/** * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. */ /* ====== Tuning parameters ====== */ #define ZSTDMT_NBTHREADS_MAX 128 /* ====== Compiler specifics ====== */ #if defined(_MSC_VER) # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif /* ====== Dependencies ====== */ #include /* malloc */ #include /* memcpy */ #include "pool.h" /* threadpool */ #include "threading.h" /* mutex */ #include "zstd_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ #include "zstdmt_compress.h" /* ====== Debug ====== */ #if 0 # include # include # include static unsigned g_debugLevel = 5; # define DEBUGLOGRAW(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __VA_ARGS__); } # define DEBUGLOG(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __FILE__ ": "); fprintf(stderr, __VA_ARGS__); fprintf(stderr, " \n"); } # define DEBUG_PRINTHEX(l,p,n) { \ unsigned debug_u; \ for (debug_u=0; debug_u<(n); debug_u++) \ DEBUGLOGRAW(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ DEBUGLOGRAW(l, " \n"); \ } static unsigned long long GetCurrentClockTimeMicroseconds(void) { static clock_t _ticksPerSecond = 0; if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); { struct tms junk; clock_t newTicks = (clock_t) times(&junk); return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); } } #define MUTEX_WAIT_TIME_DLEVEL 5 #define PTHREAD_MUTEX_LOCK(mutex) \ if (g_debugLevel>=MUTEX_WAIT_TIME_DLEVEL) { \ unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ pthread_mutex_lock(mutex); \ { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ unsigned long long const elapsedTime = (afterTime-beforeTime); \ if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ elapsedTime, #mutex); \ } } \ } else pthread_mutex_lock(mutex); #else # define DEBUGLOG(l, ...) {} /* disabled */ # define PTHREAD_MUTEX_LOCK(m) pthread_mutex_lock(m) # define DEBUG_PRINTHEX(l,p,n) {} #endif /* ===== Buffer Pool ===== */ typedef struct buffer_s { void* start; size_t size; } buffer_t; static const buffer_t g_nullBuffer = { NULL, 0 }; typedef struct ZSTDMT_bufferPool_s { unsigned totalBuffers; unsigned nbBuffers; buffer_t bTable[1]; /* variable size */ } ZSTDMT_bufferPool; static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads) { unsigned const maxNbBuffers = 2*nbThreads + 2; ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)calloc(1, sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t)); if (bufPool==NULL) return NULL; bufPool->totalBuffers = maxNbBuffers; bufPool->nbBuffers = 0; return bufPool; } static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) { unsigned u; if (!bufPool) return; /* compatibility with free on NULL */ for (u=0; utotalBuffers; u++) free(bufPool->bTable[u].start); free(bufPool); } /* assumption : invocation from main thread only ! */ static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* pool, size_t bSize) { if (pool->nbBuffers) { /* try to use an existing buffer */ buffer_t const buf = pool->bTable[--(pool->nbBuffers)]; size_t const availBufferSize = buf.size; if ((availBufferSize >= bSize) & (availBufferSize <= 10*bSize)) /* large enough, but not too much */ return buf; free(buf.start); /* size conditions not respected : scratch this buffer and create a new one */ } /* create new buffer */ { buffer_t buffer; void* const start = malloc(bSize); if (start==NULL) bSize = 0; buffer.start = start; /* note : start can be NULL if malloc fails ! */ buffer.size = bSize; return buffer; } } /* store buffer for later re-use, up to pool capacity */ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* pool, buffer_t buf) { if (buf.start == NULL) return; /* release on NULL */ if (pool->nbBuffers < pool->totalBuffers) { pool->bTable[pool->nbBuffers++] = buf; /* store for later re-use */ return; } /* Reached bufferPool capacity (should not happen) */ free(buf.start); } /* ===== CCtx Pool ===== */ typedef struct { unsigned totalCCtx; unsigned availCCtx; ZSTD_CCtx* cctx[1]; /* variable size */ } ZSTDMT_CCtxPool; /* assumption : CCtxPool invocation only from main thread */ /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) { unsigned u; for (u=0; utotalCCtx; u++) ZSTD_freeCCtx(pool->cctx[u]); /* note : compatible with free on NULL */ free(pool); } /* ZSTDMT_createCCtxPool() : * implies nbThreads >= 1 , checked by caller ZSTDMT_createCCtx() */ static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads) { ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) calloc(1, sizeof(ZSTDMT_CCtxPool) + (nbThreads-1)*sizeof(ZSTD_CCtx*)); if (!cctxPool) return NULL; cctxPool->totalCCtx = nbThreads; cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ cctxPool->cctx[0] = ZSTD_createCCtx(); if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } DEBUGLOG(1, "cctxPool created, with %u threads", nbThreads); return cctxPool; } static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* pool) { if (pool->availCCtx) { pool->availCCtx--; return pool->cctx[pool->availCCtx]; } return ZSTD_createCCtx(); /* note : can be NULL, when creation fails ! */ } static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) { if (cctx==NULL) return; /* compatibility with release on NULL */ if (pool->availCCtx < pool->totalCCtx) pool->cctx[pool->availCCtx++] = cctx; else /* pool overflow : should not happen, since totalCCtx==nbThreads */ ZSTD_freeCCtx(cctx); } /* ===== Thread worker ===== */ typedef struct { buffer_t buffer; size_t filled; } inBuff_t; typedef struct { ZSTD_CCtx* cctx; buffer_t src; const void* srcStart; size_t srcSize; size_t dictSize; buffer_t dstBuff; size_t cSize; size_t dstFlushed; unsigned firstChunk; unsigned lastChunk; unsigned jobCompleted; unsigned jobScanned; pthread_mutex_t* jobCompleted_mutex; pthread_cond_t* jobCompleted_cond; ZSTD_parameters params; ZSTD_CDict* cdict; unsigned long long fullFrameSize; } ZSTDMT_jobDescription; /* ZSTDMT_compressChunk() : POOL_function type */ void ZSTDMT_compressChunk(void* jobDescription) { ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; const void* const src = (const char*)job->srcStart + job->dictSize; buffer_t const dstBuff = job->dstBuff; DEBUGLOG(3, "job (first:%u) (last:%u) : dictSize %u, srcSize %u", job->firstChunk, job->lastChunk, (U32)job->dictSize, (U32)job->srcSize); if (job->cdict) { /* should only happen for first segment */ size_t const initError = ZSTD_compressBegin_usingCDict_advanced(job->cctx, job->cdict, job->params.fParams, job->fullFrameSize); if (job->cdict) DEBUGLOG(3, "using CDict "); if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; } } else { /* srcStart points at reloaded section */ if (!job->firstChunk) job->params.fParams.contentSizeFlag = 0; /* ensure no srcSize control */ { size_t const dictModeError = ZSTD_setCCtxParameter(job->cctx, ZSTD_p_forceRawDict, 1); /* Force loading dictionary in "content-only" mode (no header analysis) */ size_t const initError = ZSTD_compressBegin_advanced(job->cctx, job->srcStart, job->dictSize, job->params, job->fullFrameSize); if (ZSTD_isError(initError) || ZSTD_isError(dictModeError)) { job->cSize = initError; goto _endJob; } ZSTD_setCCtxParameter(job->cctx, ZSTD_p_forceWindow, 1); } } if (!job->firstChunk) { /* flush and overwrite frame header when it's not first segment */ size_t const hSize = ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, src, 0); if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; } ZSTD_invalidateRepCodes(job->cctx); } DEBUGLOG(4, "Compressing : "); DEBUG_PRINTHEX(4, job->srcStart, 12); job->cSize = (job->lastChunk) ? ZSTD_compressEnd (job->cctx, dstBuff.start, dstBuff.size, src, job->srcSize) : ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, src, job->srcSize); DEBUGLOG(3, "compressed %u bytes into %u bytes (first:%u) (last:%u)", (unsigned)job->srcSize, (unsigned)job->cSize, job->firstChunk, job->lastChunk); DEBUGLOG(5, "dstBuff.size : %u ; => %s", (U32)dstBuff.size, ZSTD_getErrorName(job->cSize)); _endJob: PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex); job->jobCompleted = 1; job->jobScanned = 0; pthread_cond_signal(job->jobCompleted_cond); pthread_mutex_unlock(job->jobCompleted_mutex); } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ struct ZSTDMT_CCtx_s { POOL_ctx* factory; ZSTDMT_bufferPool* buffPool; ZSTDMT_CCtxPool* cctxPool; pthread_mutex_t jobCompleted_mutex; pthread_cond_t jobCompleted_cond; size_t targetSectionSize; size_t marginSize; size_t inBuffSize; size_t dictSize; size_t targetDictSize; inBuff_t inBuff; ZSTD_parameters params; XXH64_state_t xxhState; unsigned nbThreads; unsigned jobIDMask; unsigned doneJobID; unsigned nextJobID; unsigned frameEnded; unsigned allJobsCompleted; unsigned overlapRLog; unsigned long long frameContentSize; size_t sectionSize; ZSTD_CDict* cdict; ZSTD_CStream* cstream; ZSTDMT_jobDescription jobs[1]; /* variable size (must lies at the end) */ }; ZSTDMT_CCtx *ZSTDMT_createCCtx(unsigned nbThreads) { ZSTDMT_CCtx* cctx; U32 const minNbJobs = nbThreads + 2; U32 const nbJobsLog2 = ZSTD_highbit32(minNbJobs) + 1; U32 const nbJobs = 1 << nbJobsLog2; DEBUGLOG(5, "nbThreads : %u ; minNbJobs : %u ; nbJobsLog2 : %u ; nbJobs : %u \n", nbThreads, minNbJobs, nbJobsLog2, nbJobs); if ((nbThreads < 1) | (nbThreads > ZSTDMT_NBTHREADS_MAX)) return NULL; cctx = (ZSTDMT_CCtx*) calloc(1, sizeof(ZSTDMT_CCtx) + nbJobs*sizeof(ZSTDMT_jobDescription)); if (!cctx) return NULL; cctx->nbThreads = nbThreads; cctx->jobIDMask = nbJobs - 1; cctx->allJobsCompleted = 1; cctx->sectionSize = 0; cctx->overlapRLog = 3; cctx->factory = POOL_create(nbThreads, 1); cctx->buffPool = ZSTDMT_createBufferPool(nbThreads); cctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads); if (!cctx->factory | !cctx->buffPool | !cctx->cctxPool) { /* one object was not created */ ZSTDMT_freeCCtx(cctx); return NULL; } if (nbThreads==1) { cctx->cstream = ZSTD_createCStream(); if (!cctx->cstream) { ZSTDMT_freeCCtx(cctx); return NULL; } } pthread_mutex_init(&cctx->jobCompleted_mutex, NULL); /* Todo : check init function return */ pthread_cond_init(&cctx->jobCompleted_cond, NULL); DEBUGLOG(4, "mt_cctx created, for %u threads \n", nbThreads); return cctx; } /* ZSTDMT_releaseAllJobResources() : * Ensure all workers are killed first. */ static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) { unsigned jobID; for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].dstBuff); mtctx->jobs[jobID].dstBuff = g_nullBuffer; ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].src); mtctx->jobs[jobID].src = g_nullBuffer; ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[jobID].cctx); mtctx->jobs[jobID].cctx = NULL; } memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription)); ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->inBuff.buffer); mtctx->inBuff.buffer = g_nullBuffer; mtctx->allJobsCompleted = 1; } size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) { if (mtctx==NULL) return 0; /* compatible with free on NULL */ POOL_free(mtctx->factory); if (!mtctx->allJobsCompleted) ZSTDMT_releaseAllJobResources(mtctx); /* stop workers first */ ZSTDMT_freeBufferPool(mtctx->buffPool); /* release job resources into pools first */ ZSTDMT_freeCCtxPool(mtctx->cctxPool); ZSTD_freeCDict(mtctx->cdict); ZSTD_freeCStream(mtctx->cstream); pthread_mutex_destroy(&mtctx->jobCompleted_mutex); pthread_cond_destroy(&mtctx->jobCompleted_cond); free(mtctx); return 0; } size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSDTMT_parameter parameter, unsigned value) { switch(parameter) { case ZSTDMT_p_sectionSize : mtctx->sectionSize = value; return 0; case ZSTDMT_p_overlapSectionLog : DEBUGLOG(4, "ZSTDMT_p_overlapSectionLog : %u", value); mtctx->overlapRLog = (value >= 9) ? 0 : 9 - value; return 0; default : return ERROR(compressionParameter_unsupported); } } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); U32 const overlapLog = (compressionLevel >= ZSTD_maxCLevel()) ? 0 : 3; size_t const overlapSize = (size_t)1 << (params.cParams.windowLog - overlapLog); size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2); unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + 1; unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads); size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks; size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */ size_t remainingSrcSize = srcSize; const char* const srcStart = (const char*)src; unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbChunks : (unsigned)(dstCapacity / ZSTD_compressBound(avgChunkSize)); /* presumes avgChunkSize >= 256 KB, which should be the case */ size_t frameStartPos = 0, dstBufferPos = 0; DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize); DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize); params.fParams.contentSizeFlag = 1; if (nbChunks==1) { /* fallback to single-thread mode */ ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0]; return ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel); } { unsigned u; for (u=0; ubuffPool, dstBufferCapacity); ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool); size_t dictSize = u ? overlapSize : 0; if ((cctx==NULL) || (dstBuffer.start==NULL)) { mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */ mtctx->jobs[u].jobCompleted = 1; nbChunks = u+1; break; /* let's wait for previous