/* * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* ************************************* * Compiler Options ***************************************/ #ifdef _MSC_VER /* Visual */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4204) /* non-constant aggregate initializer */ #endif #if defined(__MINGW32__) && !defined(_POSIX_SOURCE) # define _POSIX_SOURCE 1 /* disable %llu warnings with MinGW on Windows */ #endif #if defined(__linux__) || (defined(__APPLE__) && defined(__MACH__)) # define BACKTRACES_ENABLE 1 #endif /*-************************************* * Includes ***************************************/ #include "platform.h" /* Large Files support, SET_BINARY_MODE */ #include "util.h" /* UTIL_getFileSize, UTIL_isRegularFile */ #include /* fprintf, fopen, fread, _fileno, stdin, stdout */ #include /* malloc, free */ #include /* strcmp, strlen */ #include /* errno */ #include #ifdef BACKTRACES_ENABLE # include /* backtrace, backtrace_symbols */ #endif #if defined (_MSC_VER) # include # include #endif #include "debug.h" #include "mem.h" #include "fileio.h" #include "util.h" #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_magicNumber, ZSTD_frameHeaderSize_max */ #include "zstd.h" #include "zstd_errors.h" /* ZSTD_error_frameParameter_windowTooLarge */ #if defined(ZSTD_GZCOMPRESS) || defined(ZSTD_GZDECOMPRESS) # include # if !defined(z_const) # define z_const # endif #endif #if defined(ZSTD_LZMACOMPRESS) || defined(ZSTD_LZMADECOMPRESS) # include #endif #define LZ4_MAGICNUMBER 0x184D2204 #if defined(ZSTD_LZ4COMPRESS) || defined(ZSTD_LZ4DECOMPRESS) # define LZ4F_ENABLE_OBSOLETE_ENUMS # include # include #endif /*-************************************* * Constants ***************************************/ #define KB *(1<<10) #define MB *(1<<20) #define GB *(1U<<30) #define ADAPT_WINDOWLOG_DEFAULT 23 /* 8 MB */ #define DICTSIZE_MAX (32 MB) /* protection against large input (attack scenario) */ #define FNSPACE 30 /*-************************************* * Macros ***************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYOUT(...) fprintf(stdout, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } } static int g_displayLevel = 2; /* 0 : no display; 1: errors; 2: + result + interaction + warnings; 3: + progression; 4: + information */ void FIO_setNotificationLevel(unsigned level) { g_displayLevel=level; } static const U64 g_refreshRate = SEC_TO_MICRO / 6; static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER; #define READY_FOR_UPDATE() (UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) #define DELAY_NEXT_UPDATE() { g_displayClock = UTIL_getTime(); } #define DISPLAYUPDATE(l, ...) { \ if (g_displayLevel>=l) { \ if (READY_FOR_UPDATE() || (g_displayLevel>=4)) { \ DELAY_NEXT_UPDATE(); \ DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stderr); \ } } } #undef MIN /* in case it would be already defined */ #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define EXM_THROW(error, ...) \ { \ DISPLAYLEVEL(1, "zstd: "); \ DEBUGLOG(1, "Error defined at %s, line %i : \n", __FILE__, __LINE__); \ DISPLAYLEVEL(1, "error %i : ", error); \ DISPLAYLEVEL(1, __VA_ARGS__); \ DISPLAYLEVEL(1, " \n"); \ exit(error); \ } #define CHECK_V(v, f) \ v = f; \ if (ZSTD_isError(v)) { \ DEBUGLOG(1, "%s \n", #f); \ EXM_THROW(11, "%s", ZSTD_getErrorName(v)); \ } #define CHECK(f) { size_t err; CHECK_V(err, f); } /*-************************************ * Signal (Ctrl-C trapping) **************************************/ static const char* g_artefact = NULL; static void INThandler(int sig) { assert(sig==SIGINT); (void)sig; #if !defined(_MSC_VER) signal(sig, SIG_IGN); /* this invocation generates a buggy warning in Visual Studio */ #endif if (g_artefact) { assert(UTIL_isRegularFile(g_artefact)); remove(g_artefact); } DISPLAY("\n"); exit(2); } static void addHandler(char const* dstFileName) { if (UTIL_isRegularFile(dstFileName)) { g_artefact = dstFileName; signal(SIGINT, INThandler); } else { g_artefact = NULL; } } /* Idempotent */ static void clearHandler(void) { if (g_artefact) signal(SIGINT, SIG_DFL); g_artefact = NULL; } /*-********************************************************* * Termination signal trapping (Print debug stack trace) ***********************************************************/ #ifdef BACKTRACES_ENABLE #define MAX_STACK_FRAMES 50 static void ABRThandler(int sig) { const char* name; void* addrlist[MAX_STACK_FRAMES]; char** symbollist; U32 addrlen, i; switch (sig) { case SIGABRT: name = "SIGABRT"; break; case SIGFPE: name = "SIGFPE"; break; case SIGILL: name = "SIGILL"; break; case SIGINT: name = "SIGINT"; break; case SIGSEGV: name = "SIGSEGV"; break; default: name = "UNKNOWN"; } DISPLAY("Caught %s signal, printing stack:\n", name); /* Retrieve current stack addresses. */ addrlen = backtrace(addrlist, MAX_STACK_FRAMES); if (addrlen == 0) { DISPLAY("\n"); return; } /* Create readable strings to each frame. */ symbollist = backtrace_symbols(addrlist, addrlen); /* Print the stack trace, excluding calls handling the signal. */ for (i = ZSTD_START_SYMBOLLIST_FRAME; i < addrlen; i++) { DISPLAY("%s\n", symbollist[i]); } free(symbollist); /* Reset and raise the signal so default handler runs. */ signal(sig, SIG_DFL); raise(sig); } #endif void FIO_addAbortHandler() { #ifdef BACKTRACES_ENABLE signal(SIGABRT, ABRThandler); signal(SIGFPE, ABRThandler); signal(SIGILL, ABRThandler); signal(SIGSEGV, ABRThandler); signal(SIGBUS, ABRThandler); #endif } /*-************************************************************ * Avoid fseek()'s 2GiB barrier with MSVC, macOS, *BSD, MinGW ***************************************************************/ #if defined(_MSC_VER) && _MSC_VER >= 1400 # define LONG_SEEK _fseeki64 #elif !defined(__64BIT__) && (PLATFORM_POSIX_VERSION >= 200112L) /* No point defining Large file for 64 bit */ # define LONG_SEEK fseeko #elif defined(__MINGW32__) && !defined(__STRICT_ANSI__) && !defined(__NO_MINGW_LFS) && defined(__MSVCRT__) # define LONG_SEEK fseeko64 #elif