/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* ====== Tuning parameters ====== */ #define ZSTDMT_NBTHREADS_MAX 200 #define ZSTDMT_OVERLAPLOG_DEFAULT 6 /* ====== Compiler specifics ====== */ #if defined(_MSC_VER) # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif /* ====== Dependencies ====== */ #include /* memcpy, memset */ #include "pool.h" /* threadpool */ #include "threading.h" /* mutex */ #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ #include "zstdmt_compress.h" /* ====== Debug ====== */ #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=2) # include # include # include # define DEBUGLOGRAW(l, ...) if (l<=ZSTD_DEBUG) { fprintf(stderr, __VA_ARGS__); } # define DEBUG_PRINTHEX(l,p,n) { \ unsigned debug_u; \ for (debug_u=0; debug_u<(n); debug_u++) \ DEBUGLOGRAW(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ DEBUGLOGRAW(l, " \n"); \ } static unsigned long long GetCurrentClockTimeMicroseconds(void) { static clock_t _ticksPerSecond = 0; if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); { struct tms junk; clock_t newTicks = (clock_t) times(&junk); return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); } } #define MUTEX_WAIT_TIME_DLEVEL 6 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ if (ZSTD_DEBUG >= MUTEX_WAIT_TIME_DLEVEL) { \ unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ ZSTD_pthread_mutex_lock(mutex); \ { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ unsigned long long const elapsedTime = (afterTime-beforeTime); \ if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ elapsedTime, #mutex); \ } } \ } else { \ ZSTD_pthread_mutex_lock(mutex); \ } \ } #else # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) # define DEBUG_PRINTHEX(l,p,n) {} #endif /* ===== Buffer Pool ===== */ /* a single Buffer Pool can be invoked from multiple threads in parallel */ typedef struct buffer_s { void* start; size_t size; } buffer_t; static const buffer_t g_nullBuffer = { NULL, 0 }; typedef struct ZSTDMT_bufferPool_s { ZSTD_pthread_mutex_t poolMutex; size_t bufferSize; unsigned totalBuffers; unsigned nbBuffers; ZSTD_customMem cMem; buffer_t bTable[1]; /* variable size */ } ZSTDMT_bufferPool; static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads, ZSTD_customMem cMem) { unsigned const maxNbBuffers = 2*nbThreads + 3; ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc( sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); if (bufPool==NULL) return NULL; if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { ZSTD_free(bufPool, cMem); return NULL; } bufPool->bufferSize = 64 KB; bufPool->totalBuffers = maxNbBuffers; bufPool->nbBuffers = 0; bufPool->cMem = cMem; return bufPool; } static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) { unsigned u; DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); if (!bufPool) return; /* compatibility with free on NULL */ for (u=0; utotalBuffers; u++) { DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); ZSTD_free(bufPool->bTable[u].start, bufPool->cMem); } ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); ZSTD_free(bufPool, bufPool->cMem); } /* only works at initialization, not during compression */ static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) { size_t const poolSize = sizeof(*bufPool) + (bufPool->totalBuffers - 1) * sizeof(buffer_t); unsigned u; size_t totalBufferSize = 0; ZSTD_pthread_mutex_lock(&bufPool->poolMutex); for (u=0; utotalBuffers; u++) totalBufferSize += bufPool->bTable[u].size; ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return poolSize + totalBufferSize; } static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) { ZSTD_pthread_mutex_lock(&bufPool->poolMutex); DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); bufPool->bufferSize = bSize; ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); } /** ZSTDMT_getBuffer() : * assumption : bufPool must be valid */ static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) { size_t const bSize = bufPool->bufferSize; DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); ZSTD_pthread_mutex_lock(&bufPool->poolMutex); if (bufPool->nbBuffers) { /* try to use an existing buffer */ buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; size_t const availBufferSize = buf.size; bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { /* large enough, but not too much */ DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", bufPool->nbBuffers, (U32)buf.size); ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return buf; } /* size conditions not respected : scratch this buffer, create new one */ DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); ZSTD_free(buf.start, bufPool->cMem); } ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); /* create new buffer */ DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); { buffer_t buffer; void* const start = ZSTD_malloc(bSize, bufPool->cMem); buffer.start = start; /* note : start can be NULL if malloc fails ! */ buffer.size = (start==NULL) ? 