx, dict, dictSize); return 0; } /* load entropy tables */ dict = (const char*)dict + 4; dictSize -= 4; eSize = ZSTD_loadEntropy(dctx, dict, dictSize); if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted); /* reference dictionary content */ dict = (const char*)dict + eSize; dictSize -= eSize; ZSTD_refDictContent(dctx, dict, dictSize); return 0; } size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) { { size_t const errorCode = ZSTD_decompressBegin(dctx); if (ZSTD_isError(errorCode)) return errorCode; } if (dict && dictSize) { size_t const errorCode = ZSTD_decompress_insertDictionary(dctx, dict, dictSize); if (ZSTD_isError(errorCode)) return ERROR(dictionary_corrupted); } return 0; }