defined(_WIN32) && !defined(__DJGPP__) # include static int LONG_SEEK(FILE* file, __int64 offset, int origin) { LARGE_INTEGER off; DWORD method; off.QuadPart = offset; if (origin == SEEK_END) method = FILE_END; else if (origin == SEEK_CUR) method = FILE_CURRENT; else method = FILE_BEGIN; if (SetFilePointerEx((HANDLE) _get_osfhandle(_fileno(file)), off, NULL, method)) return 0; else return -1; } #else # define LONG_SEEK fseek #endif /*-************************************* * Local Parameters - Not thread safe ***************************************/ static FIO_compressionType_t g_compressionType = FIO_zstdCompression; void FIO_setCompressionType(FIO_compressionType_t compressionType) { g_compressionType = compressionType; } static U32 g_overwrite = 0; void FIO_overwriteMode(void) { g_overwrite=1; } static U32 g_sparseFileSupport = 1; /* 0: no sparse allowed; 1: auto (file yes, stdout no); 2: force sparse */ void FIO_setSparseWrite(unsigned sparse) { g_sparseFileSupport=sparse; } static U32 g_dictIDFlag = 1; void FIO_setDictIDFlag(unsigned dictIDFlag) { g_dictIDFlag = dictIDFlag; } static U32 g_checksumFlag = 1; void FIO_setChecksumFlag(unsigned checksumFlag) { g_checksumFlag = checksumFlag; } static U32 g_removeSrcFile = 0; void FIO_setRemoveSrcFile(unsigned flag) { g_removeSrcFile = (flag>0); } static U32 g_memLimit = 0; void FIO_setMemLimit(unsigned memLimit) { g_memLimit = memLimit; } static U32 g_nbWorkers = 1; void FIO_setNbWorkers(unsigned nbWorkers) { #ifndef ZSTD_MULTITHREAD if (nbWorkers > 0) DISPLAYLEVEL(2, "Note : multi-threading is disabled \n"); #endif g_nbWorkers = nbWorkers; } static U32 g_blockSize = 0; void FIO_setBlockSize(unsigned blockSize) { if (blockSize && g_nbWorkers==0) DISPLAYLEVEL(2, "Setting block size is useless in single-thread mode \n"); g_blockSize = blockSize; } #define FIO_OVERLAP_LOG_NOTSET 9999 static U32 g_overlapLog = FIO_OVERLAP_LOG_NOTSET; void FIO_setOverlapLog(unsigned overlapLog){ if (overlapLog && g_nbWorkers==0) DISPLAYLEVEL(2, "Setting overlapLog is useless in single-thread mode \n"); g_overlapLog = overlapLog; } static U32 g_adaptiveMode = 0; void FIO_setAdaptiveMode(unsigned adapt) { if ((adapt>0) && (g_nbWorkers==0)) EXM_THROW(1, "Adaptive mode is not compatible with single thread mode \n"); g_adaptiveMode = adapt; } static U32 g_ldmFlag = 0; void FIO_setLdmFlag(unsigned ldmFlag) { g_ldmFlag = (ldmFlag>0); } static U32 g_ldmHashLog = 0; void FIO_setLdmHashLog(unsigned ldmHashLog) { g_ldmHashLog = ldmHashLog; } static U32 g_ldmMinMatch = 0; void FIO_setLdmMinMatch(unsigned ldmMinMatch) { g_ldmMinMatch = ldmMinMatch; } #define FIO_LDM_PARAM_NOTSET 9999 static U32 g_ldmBucketSizeLog = FIO_LDM_PARAM_NOTSET; void FIO_setLdmBucketSizeLog(unsigned ldmBucketSizeLog) { g_ldmBucketSizeLog = ldmBucketSizeLog; } static U32 g_ldmHashEveryLog = FIO_LDM_PARAM_NOTSET; void FIO_setLdmHashEveryLog(unsigned ldmHashEveryLog) { g_ldmHashEveryLog = ldmHashEveryLog; } /*-************************************* * Functions ***************************************/ /** FIO_remove() : * @result : Unlink `fileName`, even if it's read-only */ static int FIO_remove(const char* path) { if (!UTIL_isRegularFile(path)) { DISPLAYLEVEL(2, "zstd: Refusing to remove non-regular file %s\n", path); return 0; } #if defined(_WIN32) || defined(WIN32) /* windows doesn't allow remove read-only files, * so try to make it writable first */ chmod(path, _S_IWRITE); #endif return remove(path); } /** FIO_openSrcFile() : * condition : `srcFileName` must be non-NULL. * @result : FILE* to `srcFileName`, or NULL if it fails */ static FILE* FIO_openSrcFile(const char* srcFileName) { assert(srcFileName != NULL); if (!strcmp (srcFileName, stdinmark)) { DISPLAYLEVEL(4,"Using stdin for input\n"); SET_BINARY_MODE(stdin); return stdin; } if (!UTIL_isRegularFile(srcFileName)) { DISPLAYLEVEL(1, "zstd: %s is not a regular file -- ignored \n", srcFileName); return NULL; } { FILE* const f = fopen(srcFileName, "rb"); if (f == NULL) DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); return f; } } /** FIO_openDstFile() : * condition : `dstFileName` must be non-NULL. * @result : FILE* to `dstFileName`, or NULL if it fails */ static FILE* FIO_openDstFile(const char* dstFileName) { assert(dstFileName != NULL); if (!strcmp (dstFileName, stdoutmark)) { DISPLAYLEVEL(4,"Using stdout for output\n"); SET_BINARY_MODE(stdout); if (g_sparseFileSupport==1) { g_sparseFileSupport = 0; DISPLAYLEVEL(4, "Sparse File Support is automatically disabled on stdout ; try --sparse \n"); } return stdout; } if (g_sparseFileSupport == 1) { g_sparseFileSupport = ZSTD_SPARSE_DEFAULT; } if (UTIL_isRegularFile(dstFileName)) { FILE* fCheck; if (!strcmp(dstFileName, nulmark)) { EXM_THROW(40, "%s is unexpectedly a regular file", dstFileName); } /* Check if destination file already exists */ fCheck = fopen( dstFileName, "rb" ); if (fCheck != NULL) { /* dst file exists, authorization prompt */ fclose(fCheck); if (!g_overwrite) { if (g_displayLevel <= 1) { /* No interaction possible */ DISPLAY("zstd: %s already exists; not overwritten \n", dstFileName); return NULL; } DISPLAY("zstd: %s already exists; overwrite (y/N) ? ", dstFileName); { int ch = getchar(); if ((ch!='Y') && (ch!='y')) { DISPLAY(" not overwritten \n"); return NULL; } /* flush rest of input line */ while ((ch!=EOF) && (ch!='\n')) ch = getchar(); } } /* need to unlink */ FIO_remove(dstFileName); } } { FILE* const f = fopen( dstFileName, "wb" ); if (f == NULL) DISPLAYLEVEL(1, "zstd: %s: %s\n", dstFileName, strerror(errno)); return f; } } /*! FIO_createDictBuffer() : * creates a buffer, pointed by `*bufferPtr`, * loads `filename` content into it, up to DICTSIZE_MAX bytes. * @return : loaded size * if fileName==NULL, returns 0 and a NULL pointer */ static size_t FIO_createDictBuffer(void** bufferPtr, const char* fileName) { FILE* fileHandle; U64 fileSize; assert(bufferPtr != NULL); *bufferPtr = NULL; if (fileName == NULL) return 0; DISPLAYLEVEL(4,"Loading %s as dictionary \n", fileName); fileHandle = fopen(fileName, "rb"); if (fileHandle==NULL) EXM_THROW(31, "%s: %s", fileName, strerror(errno)); fileSize = UTIL_getFileSize(fileName); if (fileSize > DICTSIZE_MAX) { EXM_THROW(32, "Dictionary file %s is too large (> %u MB)", fileName, DICTSIZE_MAX >> 20); /* avoid extreme cases */ } *bufferPtr = malloc((size_t)fileSize); if (*bufferPtr==NULL) EXM_THROW(34, "%s", strerror(errno)); { size_t const readSize = fread(*bufferPtr, 1, (size_t)fileSize, fileHandle); if (readSize!