0 : bSize; DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); return buffer; } } /* store buffer for later re-use, up to pool capacity */ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) { if (buf.start == NULL) return; /* compatible with release on NULL */ DEBUGLOG(5, "ZSTDMT_releaseBuffer"); ZSTD_pthread_mutex_lock(&bufPool->poolMutex); if (bufPool->nbBuffers < bufPool->totalBuffers) { bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", (U32)buf.size, (U32)(bufPool->nbBuffers-1)); ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); return; } ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); /* Reached bufferPool capacity (should not happen) */ DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); ZSTD_free(buf.start, bufPool->cMem); } /* Sets parameters relevant to the compression job, initializing others to * default values. Notably, nbThreads should probably be zero. */ static ZSTD_CCtx_params ZSTDMT_makeJobCCtxParams(ZSTD_CCtx_params const params) { ZSTD_CCtx_params jobParams; memset(&jobParams, 0, sizeof(jobParams)); jobParams.cParams = params.cParams; jobParams.fParams = params.fParams; jobParams.compressionLevel = params.compressionLevel; jobParams.ldmParams = params.ldmParams; return jobParams; } /* ===== CCtx Pool ===== */ /* a single CCtx Pool can be invoked from multiple threads in parallel */ typedef struct { ZSTD_pthread_mutex_t poolMutex; unsigned totalCCtx; unsigned availCCtx; ZSTD_customMem cMem; ZSTD_CCtx* cctx[1]; /* variable size */ } ZSTDMT_CCtxPool; /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) { unsigned u; for (u=0; utotalCCtx; u++) ZSTD_freeCCtx(pool->cctx[u]); /* note : compatible with free on NULL */ ZSTD_pthread_mutex_destroy(&pool->poolMutex); ZSTD_free(pool, pool->cMem); } /* ZSTDMT_createCCtxPool() : * implies nbThreads >= 1 , checked by caller ZSTDMT_createCCtx() */ static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads, ZSTD_customMem cMem) { ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc( sizeof(ZSTDMT_CCtxPool) + (nbThreads-1)*sizeof(ZSTD_CCtx*), cMem); if (!cctxPool) return NULL; if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { ZSTD_free(cctxPool, cMem); return NULL; } cctxPool->cMem = cMem; cctxPool->totalCCtx = nbThreads; cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } DEBUGLOG(3, "cctxPool created, with %u threads", nbThreads); return cctxPool; } /* only works during initialization phase, not during compression */ static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) { ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); { unsigned const nbThreads = cctxPool->totalCCtx; size_t const poolSize = sizeof(*cctxPool) + (nbThreads-1)*sizeof(ZSTD_CCtx*); unsigned u; size_t totalCCtxSize = 0; for (u=0; ucctx[u]); } ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); return poolSize + totalCCtxSize; } } static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) { DEBUGLOG(5, "ZSTDMT_getCCtx"); ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); if (cctxPool->availCCtx) { cctxPool->availCCtx--; { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); return cctx; } } ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); DEBUGLOG(5, "create one more CCtx"); return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ } static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) { if (cctx==NULL) return; /* compatibility with release on NULL */ ZSTD_pthread_mutex_lock(&pool->poolMutex); if (pool->availCCtx < pool->totalCCtx) pool->cctx[pool->availCCtx++] = cctx; else { /* pool overflow : should not happen, since totalCCtx==nbThreads */ DEBUGLOG(5, "CCtx pool overflow : free cctx"); ZSTD_freeCCtx(cctx); } ZSTD_pthread_mutex_unlock(&pool->poolMutex); } /* ===== Thread worker ===== */ typedef struct { buffer_t src; const void* srcStart; size_t dictSize; size_t srcSize; buffer_t dstBuff; size_t cSize; size_t dstFlushed; unsigned firstChunk; unsigned lastChunk; unsigned jobCompleted; unsigned jobScanned; ZSTD_pthread_mutex_t* jobCompleted_mutex; ZSTD_pthread_cond_t* jobCompleted_cond; ZSTD_CCtx_params params; const ZSTD_CDict* cdict; ZSTDMT_CCtxPool* cctxPool; ZSTDMT_bufferPool* bufPool; unsigned long long fullFrameSize; } ZSTDMT_jobDescription; /* ZSTDMT_compressChunk() : POOL_function type */ void ZSTDMT_compressChunk(void* jobDescription) { ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); const