jobs to complete, but don't start new ones */ } mtctx->jobs[u].srcStart = srcStart + frameStartPos - dictSize; mtctx->jobs[u].dictSize = dictSize; mtctx->jobs[u].srcSize = chunkSize; mtctx->jobs[u].fullFrameSize = srcSize; mtctx->jobs[u].params = params; mtctx->jobs[u].dstBuff = dstBuffer; mtctx->jobs[u].cctx = cctx; mtctx->jobs[u].firstChunk = (u==0); mtctx->jobs[u].lastChunk = (u==nbChunks-1); mtctx->jobs[u].jobCompleted = 0; mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex; mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond; DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize); DEBUG_PRINTHEX(3, mtctx->jobs[u].srcStart, 12); POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]); frameStartPos += chunkSize; dstBufferPos += dstBufferCapacity; remainingSrcSize -= chunkSize; } } /* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */ { unsigned chunkID; size_t error = 0, dstPos = 0; for (chunkID=0; chunkIDjobCompleted_mutex); while (mtctx->jobs[chunkID].jobCompleted==0) { DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID); pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex); } pthread_mutex_unlock(&mtctx->jobCompleted_mutex); DEBUGLOG(3, "ready to write chunk %u ", chunkID); ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx); mtctx->jobs[chunkID].cctx = NULL; mtctx->jobs[chunkID].srcStart = NULL; { size_t const cSize = mtctx->jobs[chunkID].cSize; if (ZSTD_isError(cSize)) error = cSize; if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); if (chunkID) { /* note : chunk 0 is already written directly into dst */ if (!error) memmove((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize); /* may overlap if chunk decompressed within dst */ if (chunkID >= compressWithinDst) /* otherwise, it decompresses within dst */ ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff); mtctx->jobs[chunkID].dstBuff = g_nullBuffer; } dstPos += cSize ; } } if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos); return error ? error : dstPos; } } /* ====================================== */ /* ======= Streaming API ======= */ /* ====================================== */ static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* zcs) { while (zcs->doneJobID < zcs->nextJobID) { unsigned const jobID = zcs->doneJobID & zcs->jobIDMask; PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex); while (zcs->jobs[jobID].jobCompleted==0) { DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */ pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); } pthread_mutex_unlock(&zcs->jobCompleted_mutex); zcs->doneJobID++; } } static size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs, const void* dict, size_t dictSize, unsigned updateDict, ZSTD_parameters params, unsigned long long pledgedSrcSize) { ZSTD_customMem const cmem = { NULL, NULL, NULL }; DEBUGLOG(3, "Started new compression, with windowLog : %u", params.cParams.windowLog); if (zcs->nbThreads==1) return ZSTD_initCStream_advanced(zcs->cstream, dict, dictSize, params, pledgedSrcSize); if (zcs->allJobsCompleted == 0) { /* previous job not correctly finished */ ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); zcs->allJobsCompleted = 1; } zcs->params = params; if (updateDict) { ZSTD_freeCDict(zcs->cdict); zcs->cdict = NULL; if (dict && dictSize) { zcs->cdict = ZSTD_createCDict_advanced(dict, dictSize, 0, params, cmem); if (zcs->cdict == NULL) return ERROR(memory_allocation); } } zcs->frameContentSize = pledgedSrcSize; zcs->targetDictSize = (zcs->overlapRLog>=9) ? 0 : (size_t)1 << (zcs->params.cParams.windowLog - zcs->overlapRLog); DEBUGLOG(4, "overlapRLog : %u ", zcs->overlapRLog); DEBUGLOG(3, "overlap Size : %u KB", (U32)(zcs->targetDictSize>>10)); zcs->targetSectionSize = zcs->sectionSize ? zcs->sectionSize : (size_t)1 << (zcs->params.cParams.windowLog + 2); zcs->targetSectionSize = MAX(ZSTDMT_SECTION_SIZE_MIN, zcs->targetSectionSize); zcs->targetSectionSize = MAX(zcs->targetDictSize, zcs->targetSectionSize); DEBUGLOG(3, "Section Size : %u KB", (U32)(zcs->targetSectionSize>>10)); zcs->marginSize = zcs->targetSectionSize >> 2; zcs->inBuffSize = zcs->targetDictSize + zcs->targetSectionSize + zcs->marginSize; zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); if (zcs->inBuff.buffer.start == NULL) return ERROR(memory_allocation); zcs->inBuff.filled = 0; zcs->dictSize = 0; zcs->doneJobID = 0; zcs->nextJobID = 0; zcs->frameEnded = 