=fileSize) EXM_THROW(35, "Error reading dictionary file %s", fileName); } fclose(fileHandle); return (size_t)fileSize; } #ifndef ZSTD_NOCOMPRESS /* ********************************************************************** * Compression ************************************************************************/ typedef struct { FILE* srcFile; FILE* dstFile; void* srcBuffer; size_t srcBufferSize; void* dstBuffer; size_t dstBufferSize; ZSTD_CStream* cctx; } cRess_t; static cRess_t FIO_createCResources(const char* dictFileName, int cLevel, U64 srcSize, ZSTD_compressionParameters comprParams) { cRess_t ress; memset(&ress, 0, sizeof(ress)); DISPLAYLEVEL(6, "FIO_createCResources \n"); ress.cctx = ZSTD_createCCtx(); if (ress.cctx == NULL) EXM_THROW(30, "allocation error : can't create ZSTD_CCtx"); ress.srcBufferSize = ZSTD_CStreamInSize(); ress.srcBuffer = malloc(ress.srcBufferSize); ress.dstBufferSize = ZSTD_CStreamOutSize(); ress.dstBuffer = malloc(ress.dstBufferSize); if (!ress.srcBuffer || !ress.dstBuffer) EXM_THROW(31, "allocation error : not enough memory"); /* Advanced parameters, including dictionary */ { void* dictBuffer; size_t const dictBuffSize = FIO_createDictBuffer(&dictBuffer, dictFileName); /* works with dictFileName==NULL */ if (dictFileName && (dictBuffer==NULL)) EXM_THROW(32, "allocation error : can't create dictBuffer"); if (g_adaptiveMode && !g_ldmFlag && !comprParams.windowLog) comprParams.windowLog = ADAPT_WINDOWLOG_DEFAULT; CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_contentSizeFlag, 1) ); /* always enable content size when available (note: supposed to be default) */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_dictIDFlag, g_dictIDFlag) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_checksumFlag, g_checksumFlag) ); /* compression level */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_compressionLevel, (unsigned)cLevel) ); /* long distance matching */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_enableLongDistanceMatching, g_ldmFlag) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_ldmHashLog, g_ldmHashLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_ldmMinMatch, g_ldmMinMatch) ); if (g_ldmBucketSizeLog != FIO_LDM_PARAM_NOTSET) { CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_ldmBucketSizeLog, g_ldmBucketSizeLog) ); } if (g_ldmHashEveryLog != FIO_LDM_PARAM_NOTSET) { CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_ldmHashEveryLog, g_ldmHashEveryLog) ); } /* compression parameters */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_windowLog, comprParams.windowLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_chainLog, comprParams.chainLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_hashLog, comprParams.hashLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_searchLog, comprParams.searchLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_minMatch, comprParams.searchLength) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_targetLength, comprParams.targetLength) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_compressionStrategy, (U32)comprParams.strategy) ); /* multi-threading */ #ifdef ZSTD_MULTITHREAD DISPLAYLEVEL(5,"set nb workers = %u \n", g_nbWorkers); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_nbWorkers, g_nbWorkers) ); if ( (g_overlapLog == FIO_OVERLAP_LOG_NOTSET) && (cLevel == ZSTD_maxCLevel()) ) g_overlapLog = 9; /* full overlap */ if (g_overlapLog != FIO_OVERLAP_LOG_NOTSET) { DISPLAYLEVEL(3,"set overlapLog = %u \n", g_overlapLog); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_overlapSizeLog, g_overlapLog) ); } #endif /* dictionary */ CHECK( ZSTD_CCtx_setPledgedSrcSize(ress.cctx, srcSize) ); /* set the value temporarily for dictionary loading, to adapt compression parameters */ CHECK( ZSTD_CCtx_loadDictionary(ress.cctx, dictBuffer, dictBuffSize) ); CHECK( ZSTD_CCtx_setPledgedSrcSize(ress.cctx, ZSTD_CONTENTSIZE_UNKNOWN) ); /* reset */ free(dictBuffer); } return ress; } static void FIO_freeCResources(cRess_t ress) { free(ress.srcBuffer); free(ress.dstBuffer); ZSTD_freeCStream(ress.cctx); /* never fails */ } #ifdef ZSTD_GZCOMPRESS static unsigned long long FIO_compressGzFrame(cRess_t* ress, const char* srcFileName, U64 const srcFileSize, int compressionLevel, U64* readsize) { unsigned long long inFileSize = 0, outFileSize = 0; z_stream strm; int ret; if (compressionLevel > Z_BEST_COMPRESSION) compressionLevel = Z_BEST_COMPRESSION; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; ret = deflateInit2(&strm, compressionLevel, Z_DEFLATED, 15 /* maxWindowLogSize */ + 16 /* gzip only */, 8, Z_DEFAULT_STRATEGY); /* see http://www.zlib.net/manual.html */ if (ret != Z_OK) EXM_THROW(71, "zstd: %s: deflateInit2 error %d \n", srcFileName, ret); strm.next_in = 0; strm.avail_in = 0; strm.next_out = (Bytef*)ress->dstBuffer; strm.avail_out = (uInt)ress->dstBufferSize; while (1) { if (strm.avail_in == 0) { size_t const inSize = fread(ress->srcBuffer, 1, ress->srcBufferSize, ress->srcFile); if (inSize == 0) break; inFileSize += inSize; strm.next_in = (z_const unsigned char*)ress->srcBuffer; strm.avail_in = (uInt)inSize; } ret = deflate(&strm, Z_NO_FLUSH); if (ret != Z_OK) EXM_THROW(72, "zstd: %s: deflate error %d \n", srcFileName, ret); { size_t const decompBytes = ress->dstBufferSize - strm.avail_out; if (decompBytes) { if (fwrite(ress->dstBuffer, 1, decompBytes, ress->dstFile) != decompBytes) EXM_THROW(73, "Write error : cannot write to output file"); outFileSize += decompBytes; strm.next_out = (Bytef*)ress->dstBuffer; strm.avail_out = (uInt)ress->dstBufferSize; } } if (srcFileSize == UTIL_FILESIZE_UNKNOWN) DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%%", (U32)(inFileSize>>20), (double)outFileSize/inFileSize*100) else DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%%", (U32)(inFileSize>>20), (U32)(srcFileSize>>20), (double)outFileSize/inFileSize*100); } while (1) { ret = deflate(&strm, Z_FINISH); { size_t const decompBytes = ress->dstBufferSize - strm.avail_out; if (decompBytes) { if (fwrite(ress->dstBuffer, 1, decompBytes, ress->dstFile) != decompBytes) EXM_THROW(75, "Write error : cannot write to output file"); outFileSize += decompBytes; strm.next_out = (Bytef*)ress->dstBuffer; strm.avail_out = (uInt)ress->dstBufferSize; } } if (ret == Z_STREAM_END) break; if (ret != Z_BUF_ERROR) EXM_THROW(77, "zstd: %s: deflate error %d \n", srcFileName, ret); } ret = deflateEnd(&strm); if (ret != Z_OK) EXM_THROW(79, "zstd: %s: deflateEnd error %d \n", srcFileName, ret); *readsize = inFileSize; return outFileSize; } #endif #ifdef ZSTD_LZMACOMPRESS static unsigned long long FIO_compressLzmaFrame(cRess_t* ress, const char* srcFileName, U64 const srcFileSize, int compressionLevel, U64* readsize, int plain_lzma) { unsigned long long inFileSize = 0, outFileSize = 0; lzma_stream strm = LZMA_STREAM_INIT; lzma_action action = LZMA_RUN; lzma_ret ret; if (compressionLevel < 0) compressionLevel = 0; if (compressionLevel > 9) compressionLevel = 9; if (plain_lzma) { lzma_options_lzma opt_lzma; if (lzma_lzma_preset(&opt_lzma, compressionLevel)) EXM_THROW(71, "zstd: %s: lzma_lzma_preset error", srcFileName); ret = lzma_alone_encoder(&strm, &opt_lzma); /* LZMA */ if (ret != LZMA_OK) EXM_THROW(71, "zstd: %s: lzma_alone_encoder error %d", srcFileName, ret); } else { ret = lzma_easy_encoder(&strm, compressionLevel, LZMA_CHECK_CRC64); /* XZ */ if (ret != LZMA_OK) EXM_THROW(71, "zstd: %s: lzma_easy_encoder error %d", srcFileName, ret); } strm.next_in = 0; strm.avail_in = 0; strm.next_out = (BYTE*)ress->dstBuffer; strm.avail_out = ress->dstBufferSize; while (1) { if (strm.avail_in == 0) { size_t const inSize = fread(ress->srcBuffer, 1, ress->srcBufferSize, ress->srcFile); if (inSize == 0) action = LZMA_FINISH; inFileSize += inSize; strm.next_in = (BYTE const*)ress->srcBuffer; strm.avail_in = inSize; } ret = lzma_code(&strm, action); if (ret != LZMA_OK && ret != LZMA_STREAM_END) EXM_THROW(72, "zstd: %s: lzma_code encoding error %d", srcFileName, ret); { size_t const compBytes = ress->dstBufferSize - strm.avail_out; if (compBytes) { if (fwrite(ress->dstBuffer, 1, compBytes, ress->dstFile) != compBytes) EXM_THROW(73, "Write error : cannot write to output file"); outFileSize += compBytes; strm.next_out = (BYTE*)ress->dstBuffer; strm.avail_out = ress->dstBufferSize; } } if (srcFileSize == UTIL_FILESIZE_UNKNOWN) DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%%", (U32)(inFileSize>>20), (double)outFileSize/inFileSize*100) else DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%%", (U32)(inFileSize>>20), (U32)(srcFileSize>>20), (double)outFileSize/inFileSize*100); if (ret == LZMA_STREAM_END) break; } lzma_end(&strm); *readsize = inFileSize; return outFileSize; } #endif #ifdef ZSTD_LZ4COMPRESS #if LZ4_VERSION_NUMBER <= 10600 #define LZ4F_blockLinked blockLinked #define LZ4F_max64KB max64KB #endif static int FIO_LZ4_GetBlockSize_FromBlockId (int id) { return (1 << (8 + (2 * id))); } static unsigned long long FIO_compressLz4Frame(cRess_t* ress, const char* srcFileName, U64 const srcFileSize, int compressionLevel, U64* readsize) { const size_t blockSize = FIO_LZ4_GetBlockSize_FromBlockId(LZ4F_max64KB); unsigned long long inFileSize = 0, outFileSize = 0; LZ4F_preferences_t prefs; LZ4F_compressionContext_t ctx; LZ4F_errorCode_t const errorCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION); if (LZ4F_isError(errorCode)) EXM_THROW(31, "zstd: failed to create lz4 compression context"); memset(&prefs, 0, sizeof(prefs)); assert(blockSize <= ress->srcBufferSize); prefs.autoFlush = 1; prefs.compressionLevel = compressionLevel; prefs.frameInfo.blockMode = LZ4F_blockLinked; prefs.frameInfo.blockSizeID = LZ4F_max64KB; prefs.frameInfo.contentChecksumFlag = (contentChecksum_t)g_checksumFlag; #if LZ4_VERSION_NUMBER >= 10600 prefs.frameInfo.contentSize = (srcFileSize==UTIL_FILESIZE_UNKNOWN) ? 0 : srcFileSize; #endif assert(LZ4F_compressBound(blockSize, &prefs) <= ress->dstBufferSize); { size_t readSize; size_t headerSize = LZ4F_compressBegin(ctx, ress->dstBuffer, ress->dstBufferSize, &prefs); if (LZ4F_isError(headerSize)) EXM_THROW(33, "File header generation failed : %s", LZ4F_getErrorName(headerSize)); if (fwrite(ress->dstBuffer, 1, headerSize, ress->dstFile) != headerSize) EXM_THROW(34, "Write error : cannot write header"); outFileSize += headerSize; /* Read first block */ readSize = fread(ress->srcBuffer, (size_t)1, (size_t)blockSize, ress->srcFile); inFileSize += readSize; /* Main Loop */ while (readSize>0) { size_t outSize; /* Compress Block */ outSize = LZ4F_compressUpdate(ctx, ress->dstBuffer, ress->dstBufferSize, ress->srcBuffer, readSize, NULL); if (LZ4F_isError(outSize)) EXM_THROW(35, "zstd: %s: lz4 compression failed : %s", srcFileName, LZ4F_getErrorName(outSize)); outFileSize += outSize; if (srcFileSize == UTIL_FILESIZE_UNKNOWN) DISPLAYUPDATE(2, "\rRead : %u MB ==> %.2f%%", (U32)(inFileSize>>20), (double)outFileSize/inFileSize*100) else DISPLAYUPDATE(2, "\rRead : %u / %u MB ==> %.2f%%", (U32)(inFileSize>>20), (U32)(srcFileSize>>20), (double)outFileSize/inFileSize*100); /* Write Block */ { size_t const sizeCheck = fwrite(ress->dstBuffer, 1, outSize, ress->dstFile); if (sizeCheck!=outSize) EXM_THROW(36, "Write error : cannot write compressed block"); } /* Read next block */ readSize = fread(ress->srcBuffer, (size_t)1, (size_t)blockSize, ress->srcFile); inFileSize += readSize; } if (ferror(ress->srcFile)) EXM_THROW(37, "Error reading %s ", srcFileName); /* End of Stream mark */ headerSize = LZ4F_compressEnd(ctx, ress->dstBuffer, ress->dstBufferSize, NULL); if (LZ4F_isError(headerSize)) EXM_THROW(38, "zstd: %s: lz4 end of file generation failed : %s", srcFileName, LZ4F_getErrorName(headerSize)); { size_t const sizeCheck = fwrite(ress->dstBuffer, 1, headerSize, ress->dstFile); if (sizeCheck!