void* const src = (const char*)job->srcStart + job->dictSize; buffer_t dstBuff = job->dstBuff; DEBUGLOG(5, "ZSTDMT_compressChunk: job (first:%u) (last:%u) : dictSize %u, srcSize %u", job->firstChunk, job->lastChunk, (U32)job->dictSize, (U32)job->srcSize); if (cctx==NULL) { job->cSize = ERROR(memory_allocation); goto _endJob; } if (dstBuff.start == NULL) { dstBuff = ZSTDMT_getBuffer(job->bufPool); if (dstBuff.start==NULL) { job->cSize = ERROR(memory_allocation); goto _endJob; } job->dstBuff = dstBuff; DEBUGLOG(5, "ZSTDMT_compressChunk: allocated dstBuff of size %u", (U32)dstBuff.size); } if (job->cdict) { size_t const initError = ZSTD_compressBegin_usingCDict_advanced(cctx, job->cdict, job->params.fParams, job->fullFrameSize); DEBUGLOG(4, "ZSTDMT_compressChunk: init using CDict"); assert(job->firstChunk); /* should only happen for first segment */ if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; } } else { /* srcStart points at reloaded section */ ZSTD_CCtx_params jobParams = job->params; size_t const forceWindowError = ZSTD_CCtxParam_setParameter(&jobParams, ZSTD_p_forceMaxWindow, !job->firstChunk); U64 const pledgedSrcSize = job->firstChunk ? job->fullFrameSize : ZSTD_CONTENTSIZE_UNKNOWN; /* load dictionary in "content-only" mode (no header analysis) */ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, job->srcStart, job->dictSize, ZSTD_dm_rawContent, jobParams, pledgedSrcSize); if (ZSTD_isError(initError) || ZSTD_isError(forceWindowError)) { job->cSize = initError; goto _endJob; } } if (!job->firstChunk) { /* flush and overwrite frame header when it's not first segment */ size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.size, src, 0); if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; } ZSTD_invalidateRepCodes(cctx); } DEBUGLOG(5, "Compressing into dstBuff of size %u", (U32)dstBuff.size); DEBUG_PRINTHEX(6, job->srcStart, 12); job->cSize = (job->lastChunk) ? ZSTD_compressEnd (cctx, dstBuff.start, dstBuff.size, src, job->srcSize) : ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.size, src, job->srcSize); DEBUGLOG(5, "compressed %u bytes into %u bytes (first:%u) (last:%u)", (unsigned)job->srcSize, (unsigned)job->cSize, job->firstChunk, job->lastChunk); DEBUGLOG(5, "dstBuff.size : %u ; => %s", (U32)dstBuff.size, ZSTD_getErrorName(job->cSize)); _endJob: ZSTDMT_releaseCCtx(job->cctxPool, cctx); ZSTDMT_releaseBuffer(job->bufPool, job->src); job->src = g_nullBuffer; job->srcStart = NULL; ZSTD_PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex); job->jobCompleted = 1; job->jobScanned = 0; ZSTD_pthread_cond_signal(job->jobCompleted_cond); ZSTD_pthread_mutex_unlock(job->jobCompleted_mutex); } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ typedef struct { buffer_t buffer; size_t filled; } inBuff_t; struct ZSTDMT_CCtx_s { POOL_ctx* factory; ZSTDMT_jobDescription* jobs; ZSTDMT_bufferPool* bufPool; ZSTDMT_CCtxPool* cctxPool; ZSTD_pthread_mutex_t jobCompleted_mutex; ZSTD_pthread_cond_t jobCompleted_cond; ZSTD_CCtx_params params; size_t targetSectionSize; size_t inBuffSize; size_t dictSize; size_t targetDictSize; inBuff_t inBuff; XXH64_state_t xxhState; unsigned singleThreaded; unsigned jobIDMask; unsigned doneJobID; unsigned nextJobID; unsigned frameEnded; unsigned allJobsCompleted; unsigned long long frameContentSize; ZSTD_customMem cMem; ZSTD_CDict* cdictLocal; const ZSTD_CDict* cdict; }; static ZSTDMT_jobDescription* ZSTDMT_allocJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) { U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; U32 const nbJobs = 1 << nbJobsLog2; *nbJobsPtr = nbJobs; return (ZSTDMT_jobDescription*) ZSTD_calloc( nbJobs * sizeof(ZSTDMT_jobDescription), cMem); } /* ZSTDMT_CCtxParam_setNbThreads(): * Internal use only */ size_t ZSTDMT_CCtxParam_setNbThreads(ZSTD_CCtx_params* params, unsigned nbThreads) { if (nbThreads > ZSTDMT_NBTHREADS_MAX) nbThreads = ZSTDMT_NBTHREADS_MAX; if (nbThreads < 1) nbThreads = 1; params->nbThreads = nbThreads; params->overlapSizeLog = ZSTDMT_OVERLAPLOG_DEFAULT; params->jobSize = 0; return nbThreads; } ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbThreads, ZSTD_customMem cMem) { ZSTDMT_CCtx* mtctx; U32 nbJobs = nbThreads + 2; DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbThreads = %u)", nbThreads); if (nbThreads < 1) return NULL; nbThreads = MIN(nbThreads , ZSTDMT_NBTHREADS_MAX); if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) /* invalid custom allocator */ return NULL; mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem); if (!mtctx) return NULL; ZSTDMT_CCtxParam_setNbThreads(&mtctx->params, nbThreads); mtctx->cMem = cMem; mtctx->allJobsCompleted = 1; mtctx->factory = POOL_create_advanced(nbThreads, 