0; zcs->allJobsCompleted = 0; if (params.fParams.checksumFlag) XXH64_reset(&zcs->xxhState, 0); return 0; } size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* zcs, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize) { return ZSTDMT_initCStream_internal(zcs, dict, dictSize, 1, params, pledgedSrcSize); } /* ZSTDMT_resetCStream() : * pledgedSrcSize is optional and can be zero == unknown */ size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* zcs, unsigned long long pledgedSrcSize) { if (zcs->nbThreads==1) return ZSTD_resetCStream(zcs->cstream, pledgedSrcSize); return ZSTDMT_initCStream_internal(zcs, NULL, 0, 0, zcs->params, pledgedSrcSize); } size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) { ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0); return ZSTDMT_initCStream_internal(zcs, NULL, 0, 1, params, 0); } static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* zcs, size_t srcSize, unsigned endFrame) { size_t const dstBufferCapacity = ZSTD_compressBound(srcSize); buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity); ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool); unsigned const jobID = zcs->nextJobID & zcs->jobIDMask; if ((cctx==NULL) || (dstBuffer.start==NULL)) { zcs->jobs[jobID].jobCompleted = 1; zcs->nextJobID++; ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); return ERROR(memory_allocation); } DEBUGLOG(4, "preparing job %u to compress %u bytes with %u preload ", zcs->nextJobID, (U32)srcSize, (U32)zcs->dictSize); zcs->jobs[jobID].src = zcs->inBuff.buffer; zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start; zcs->jobs[jobID].srcSize = srcSize; zcs->jobs[jobID].dictSize = zcs->dictSize; /* note : zcs->inBuff.filled is presumed >= srcSize + dictSize */ zcs->jobs[jobID].params = zcs->params; if (zcs->nextJobID) zcs->jobs[jobID].params.fParams.checksumFlag = 0; /* do not calculate checksum within sections, just keep it in header for first section */ zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL; zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize; zcs->jobs[jobID].dstBuff = dstBuffer; zcs->jobs[jobID].cctx = cctx; zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0); zcs->jobs[jobID].lastChunk = endFrame; zcs->jobs[jobID].jobCompleted = 0; zcs->jobs[jobID].dstFlushed = 0; zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex; zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond; /* get a new buffer for next input */ if (!endFrame) { size_t const newDictSize = MIN(srcSize + zcs->dictSize, zcs->targetDictSize); zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */ zcs->jobs[jobID].jobCompleted = 1; zcs->nextJobID++; ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); return ERROR(memory_allocation); } DEBUGLOG(5, "inBuff filled to %u", (U32)zcs->inBuff.filled); zcs->inBuff.filled -= srcSize + zcs->dictSize - newDictSize; DEBUGLOG(5, "new job : filled to %u, with %u dict and %u src", (U32)zcs->inBuff.filled, (U32)newDictSize, (U32)(zcs->inBuff.filled - newDictSize)); memmove(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->dictSize + srcSize - newDictSize, zcs->inBuff.filled); DEBUGLOG(5, "new inBuff pre-filled"); zcs->dictSize = newDictSize; } else { zcs->inBuff.buffer = g_nullBuffer; zcs->inBuff.filled = 0; zcs->dictSize = 0; zcs->frameEnded = 1; if (zcs->nextJobID == 0) zcs->params.fParams.checksumFlag = 0; /* single chunk : checksum is calculated directly within worker thread */ } DEBUGLOG(3, "posting job %u : %u bytes (end:%u) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->jobs[jobID].lastChunk, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask); POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */ zcs->nextJobID++; return 0; } /* ZSTDMT_flushNextJob() : * output : will be updated with amount of data flushed . * blockToFlush : if >0, the function will block and wait if there is no data available to flush . * @return : amount of data remaining within internal buffer, 1 if unknown but > 0, 0 if no more, or an error code */ static size_t ZSTDMT_flushNextJob(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned blockToFlush) { unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask; if (zcs->doneJobID == zcs->nextJobID) return 0; /* all flushed ! */ PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex); while (zcs->jobs[wJobID].jobCompleted==0) { DEBUGLOG(5, "waiting for jobCompleted signal from job %u", zcs->doneJobID); if (!blockToFlush) { pthread_mutex_unlock(&zcs->jobCompleted_mutex); return 0; } /* nothing ready to be flushed => skip */ pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); /* block when nothing available to flush */ } pthread_mutex_unlock(&zcs->jobCompleted_mutex); /* compression job completed : output can be flushed */ { ZSTDMT_jobDescription job = zcs->jobs[wJobID]; if (!job.jobScanned) { if (ZSTD_isError(job.cSize)) { DEBUGLOG(5, "compression error detected "); ZSTDMT_waitForAllJobsCompleted(zcs); ZSTDMT_releaseAllJobResources(zcs); return job.cSize; } ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[wJobID].cctx = NULL; DEBUGLOG(5, "zcs->params.fParams.checksumFlag : %u ", zcs->params.fParams.checksumFlag); if (zcs->params.fParams.checksumFlag) { XXH64_update(&zcs->xxhState, (const char*)job.srcStart + job.dictSize, job.srcSize); if (zcs->frameEnded && (zcs->doneJobID+1 == zcs->nextJobID)) { /* write checksum at end of last section */ U32 const checksum = (U32)XXH64_digest(&zcs->xxhState); DEBUGLOG(4, "writing checksum : %08X \n", checksum); MEM_writeLE32((char*)job.dstBuff.start + job.cSize, checksum); job.cSize += 4; zcs->jobs[wJobID].cSize += 4; } } ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[wJobID].srcStart = NULL; zcs->jobs[wJobID].src = g_nullBuffer; zcs->jobs[wJobID].jobScanned = 1; } { size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos); DEBUGLOG(4, "Flushing %u bytes from job %u ", (U32)toWrite, zcs->doneJobID); memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite); output->pos += toWrite; job.dstFlushed += toWrite; } if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => move to next one */ ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[wJobID].dstBuff = g_nullBuffer; zcs->jobs[wJobID].jobCompleted = 0; zcs->doneJobID++; } else { zcs->jobs[wJobID].dstFlushed = job.dstFlushed; } /* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */ if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed); if (zcs->doneJobID < zcs->nextJobID) return 1; /* still some buffer to flush */ zcs->allJobsCompleted = zcs->frameEnded; /* frame completed and entirely flushed */ return 0; /* everything flushed */ } } size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { size_t const newJobThreshold = zcs->dictSize + zcs->targetSectionSize + zcs->marginSize; if (zcs->frameEnded) return ERROR(stage_wrong); /* current frame being ended. Only flush is allowed. Restart with init */ if (zcs->nbThreads==1) return ZSTD_compressStream(zcs->cstream, output, input); /* fill input buffer */ { size_t const toLoad = MIN(input->size - input->pos, zcs->inBuffSize - zcs->inBuff.filled); memcpy((char*)zcs->inBuff.buffer.start + zcs->inBuff.filled, input->src, toLoad); input->pos += toLoad; zcs->inBuff.filled += toLoad; } if ( (zcs->inBuff.filled >= newJobThreshold) /* filled enough : let's compress */ && (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) { /* avoid overwriting job round buffer */ CHECK_F( ZSTDMT_createCompressionJob(zcs, zcs->targetSectionSize, 0) ); } /* check for data to flush */ CHECK_F( ZSTDMT_flushNextJob(zcs, output, (zcs->inBuff.filled == zcs->inBuffSize)) ); /* block if it wasn't possible to create new job due to saturation */ /* recommended next input size : fill current input buffer */ return zcs->inBuffSize - zcs->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */ } static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned endFrame) { size_t const srcSize = zcs->inBuff.filled - zcs->dictSize; if (srcSize) DEBUGLOG(4, "flushing : %u bytes left to compress", (U32)srcSize); if ( ((srcSize > 0) || (endFrame && !zcs->frameEnded)) && (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) { CHECK_F( ZSTDMT_createCompressionJob(zcs, srcSize, endFrame) ); } /* check if there is any data available to flush */ DEBUGLOG(5, "zcs->doneJobID : %u ; zcs->nextJobID : %u ", zcs->doneJobID, zcs->nextJobID); return ZSTDMT_flushNextJob(zcs, output, 1); } size_t ZSTDMT_flushStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output) { if (zcs->nbThreads==1) return ZSTD_flushStream(zcs->cstream, output); return ZSTDMT_flushStream_internal(zcs, output, 0); } size_t ZSTDMT_endStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output) { if (zcs->nbThreads==1) return ZSTD_endStream(zcs->cstream, output); return ZSTDMT_flushStream_internal(zcs, output, 1); }