=headerSize) EXM_THROW(39, "Write error : cannot write end of stream"); } outFileSize += headerSize; } *readsize = inFileSize; LZ4F_freeCompressionContext(ctx); return outFileSize; } #endif static unsigned long long FIO_compressZstdFrame(const cRess_t* ressPtr, const char* srcFileName, U64 fileSize, int compressionLevel, U64* readsize) { cRess_t const ress = *ressPtr; FILE* const srcFile = ress.srcFile; FILE* const dstFile = ress.dstFile; U64 compressedfilesize = 0; ZSTD_EndDirective directive = ZSTD_e_continue; /* stats */ ZSTD_frameProgression previous_zfp_update = { 0, 0, 0, 0, 0, 0 }; ZSTD_frameProgression previous_zfp_correction = { 0, 0, 0, 0, 0, 0 }; typedef enum { noChange, slower, faster } speedChange_e; speedChange_e speedChange = noChange; unsigned flushWaiting = 0; unsigned inputPresented = 0; unsigned inputBlocked = 0; unsigned lastJobID = 0; DISPLAYLEVEL(6, "compression using zstd format \n"); /* init */ if (fileSize != UTIL_FILESIZE_UNKNOWN) { CHECK(ZSTD_CCtx_setPledgedSrcSize(ress.cctx, fileSize)); } (void)srcFileName; /* Main compression loop */ do { size_t stillToFlush; /* Fill input Buffer */ size_t const inSize = fread(ress.srcBuffer, (size_t)1, ress.srcBufferSize, srcFile); ZSTD_inBuffer inBuff = { ress.srcBuffer, inSize, 0 }; DISPLAYLEVEL(6, "fread %u bytes from source \n", (U32)inSize); *readsize += inSize; if ((inSize == 0) || (*readsize == fileSize)) directive = ZSTD_e_end; stillToFlush = 1; while ((inBuff.pos != inBuff.size) /* input buffer must be entirely ingested */ || (directive == ZSTD_e_end && stillToFlush != 0) ) { size_t const oldIPos = inBuff.pos; ZSTD_outBuffer outBuff = { ress.dstBuffer, ress.dstBufferSize, 0 }; size_t const toFlushNow = ZSTD_toFlushNow(ress.cctx); CHECK_V(stillToFlush, ZSTD_compress_generic(ress.cctx, &outBuff, &inBuff, directive)); /* count stats */ inputPresented++; if (oldIPos == inBuff.pos) inputBlocked++; /* input buffer is full and can't take any more : input speed is faster than consumption rate */ if (!toFlushNow) flushWaiting = 1; /* Write compressed stream */ DISPLAYLEVEL(6, "ZSTD_compress_generic(end:%u) => input pos(%u)<=(%u)size ; output generated %u bytes \n", (U32)directive, (U32)inBuff.pos, (U32)inBuff.size, (U32)outBuff.pos); if (outBuff.pos) { size_t const sizeCheck = fwrite(ress.dstBuffer, 1, outBuff.pos, dstFile); if (sizeCheck != outBuff.pos) EXM_THROW(25, "Write error : cannot write compressed block"); compressedfilesize += outBuff.pos; } /* display notification; and adapt compression level */ if (READY_FOR_UPDATE()) { ZSTD_frameProgression const zfp = ZSTD_getFrameProgression(ress.cctx); double const cShare = (double)zfp.produced / (zfp.consumed + !zfp.consumed/*avoid div0*/) * 100; /* display progress notifications */ if (g_displayLevel >= 3) { DISPLAYUPDATE(3, "\r(L%i) Buffered :%4u MB - Consumed :%4u MB - Compressed :%4u MB => %.2f%% ", compressionLevel, (U32)((zfp.ingested - zfp.consumed) >> 20), (U32)(zfp.consumed >> 20), (U32)(zfp.produced >> 20), cShare ); } else { /* summarized notifications if == 2; */ DISPLAYLEVEL(2, "\rRead : %u ", (U32)(zfp.consumed >> 20)); if (fileSize != UTIL_FILESIZE_UNKNOWN) DISPLAYLEVEL(2, "/ %u ", (U32)(fileSize >> 20)); DISPLAYLEVEL(2, "MB ==> %2.f%% ", cShare); DELAY_NEXT_UPDATE(); } /* adaptive mode : statistics measurement and speed correction */ if (g_adaptiveMode) { /* check output speed */ if (zfp.currentJobID > 1) { /* only possible if nbWorkers >= 1 */ unsigned long long newlyProduced = zfp.produced - previous_zfp_update.produced; unsigned long long newlyFlushed = zfp.flushed - previous_zfp_update.flushed; assert(zfp.produced >= previous_zfp_update.produced); assert(g_nbWorkers >= 1); /* test if output speed is so slow that all buffers are full * and no further progress is possible * (neither compression nor adding more input into internal buffers) */ if ( (zfp.ingested == previous_zfp_update.ingested) /* no data read : input buffer full */ && (zfp.consumed == previous_zfp_update.consumed) /* no data compressed : no more buffer to compress OR compression is really slow */ && (zfp.nbActiveWorkers == 0) /* confirmed : no compression : either no more buffer to compress OR not enough data to start first worker */ ) { DISPLAYLEVEL(6, "all buffers full : compression stopped => slow down \n") speedChange = slower; } previous_zfp_update = zfp; if ( (newlyProduced > (newlyFlushed * 9 / 8)) /* compression produces more data than output can flush (though production can be spiky, due to work unit : (N==4)*block sizes) */ && (flushWaiting == 0) /* flush speed was never slowed by lack of production, so it's operating at max capacity */ ) { DISPLAYLEVEL(6, "compression faster than flush (%llu > %llu), and flushed was never slowed down by lack of production => slow down \n", newlyProduced, newlyFlushed); speedChange = slower; } flushWaiting = 0; } /* course correct only if there is at least one new job completed */ if (zfp.currentJobID > lastJobID) { DISPLAYLEVEL(6, "compression level adaptation check \n") /* check input speed */ if (zfp.currentJobID > g_nbWorkers+1) { /* warm up period, to fill all workers */ if (inputBlocked <= 0) { DISPLAYLEVEL(6, "input is never blocked => input is slower than ingestion \n"); speedChange = slower; } else if (speedChange == noChange) { unsigned long long newlyIngested = zfp.ingested - previous_zfp_correction.ingested; unsigned long long newlyConsumed = zfp.consumed - previous_zfp_correction.consumed; unsigned long long newlyProduced = zfp.produced - previous_zfp_correction.produced; unsigned long long newlyFlushed = zfp.flushed - previous_zfp_correction.flushed; previous_zfp_correction = zfp; assert(inputPresented > 0); DISPLAYLEVEL(6, "input blocked %u/%u(%.2f) - ingested:%u vs %u:consumed - flushed:%u vs %u:produced \n", inputBlocked, inputPresented, (double)inputBlocked/inputPresented*100, (U32)newlyIngested, (U32)newlyConsumed, (U32)newlyFlushed, (U32)newlyProduced); if ( (inputBlocked > inputPresented / 8) /* input is waiting often, because input buffers is full : compression or output too slow */ && (newlyFlushed * 33 / 32 > newlyProduced) /* flush everything that is produced */ && (newlyIngested * 33 / 32 > newlyConsumed) /* input speed as fast or faster than compression speed */ ) { DISPLAYLEVEL(6, "recommend faster as in(%llu) >= (%llu)comp(%llu) <= out(%llu) \n", newlyIngested, newlyConsumed, newlyProduced, newlyFlushed); speedChange = faster; } } inputBlocked = 0; inputPresented = 0; } if (speedChange == slower) { DISPLAYLEVEL(6, "slower speed , higher compression \n") compressionLevel ++; compressionLevel += (compressionLevel == 0); /* skip 0 */ if (compressionLevel > ZSTD_maxCLevel()) compressionLevel = ZSTD_maxCLevel(); ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_compressionLevel, (unsigned)compressionLevel); } if (speedChange == faster) { DISPLAYLEVEL(6, "faster speed , lighter compression \n") compressionLevel --; compressionLevel -= (compressionLevel == 0); /* skip 0 */ ZSTD_CCtx_setParameter(ress.cctx, ZSTD_p_compressionLevel, (unsigned)compressionLevel); } speedChange = noChange; lastJobID = zfp.currentJobID; } /* if (zfp.currentJobID > lastJobID) */ } /* if (g_adaptiveMode) */ } /* if (READY_FOR_UPDATE()) */ } /* while ((inBuff.pos != inBuff.size) */ } while (directive != ZSTD_e_end); if (ferror(srcFile)) { EXM_THROW(26, "Read error : I/O error"); } if (fileSize != UTIL_FILESIZE_UNKNOWN && *readsize != fileSize) { EXM_THROW(27, "Read error : Incomplete read : %llu / %llu B", (unsigned long long)*readsize, (unsigned long long)fileSize); } return compressedfilesize; } /*! FIO_compressFilename_internal() : * same as FIO_compressFilename_extRess(), with `ress.desFile` already opened. * @return : 0 : compression completed correctly, * 1 : missing or pb opening srcFileName */ static int FIO_compressFilename_internal(cRess_t ress, const char* dstFileName, const char* srcFileName, int compressionLevel) { U64 readsize = 0; U64 compressedfilesize = 0; U64 const fileSize = UTIL_getFileSize(srcFileName); DISPLAYLEVEL(5, "%s: %u bytes \n", srcFileName, (U32)fileSize); /* compression format selection */ switch (g_compressionType) { default: case FIO_zstdCompression: compressedfilesize = FIO_compressZstdFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize); break; case FIO_gzipCompression: #ifdef ZSTD_GZCOMPRESS compressedfilesize = FIO_compressGzFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as gzip (zstd compiled without ZSTD_GZCOMPRESS) -- ignored \n", srcFileName); #endif break; case FIO_xzCompression: case FIO_lzmaCompression: #ifdef ZSTD_LZMACOMPRESS compressedfilesize = FIO_compressLzmaFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize, g_compressionType==FIO_lzmaCompression); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as xz/lzma (zstd compiled without ZSTD_LZMACOMPRESS) -- ignored \n", srcFileName); #endif break; case FIO_lz4Compression: #ifdef ZSTD_LZ4COMPRESS compressedfilesize = FIO_compressLz4Frame(&ress, srcFileName, fileSize, compressionLevel, &readsize); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as lz4 (zstd compiled without ZSTD_LZ4COMPRESS) -- ignored \n", srcFileName); #endif break; } /* Status */ DISPLAYLEVEL(2, "\r%79s\r", ""); DISPLAYLEVEL(2,"%-20s :%6.2f%% (%6llu => %6llu bytes, %s) \n", srcFileName, (double)compressedfilesize / (readsize+(!readsize)/*avoid div by zero*/) * 100, (unsigned long long)readsize, (unsigned long long) compressedfilesize, dstFileName); return 0; } /*! FIO_compressFilename_srcFile() : * note : ress.destFile already opened * @return : 0 : compression completed correctly, * 1 : missing or pb opening srcFileName */ static int FIO_compressFilename_srcFile(cRess_t ress, const char* dstFileName, const char* srcFileName, int compressionLevel) { int result; /* File check */ if (UTIL_isDirectory(srcFileName)) { DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName); return 1; } ress.srcFile = FIO_openSrcFile(srcFileName); if (!ress.srcFile) return 1; /* srcFile could not be opened */ result = FIO_compressFilename_internal(ress, dstFileName, srcFileName, compressionLevel); fclose(ress.srcFile); if (g_removeSrcFile /* --rm */ && !result && strcmp(srcFileName, stdinmark)) { /* We must clear the handler, since after this point calling it would * delete both the source and destination files. */ clearHandler(); if (FIO_remove(srcFileName)) EXM_THROW(1, "zstd: %s: %s", srcFileName, strerror(errno)); } return result; } /*! FIO_compressFilename_dstFile() : * @return : 0 : compression completed correctly, * 1 : pb */ static int FIO_compressFilename_dstFile(cRess_t ress, const char* dstFileName, const char* srcFileName, int compressionLevel) { int result; stat_t statbuf; int stat_result = 0; DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: opening dst: %s", dstFileName); ress.dstFile = FIO_openDstFile(dstFileName); if (ress.dstFile==NULL) return 1; /* could not open dstFileName */ /* Must ony be added after FIO_openDstFile() succeeds. * Otherwise we may delete the destination file if at already exists, and * the user presses Ctrl-C when asked if they wish to overwrite. */ addHandler(dstFileName); if (strcmp (srcFileName, stdinmark) && UTIL_getFileStat(srcFileName, &statbuf)) stat_result = 1; result = FIO_compressFilename_srcFile(ress, dstFileName, srcFileName, compressionLevel); clearHandler(); if (fclose(ress.dstFile)) { /* error closing dstFile */ DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno)); result=1; } if ( (result != 0) /* operation failure */ && strcmp(dstFileName, nulmark) /* special case : don't remove() /dev/null */ && strcmp(dstFileName, stdoutmark) ) /* special case : don't remove() stdout */ FIO_remove(dstFileName); /* remove