0, cMem); mtctx->jobs = ZSTDMT_allocJobsTable(&nbJobs, cMem); mtctx->jobIDMask = nbJobs - 1; mtctx->bufPool = ZSTDMT_createBufferPool(nbThreads, cMem); mtctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads, cMem); if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool) { ZSTDMT_freeCCtx(mtctx); return NULL; } if (ZSTD_pthread_mutex_init(&mtctx->jobCompleted_mutex, NULL)) { ZSTDMT_freeCCtx(mtctx); return NULL; } if (ZSTD_pthread_cond_init(&mtctx->jobCompleted_cond, NULL)) { ZSTDMT_freeCCtx(mtctx); return NULL; } DEBUGLOG(3, "mt_cctx created, for %u threads", nbThreads); return mtctx; } ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbThreads) { return ZSTDMT_createCCtx_advanced(nbThreads, ZSTD_defaultCMem); } /* ZSTDMT_releaseAllJobResources() : * note : ensure all workers are killed first ! */ static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) { unsigned jobID; DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); mtctx->jobs[jobID].dstBuff = g_nullBuffer; DEBUGLOG(4, "job%02u: release src address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].src.start); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].src); mtctx->jobs[jobID].src = g_nullBuffer; } memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription)); DEBUGLOG(4, "input: release address %08X", (U32)(size_t)mtctx->inBuff.buffer.start); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->inBuff.buffer); mtctx->inBuff.buffer = g_nullBuffer; mtctx->allJobsCompleted = 1; } static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* zcs) { DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); while (zcs->doneJobID < zcs->nextJobID) { unsigned const jobID = zcs->doneJobID & zcs->jobIDMask; ZSTD_PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex); while (zcs->jobs[jobID].jobCompleted==0) { DEBUGLOG(5, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */ ZSTD_pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); } ZSTD_pthread_mutex_unlock(&zcs->jobCompleted_mutex); zcs->doneJobID++; } } size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) { if (mtctx==NULL) return 0; /* compatible with free on NULL */ POOL_free(mtctx->factory); /* stop and free worker threads */ ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ ZSTD_free(mtctx->jobs, mtctx->cMem); ZSTDMT_freeBufferPool(mtctx->bufPool); ZSTDMT_freeCCtxPool(mtctx->cctxPool); ZSTD_freeCDict(mtctx->cdictLocal); ZSTD_pthread_mutex_destroy(&mtctx->jobCompleted_mutex); ZSTD_pthread_cond_destroy(&mtctx->jobCompleted_cond); ZSTD_free(mtctx, mtctx->cMem); return 0; } size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) { if (mtctx == NULL) return 0; /* supports sizeof NULL */ return sizeof(*mtctx) + POOL_sizeof(mtctx->factory) + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) + ZSTD_sizeof_CDict(mtctx->cdictLocal); } /* Internal only */ size_t ZSTDMT_CCtxParam_setMTCtxParameter( ZSTD_CCtx_params* params, ZSTDMT_parameter parameter, unsigned value) { switch(parameter) { case ZSTDMT_p_sectionSize : if ( (value > 0) /* value==0 => automatic job size */ & (value < ZSTDMT_JOBSIZE_MIN) ) value = ZSTDMT_JOBSIZE_MIN; params->jobSize = value; return value; case ZSTDMT_p_overlapSectionLog : if (value > 9) value = 9; DEBUGLOG(4, "ZSTDMT_p_overlapSectionLog : %u", value); params->overlapSizeLog = (value >= 9) ? 9 : value; return value; default : return ERROR(parameter_unsupported); } } size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, unsigned value) { switch(parameter) { case ZSTDMT_p_sectionSize : return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value); case ZSTDMT_p_overlapSectionLog : return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value); default : return ERROR(parameter_unsupported); } } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ static unsigned computeNbChunks(size_t srcSize, unsigned windowLog, unsigned nbThreads) { size_t const chunkSizeTarget = (size_t)1 << (windowLog + 2); size_t const chunkMaxSize = chunkSizeTarget << 2; size_t const passSizeMax = chunkMaxSize * nbThreads; unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1; unsigned const nbChunksLarge = multiplier * nbThreads; unsigned const nbChunksMax = (unsigned)(srcSize / chunkSizeTarget) + 1; unsigned const nbChunksSmall = MIN(nbChunksMax, nbThreads); return (multiplier>1) ? nbChunksLarge : nbChunksSmall; } static size_t ZSTDMT_compress_advanced_internal( ZSTDMT_CCtx* mtctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_CCtx_params const params) { ZSTD_CCtx_params const jobParams = ZSTDMT_makeJobCCtxParams(params); unsigned const overlapRLog = (params.overlapSizeLog>9) ? 0 : 9-params.overlapSizeLog; size_t const overlapSize = (overlapRLog>=9) ? 0 : (size_t)1 << (params.cParams.windowLog - overlapRLog); unsigned nbChunks = computeNbChunks(srcSize, params.cParams.windowLog, params.nbThreads); size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks; size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0x7FFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */ const char* const srcStart = (const char*)src; size_t remainingSrcSize = srcSize; unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbChunks : (unsigned)(dstCapacity / ZSTD_compressBound(avgChunkSize)); /* presumes avgChunkSize >= 256 KB, which should be the case */ size_t frameStartPos = 0, dstBufferPos = 0; XXH64_state_t xxh64; assert(jobParams.nbThreads == 0); assert(mtctx->cctxPool->totalCCtx == params.nbThreads); DEBUGLOG(4, "ZSTDMT_compress_advanced_internal"); DEBUGLOG(4, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize); if (nbChunks==1) { /* fallback to single-thread mode */ ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0]; if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams); return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams); } assert(avgChunkSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), which is required for compressWithinDst */ ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgChunkSize) ); XXH64_reset(&xxh64, 0); if (nbChunks > mtctx->jobIDMask+1) { /* enlarge job table */ U32 nbJobs = nbChunks; ZSTD_free(mtctx->jobs, mtctx->cMem); mtctx->jobIDMask = 0; mtctx->jobs = ZSTDMT_allocJobsTable(&nbJobs, mtctx->cMem); if (mtctx->jobs==NULL) return ERROR(memory_allocation); mtctx->jobIDMask = nbJobs - 1; } { unsigned u; for (u=0; ujobs[u].src = g_nullBuffer; mtctx->jobs[u].srcStart = srcStart + frameStartPos - dictSize; mtctx->jobs[u].dictSize = dictSize; mtctx->jobs[u].srcSize = chunkSize; mtctx->jobs[u].cdict = (u==0) ? cdict : NULL; mtctx->jobs[u].fullFrameSize = srcSize; mtctx->jobs[u].params = jobParams; /* do not calculate checksum within sections, but write it in header for first section */ if (u!=0) mtctx->jobs[u].params.fParams.checksumFlag = 0; mtctx->jobs[u].dstBuff = dstBuffer; mtctx->jobs[u].cctxPool = mtctx->cctxPool; mtctx->jobs[u].bufPool = mtctx->bufPool; mtctx->jobs[u].firstChunk = (u==0); mtctx->jobs[u].lastChunk = (u==nbChunks-1); mtctx->jobs[u].jobCompleted = 0; mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex; mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond; if (params.fParams.checksumFlag) { XXH64_update(&xxh64, srcStart + frameStartPos, chunkSize); } DEBUGLOG(5, "posting job %u (%u bytes)", u, (U32)chunkSize); DEBUG_PRINTHEX(6, mtctx->jobs[u].srcStart, 12); POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]); frameStartPos += chunkSize; dstBufferPos += dstBufferCapacity; remainingSrcSize -= chunkSize; } } /* collect result */ { size_t error = 0, dstPos = 0; unsigned chunkID; for (chunkID=0; chunkIDjobCompleted_mutex); while (mtctx->jobs[chunkID].jobCompleted==0) { DEBUGLOG(5, "waiting for jobCompleted signal from chunk %u", chunkID); ZSTD_pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex); } ZSTD_pthread_mutex_unlock(&mtctx->jobCompleted_mutex); DEBUGLOG(5, "ready to write chunk %u ", chunkID); mtctx->jobs[chunkID].srcStart = NULL; { size_t const cSize = mtctx->jobs[chunkID].cSize; if (ZSTD_isError(cSize)) error = cSize; if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); if (chunkID) { /* note : chunk 0 is written directly at dst, which is correct position */ if (!error) memmove((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize); /* may overlap when chunk compressed within dst */ if (chunkID >= compressWithinDst) { /* chunk compressed into its own buffer, which must be released */ DEBUGLOG(5, "releasing buffer %u>=%u", chunkID, compressWithinDst); ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[chunkID].dstBuff); } } mtctx->jobs[chunkID].dstBuff = g_nullBuffer; dstPos += cSize ; } } /* for (chunkID=0; chunkID dstCapacity) { error = ERROR(dstSize_tooSmall); } else { DEBUGLOG(4, "writing checksum : %08X \n", checksum); MEM_writeLE32((char*)dst + dstPos, checksum); dstPos += 4; } } if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos); return error ? error : dstPos; } } size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const ZSTD_CDict* cdict, ZSTD_parameters const params, unsigned overlapLog) { ZSTD_CCtx_params cctxParams = mtctx->params; cctxParams.cParams = params.cParams; cctxParams.fParams = params.fParams; cctxParams.overlapSizeLog = overlapLog; return ZSTDMT_compress_advanced_internal(mtctx, dst, dstCapacity, src, srcSize, cdict, cctxParams); } size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { U32 const overlapLog = (compressionLevel >= ZSTD_maxCLevel()) ? 9 : ZSTDMT_OVERLAPLOG_DEFAULT; ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); params.fParams.contentSizeFlag = 1; return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog); } /* ====================================== */ /* ======= Streaming API ======= */ /* ====================================== */ size_t ZSTDMT_initCStream_internal( ZSTDMT_CCtx* zcs, const void* dict, size_t dictSize, ZSTD_dictMode_e dictMode, const ZSTD_CDict* cdict, ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) { DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u)", (U32)pledgedSrcSize); /* params are supposed to be fully validated at this point */ assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); assert(!((dict) && (cdict))); /* either dict or cdict, not both */ assert(zcs->cctxPool->totalCCtx == params.nbThreads); zcs->singleThreaded = (params.nbThreads==1) | (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */ if (zcs->singleThreaded) { ZSTD_CCtx_params const singleThreadParams = ZSTDMT_makeJobCCtxParams(params); DEBUGLOG(4, "single thread mode"); assert(singleThreadParams.nbThreads == 0); return ZSTD_initCStream_internal(zcs->cctxPool->cctx[0], dict, dictSize, cdict, singleThreadParams, pledgedSrcSize); } DEBUGLOG(4, "multi-threading mode (%u threads)", params.nbThreads); if (zcs->allJobsCompleted == 0) { /* previous compression not correctly finished */ ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); zcs->allJobsCompleted = 1; } zcs->params = params; zcs->frameContentSize = pledgedSrcSize; if (dict) { ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, dictMode, /* note : a loadPrefix becomes an internal CDict */ params.cParams, zcs->cMem); zcs->cdict = zcs->cdictLocal; if (zcs->cdictLocal == NULL) return ERROR(memory_allocation); } else { ZSTD_freeCDict(zcs->cdictLocal); zcs->cdictLocal = NULL; zcs->cdict = cdict; } assert(params.overlapSizeLog <= 9); zcs->targetDictSize = (params.overlapSizeLog==0) ? 0 : (size_t)1 << (params.cParams.windowLog - (9 - params.overlapSizeLog)); DEBUGLOG(4, "overlapLog=%u => %u KB", params.overlapSizeLog, (U32)(zcs->targetDictSize>>10)); zcs->targetSectionSize = params.jobSize ? params.jobSize : (size_t)1 << (params.cParams.windowLog + 2); if (zcs->targetSectionSize < ZSTDMT_JOBSIZE_MIN) zcs->targetSectionSize = ZSTDMT_JOBSIZE_MIN; if (zcs->targetSectionSize < zcs->targetDictSize) zcs->targetSectionSize = zcs->targetDictSize; /* job size must be >= overlap size */ DEBUGLOG(4, "Job Size : %u KB", (U32)(zcs->targetSectionSize>>10)); zcs->inBuffSize = zcs->targetDictSize + zcs->targetSectionSize; DEBUGLOG(4, "inBuff Size : %u KB", (U32)(zcs->inBuffSize>>10)); ZSTDMT_setBufferSize(zcs->bufPool, MAX(zcs->inBuffSize, ZSTD_compressBound(zcs->targetSectionSize)) ); zcs->inBuff.buffer = g_nullBuffer; zcs->dictSize = 0; zcs->doneJobID = 0; zcs->nextJobID = 0; zcs->frameEnded = 0; zcs->allJobsCompleted = 0; if (params.fParams.checksumFlag) XXH64_reset(&zcs->xxhState, 0); return 0; } size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params cctxParams = mtctx->params; DEBUGLOG(5, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize); cctxParams.cParams = params.cParams; cctxParams.fParams = params.fParams; return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dm_auto, NULL, cctxParams, pledgedSrcSize); } size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize) { ZSTD_CCtx_params cctxParams = mtctx->params; cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict); cctxParams.fParams = fParams; if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */ return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dm_auto, cdict, cctxParams, pledgedSrcSize); } /* ZSTDMT_resetCStream() : * pledgedSrcSize can be zero == unknown (for the time being) * prefer using ZSTD_CONTENTSIZE_UNKNOWN, * as `0` might mean "empty" in the future */ size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* zcs, unsigned long long pledgedSrcSize) { if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; if (zcs->params.nbThreads==1) return ZSTD_resetCStream(zcs->cctxPool->cctx[0], pledgedSrcSize); return ZSTDMT_initCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, 0, zcs->params, pledgedSrcSize); } size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0); ZSTD_CCtx_params cctxParams = zcs->params; cctxParams.cParams = params.cParams; cctxParams.fParams = params.fParams; return ZSTDMT_initCStream_internal(zcs, NULL, 0, ZSTD_dm_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN); } static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* zcs, size_t srcSize, unsigned endFrame) { unsigned const jobID = zcs->nextJobID & zcs->jobIDMask; DEBUGLOG(5, "ZSTDMT_createCompressionJob"); DEBUGLOG(5, "preparing job %u to compress %u bytes with %u preload ", zcs->nextJobID, (U32)srcSize, (U32)zcs->dictSize); zcs->jobs[jobID].src = zcs->inBuff.buffer; zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start; zcs->jobs[jobID].srcSize = srcSize; zcs->jobs[jobID].dictSize = zcs->dictSize; assert(zcs->inBuff.filled >= srcSize + zcs->dictSize); zcs->jobs[jobID].params = zcs->params; /* do not calculate checksum within sections, but write it in header for first section */ if (zcs->nextJobID) zcs->jobs[jobID].params.fParams.checksumFlag = 0; zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL; zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize; zcs->jobs[jobID].dstBuff = g_nullBuffer; zcs->jobs[jobID].cctxPool = zcs->cctxPool; zcs->jobs[jobID].bufPool = zcs->bufPool; zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0); zcs->jobs[jobID].lastChunk = endFrame; zcs->jobs[jobID].jobCompleted = 0; zcs->jobs[jobID].dstFlushed = 0; zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex; zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond; if (zcs->params.fParams.checksumFlag) XXH64_update(&zcs->xxhState, (const char*)zcs->inBuff.buffer.start + zcs->dictSize, srcSize); /* get a new buffer for next input */ if (!endFrame) { size_t const newDictSize = MIN(srcSize + zcs->dictSize, zcs->targetDictSize); zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->bufPool); if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */ zcs->jobs[jobID].jobCompleted = 1; zcs->nextJobID++; ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); return ERROR(memory_allocation); } zcs->inBuff.filled -= srcSize + zcs->dictSize - newDictSize; memmove(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->dictSize + srcSize - newDictSize, zcs->inBuff.filled); zcs->dictSize = newDictSize; } else { /* if (endFrame==1) */ zcs->inBuff.buffer = g_nullBuffer; zcs->inBuff.filled = 0; zcs->dictSize = 0; zcs->frameEnded = 1; if (zcs->nextJobID == 0) { /* single chunk exception : checksum is calculated directly within worker thread */ zcs->params.fParams.checksumFlag = 0; } } DEBUGLOG(4, "posting job %u : %u bytes (end:%u) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->jobs[jobID].lastChunk, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask); POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */ zcs->nextJobID++; return 0; } /* ZSTDMT_flushNextJob() : * output : will be updated with amount of data flushed . * blockToFlush : if >0, the function will block and wait if there is no data available to flush . * @return : amount of data remaining within internal buffer, 1 if unknown but > 0, 0 if no more, or an error code */ static size_t ZSTDMT_flushNextJob(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned blockToFlush) { unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask; if (zcs->doneJobID == zcs->nextJobID) return 0; /* all flushed ! */ ZSTD_PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex); while (zcs->jobs[wJobID].jobCompleted==0) { DEBUGLOG(5, "waiting for jobCompleted signal from job %u", zcs->doneJobID); if (!blockToFlush) { ZSTD_pthread_mutex_unlock(&zcs->jobCompleted_mutex); return 0; } /* nothing ready to be flushed => skip */ ZSTD_pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); /* block when nothing available to flush */ } ZSTD_pthread_mutex_unlock(&zcs->jobCompleted_mutex); /* compression job completed : output can be flushed */ { ZSTDMT_jobDescription job = zcs->jobs[wJobID]; if (!job.jobScanned) { if (ZSTD_isError(job.cSize)) { DEBUGLOG(5, "compression error detected "); ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); return job.cSize; } DEBUGLOG(5, "zcs->params.fParams.checksumFlag : %u ", zcs->params.fParams.checksumFlag); if (zcs->params.fParams.checksumFlag) { if (zcs->frameEnded && (zcs->doneJobID+1 == zcs->nextJobID)) { /* write checksum at end of last section */ U32 const checksum = (U32)XXH64_digest(&zcs->xxhState); DEBUGLOG(5, "writing checksum : %08X \n", checksum); MEM_writeLE32((char*)job.dstBuff.start + job.cSize, checksum); job.cSize += 4; zcs->jobs[wJobID].cSize += 4; } } zcs->jobs[wJobID].jobScanned = 1; } { size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos); DEBUGLOG(5, "Flushing %u bytes from job %u ", (U32)toWrite, zcs->doneJobID); memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite); output->pos += toWrite; job.dstFlushed += toWrite; } if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => move to next one */ ZSTDMT_releaseBuffer(zcs->bufPool, job.dstBuff); zcs->jobs[wJobID].dstBuff = g_nullBuffer; zcs->jobs[wJobID].jobCompleted = 0; zcs->doneJobID++; } else { zcs->jobs[wJobID].dstFlushed = job.dstFlushed; } /* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */ if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed); if (zcs->doneJobID < zcs->nextJobID) return 1; /* still some buffer to flush */ zcs->allJobsCompleted = zcs->frameEnded; /* frame completed and entirely flushed */ return 0; /* everything flushed */ } } /** ZSTDMT_compressStream_generic() : * internal use only - exposed to be invoked from zstd_compress.c * assumption : output and input are valid (pos <= size) * @return : minimum amount of data remaining to flush, 0 if none */ size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input, ZSTD_EndDirective endOp) { size_t const newJobThreshold = mtctx->dictSize + mtctx->targetSectionSize; unsigned forwardInputProgress = 0; DEBUGLOG(5, "ZSTDMT_compressStream_generic"); assert(output->pos <= output->size); assert(input->pos <= input->size); if (mtctx->singleThreaded) { /* delegate to single-thread (synchronous) */ return ZSTD_compressStream_generic(mtctx->cctxPool->cctx[0], output, input, endOp); } if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { /* current frame being ended. Only flush/end are allowed */ return ERROR(stage_wrong); } /* single-pass shortcut (note : synchronous-mode) */ if ( (mtctx->nextJobID == 0) /* just started */ && (mtctx->inBuff.filled == 0) /* nothing buffered */ && (endOp == ZSTD_e_end) /* end order */ && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough room */ size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx, (char*)output->dst + output->pos, output->size - output->pos, (const char*)input->src + input->pos, input->size - input->pos, mtctx->cdict, mtctx->params); if (ZSTD_isError(cSize)) return cSize; input->pos = input->size; output->pos += cSize; ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->inBuff.buffer); /* was allocated in initStream */ mtctx->allJobsCompleted = 1; mtctx->frameEnded = 1; return 0; } /* fill input buffer */ if (input->size > input->pos) { /* support NULL input */ if (mtctx->inBuff.buffer.start == NULL) { mtctx->inBuff.buffer = ZSTDMT_getBuffer(mtctx->bufPool); /* note : may fail, in which case, no forward input progress */ mtctx->inBuff.filled = 0; } if (mtctx->inBuff.buffer.start) { size_t const toLoad = MIN(input->size - input->pos, mtctx->inBuffSize - mtctx->inBuff.filled); DEBUGLOG(5, "inBuff:%08X; inBuffSize=%u; ToCopy=%u", (U32)(size_t)mtctx->inBuff.buffer.start, (U32)mtctx->inBuffSize, (U32)toLoad); memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, toLoad); input->pos += toLoad; mtctx->inBuff.filled += toLoad; forwardInputProgress = toLoad>0; } } if ( (mtctx->inBuff.filled >= newJobThreshold) /* filled enough : let's compress */ && (mtctx->nextJobID <= mtctx->doneJobID + mtctx->jobIDMask) ) { /* avoid overwriting job round buffer */ CHECK_F( ZSTDMT_createCompressionJob(mtctx, mtctx->targetSectionSize, 0 /* endFrame */) ); } /* check for potential compressed data ready to be flushed */ CHECK_F( ZSTDMT_flushNextJob(mtctx, output, !forwardInputProgress /* blockToFlush */) ); /* block if there was no forward input progress */ if (input->pos < input->size) /* input not consumed : do not flush yet */ endOp = ZSTD_e_continue; switch(endOp) { case ZSTD_e_flush: return ZSTDMT_flushStream(mtctx, output); case ZSTD_e_end: return ZSTDMT_endStream(mtctx, output); case ZSTD_e_continue: return 1; default: return ERROR(GENERIC); /* invalid endDirective */ } } size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { CHECK_F( ZSTDMT_compressStream_generic(zcs, output, input, ZSTD_e_continue) ); /* recommended next input size : fill current input buffer */ return zcs->inBuffSize - zcs->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */ } static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned endFrame) { size_t const srcSize = mtctx->inBuff.filled - mtctx->dictSize; if ( ((srcSize > 0) || (endFrame && !mtctx->frameEnded)) && (mtctx->nextJobID <= mtctx->doneJobID + mtctx->jobIDMask) ) { CHECK_F( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) ); } /* check if there is any data available to flush */ return ZSTDMT_flushNextJob(mtctx, output, 1 /* blockToFlush */); } size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) { DEBUGLOG(5, "ZSTDMT_flushStream"); if (mtctx->singleThreaded) return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output); return ZSTDMT_flushStream_internal(mtctx, output, 0 /* endFrame */); } size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) { DEBUGLOG(4, "ZSTDMT_endStream"); if (mtctx->singleThreaded) return ZSTD_endStream(mtctx->cctxPool->cctx[0], output); return ZSTDMT_flushStream_internal(mtctx, output, 1 /* endFrame */); }