compression artefact; note don't do anything special if remove() fails */ else if ( strcmp(dstFileName, stdoutmark) && strcmp(dstFileName, nulmark) && stat_result) UTIL_setFileStat(dstFileName, &statbuf); return result; } int FIO_compressFilename(const char* dstFileName, const char* srcFileName, const char* dictFileName, int compressionLevel, ZSTD_compressionParameters comprParams) { clock_t const start = clock(); U64 const fileSize = UTIL_getFileSize(srcFileName); U64 const srcSize = (fileSize == UTIL_FILESIZE_UNKNOWN) ? ZSTD_CONTENTSIZE_UNKNOWN : fileSize; cRess_t const ress = FIO_createCResources(dictFileName, compressionLevel, srcSize, comprParams); int const result = FIO_compressFilename_dstFile(ress, dstFileName, srcFileName, compressionLevel); double const seconds = (double)(clock() - start) / CLOCKS_PER_SEC; DISPLAYLEVEL(4, "Completed in %.2f sec \n", seconds); FIO_freeCResources(ress); return result; } int FIO_compressMultipleFilenames(const char** inFileNamesTable, unsigned nbFiles, const char* outFileName, const char* suffix, const char* dictFileName, int compressionLevel, ZSTD_compressionParameters comprParams) { int missed_files = 0; size_t dfnSize = FNSPACE; char* dstFileName = (char*)malloc(FNSPACE); size_t const suffixSize = suffix ? strlen(suffix) : 0; U64 const firstFileSize = UTIL_getFileSize(inFileNamesTable[0]); U64 const firstSrcSize = (firstFileSize == UTIL_FILESIZE_UNKNOWN) ? ZSTD_CONTENTSIZE_UNKNOWN : firstFileSize; U64 const srcSize = (nbFiles != 1) ? ZSTD_CONTENTSIZE_UNKNOWN : firstSrcSize ; cRess_t ress = FIO_createCResources(dictFileName, compressionLevel, srcSize, comprParams); /* init */ if (dstFileName==NULL) EXM_THROW(27, "FIO_compressMultipleFilenames : allocation error for dstFileName"); if (outFileName == NULL && suffix == NULL) EXM_THROW(28, "FIO_compressMultipleFilenames : dst unknown"); /* should never happen */ /* loop on each file */ if (outFileName != NULL) { unsigned u; ress.dstFile = FIO_openDstFile(outFileName); if (ress.dstFile==NULL) { /* could not open outFileName */ missed_files = nbFiles; } else { for (u=0; u 1 GB) { int const seekResult = LONG_SEEK(file, 1 GB, SEEK_CUR); if (seekResult != 0) EXM_THROW(71, "1 GB skip error (sparse file support)"); storedSkips -= 1 GB; } while (ptrT < bufferTEnd) { size_t seg0SizeT = segmentSizeT; size_t nb0T; /* count leading zeros */ if (seg0SizeT > bufferSizeT) seg0SizeT = bufferSizeT; bufferSizeT -= seg0SizeT; for (nb0T=0; (nb0T < seg0SizeT) && (ptrT[nb0T] == 0); nb0T++) ; storedSkips += (unsigned)(nb0T * sizeof(size_t)); if (nb0T != seg0SizeT) { /* not all 0s */ int const seekResult = LONG_SEEK(file, storedSkips, SEEK_CUR); if (seekResult) EXM_THROW(72, "Sparse skip error ; try --no-sparse"); storedSkips = 0; seg0SizeT -= nb0T; ptrT += nb0T; { size_t const sizeCheck = fwrite(ptrT, sizeof(size_t), seg0SizeT, file); if (sizeCheck != seg0SizeT) EXM_THROW(73, "Write error : cannot write decoded block"); } } ptrT += seg0SizeT; } { static size_t const maskT = sizeof(size_t)-1; if (bufferSize & maskT) { /* size not multiple of sizeof(size_t) : implies end of block */ const char* const restStart = (const char*)bufferTEnd; const char* restPtr = restStart; size_t restSize = bufferSize & maskT; const char* const restEnd = restStart + restSize; for ( ; (restPtr < restEnd) && (*restPtr == 0); restPtr++) ; storedSkips += (unsigned) (restPtr - restStart); if (restPtr != restEnd) { int seekResult = LONG_SEEK(file, storedSkips, SEEK_CUR); if (seekResult) EXM_THROW(74, "Sparse skip error ; try --no-sparse"); storedSkips = 0; { size_t const sizeCheck = fwrite(restPtr, 1, restEnd - restPtr, file); if (sizeCheck != (size_t)(restEnd - restPtr)) EXM_THROW(75, "Write error : cannot write decoded end of block"); } } } } return storedSkips; } static void FIO_fwriteSparseEnd(FILE* file, unsigned storedSkips) { if (storedSkips-->0) { /* implies g_sparseFileSupport>0 */ int const seekResult = LONG_SEEK(file, storedSkips, SEEK_CUR); if (seekResult != 0) EXM_THROW(69, "Final skip error (sparse file)"); { const char lastZeroByte[1] = { 0 }; size_t const sizeCheck = fwrite(lastZeroByte, 1, 1, file); if (sizeCheck != 1) EXM_THROW(69, "Write error : cannot write last zero"); } } } /** FIO_passThrough() : just copy input into output, for compatibility with gzip -df mode @return : 0 (no error) */ static unsigned FIO_passThrough(FILE* foutput, FILE* finput, void* buffer, size_t bufferSize, size_t alreadyLoaded) { size_t const blockSize = MIN(64 KB, bufferSize); size_t readFromInput = 1; unsigned storedSkips = 0; /* assumption : ress->srcBufferLoaded bytes already loaded and stored within buffer */ { size_t const sizeCheck = fwrite(buffer, 1, alreadyLoaded, foutput); if (sizeCheck != alreadyLoaded) { DISPLAYLEVEL(1, "Pass-through write error \n"); return 1; } } while (readFromInput) { readFromInput = fread(buffer, 1, blockSize, finput); storedSkips = FIO_fwriteSparse(foutput, buffer, readFromInput, storedSkips); } FIO_fwriteSparseEnd(foutput, storedSkips); return 0; } /* FIO_highbit64() : * gives position of highest bit. * note : only works for v > 0 ! */ static unsigned FIO_highbit64(unsigned long long v) { unsigned count = 0; assert(v != 0); v >>= 1; while (v) { v >>= 1; count++; } return count; } /* FIO_zstdErrorHelp() : * detailed error message when requested window size is too large */ static void FIO_zstdErrorHelp(dRess_t* ress, size_t err, char const* srcFileName) { ZSTD_frameHeader header; /* Help message only for one specific error */ if (ZSTD_getErrorCode(err) != ZSTD_error_frameParameter_windowTooLarge) return; /* Try to decode the frame header */ err = ZSTD_getFrameHeader(&header, ress->srcBuffer, ress->srcBufferLoaded); if (err == 0) { unsigned long long const windowSize = header.windowSize; U32 const windowLog = FIO_highbit64(windowSize) + ((windowSize & (windowSize - 1)) != 0); U32 const windowMB = (U32)((windowSize >> 20) + ((windowSize & ((1 MB) - 1)) != 0)); assert(windowSize < (U64)(1ULL << 52)); assert(g_memLimit > 0); DISPLAYLEVEL(1, "%s : Window size larger than maximum : %llu > %u\n", srcFileName, windowSize, g_memLimit); if (windowLog <= ZSTD_WINDOWLOG_MAX) { DISPLAYLEVEL(1, "%s : Use --long=%u or --memory=%uMB\n", srcFileName, windowLog, windowMB); return; } } DISPLAYLEVEL(1, "%s : Window log larger than ZSTD_WINDOWLOG_MAX=%u; not supported\n", srcFileName, ZSTD_WINDOWLOG_MAX); } /** FIO_decompressFrame() : * @return : size of decoded zstd frame, or an error code */ #define FIO_ERROR_FRAME_DECODING ((unsigned long long)(-2)) unsigned long long FIO_decompressZstdFrame(dRess_t* ress, FILE* finput, const char* srcFileName, U64 alreadyDecoded) { U64 frameSize = 0; U32 storedSkips = 0; size_t const srcFileLength = strlen(srcFileName); if (srcFileLength>20) srcFileName += srcFileLength-20; /* display last 20 characters only */ ZSTD_resetDStream(ress->dctx); /* Header loading : ensures ZSTD_getFrameHeader() will succeed */ { size_t const toDecode = ZSTD_FRAMEHEADERSIZE_MAX; if (ress->srcBufferLoaded < toDecode) { size_t const toRead = toDecode - ress->srcBufferLoaded; void* const startPosition = (char*)ress->srcBuffer + ress->srcBufferLoaded; ress->srcBufferLoaded += fread(startPosition, 1, toRead, finput); } } /* Main decompression Loop */ while (1) { ZSTD_inBuffer inBuff = { ress->srcBuffer, ress->srcBufferLoaded, 0 }; ZSTD_outBuffer outBuff= { ress->dstBuffer, ress->dstBufferSize, 0 }; size_t const readSizeHint = ZSTD_decompressStream(ress->dctx, &outBuff, &inBuff); if (ZSTD_isError(readSizeHint)) { DISPLAYLEVEL(1, "%s : Decoding error (36) : %s \n", srcFileName, ZSTD_getErrorName(readSizeHint)); FIO_zstdErrorHelp(ress, readSizeHint, srcFileName); return FIO_ERROR_FRAME_DECODING; } /* Write block */ storedSkips = FIO_fwriteSparse(ress->dstFile, ress->dstBuffer, outBuff.pos, storedSkips); frameSize += outBuff.pos; DISPLAYUPDATE(2, "\r%-20.20s : %u MB... ", srcFileName, (U32)((alreadyDecoded+frameSize)>>20) ); if (inBuff.pos > 0) { memmove(ress->srcBuffer, (char*)ress->srcBuffer + inBuff.pos, inBuff.size - inBuff.pos); ress->srcBufferLoaded -= inBuff.pos; } if (readSizeHint == 0) break; /* end of frame */ if (inBuff.size != inBuff.pos) { DISPLAYLEVEL(1, "%s : Decoding error (37) : should consume entire input \n", srcFileName); return FIO_ERROR_FRAME_DECODING; } /* Fill input buffer */ { size_t const toDecode = MIN(readSizeHint, ress->srcBufferSize); /* support large skippable frames */ if (ress->srcBufferLoaded < toDecode) { size_t const toRead = toDecode - ress->srcBufferLoaded; /* > 0 */ void* const startPosition = (char*)ress->srcBuffer + ress->srcBufferLoaded; size_t const readSize = fread(startPosition, 1, toRead, finput); if (readSize==0) { DISPLAYLEVEL(1, "%s : Read error (39) : premature end \n", srcFileName); return FIO_ERROR_FRAME_DECODING; } ress->srcBufferLoaded += readSize; } } } FIO_fwriteSparseEnd(ress->dstFile, storedSkips); return frameSize; } #ifdef ZSTD_GZDECOMPRESS static unsigned long long FIO_decompressGzFrame(dRess_t* ress, FILE* srcFile, const char* srcFileName) { unsigned long long outFileSize = 0; z_stream strm; int flush = Z_NO_FLUSH; int decodingError = 0; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.next_in = 0; strm.avail_in = 0; /* see http://www.zlib.net/manual.html */ if (inflateInit2(&strm, 15 /* maxWindowLogSize */ + 16 /* gzip only */) != Z_OK) return FIO_ERROR_FRAME_DECODING; strm.next_out = (Bytef*)ress->dstBuffer; strm.avail_out = (uInt)ress->dstBufferSize; strm.avail_in = (uInt)ress->srcBufferLoaded; strm.next_in = (z_const unsigned char*)ress->srcBuffer; for ( ; ; ) { int ret; if (strm.avail_in == 0) { ress->srcBufferLoaded = fread(ress->srcBuffer, 1, ress->srcBufferSize, srcFile); if (ress->srcBufferLoaded == 0) flush = Z_FINISH; strm.next_in = (z_const unsigned char*)ress->srcBuffer; strm.avail_in = (uInt)ress->srcBufferLoaded; } ret = inflate(&strm, flush); if (ret == Z_BUF_ERROR) { DISPLAYLEVEL(1, "zstd: %s: premature gz end \n", srcFileName); decodingError = 1; break; } if (ret != Z_OK && ret != Z_STREAM_END) { DISPLAYLEVEL(1, "zstd: %s: inflate error %d \n", srcFileName, ret); decodingError = 1; break; } { size_t const decompBytes = ress->dstBufferSize - strm.avail_out; if (decompBytes) { if (fwrite(ress->dstBuffer, 1, decompBytes, ress->dstFile) != decompBytes) { DISPLAYLEVEL(1, "zstd: %s \n", strerror(errno)); decodingError = 1; break; } outFileSize += decompBytes; strm.next_out = (Bytef*)ress->dstBuffer; strm.avail_out = (uInt)ress->dstBufferSize; } } if (ret == Z_STREAM_END) break; } if (strm.avail_in > 0) memmove(ress->srcBuffer, strm.next_in, strm.avail_in); ress->srcBufferLoaded = strm.avail_in; if ( (inflateEnd(&strm) != Z_OK) /* release resources ; error detected */ && (decodingError==0) ) { DISPLAYLEVEL(1, "zstd: %s: inflateEnd error \n", srcFileName); decodingError = 1; } return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize; } #endif #ifdef ZSTD_LZMADECOMPRESS static unsigned long long FIO_decompressLzmaFrame(dRess_t* ress, FILE* srcFile, const char* srcFileName, int plain_lzma) { unsigned long long outFileSize = 0; lzma_stream strm = LZMA_STREAM_INIT; lzma_action action = LZMA_RUN; lzma_ret initRet; int decodingError = 0; strm.next_in = 0; strm.avail_in = 0; if (plain_lzma) { initRet = lzma_alone_decoder(&strm, UINT64_MAX); /* LZMA */ } else { initRet = lzma_stream_decoder(&strm, UINT64_MAX, 0); /* XZ */ } if (initRet != LZMA_OK) { DISPLAYLEVEL(1, "zstd: %s: %s error %d \n", plain_lzma ? "lzma_alone_decoder" : "lzma_stream_decoder", srcFileName, initRet); return FIO_ERROR_FRAME_DECODING; } strm.next_out = (BYTE*)ress->dstBuffer; strm.avail_out = ress->dstBufferSize; strm.next_in = (BYTE const*)ress->srcBuffer; strm.avail_in = ress->srcBufferLoaded; for ( ; ; ) { lzma_ret ret; if (strm.avail_in == 0) { ress->srcBufferLoaded = fread(ress->srcBuffer, 1, ress->srcBufferSize, srcFile); if (ress->srcBufferLoaded == 0) action = LZMA_FINISH; strm.next_in = (BYTE const*)ress->srcBuffer; strm.avail_in = ress->srcBufferLoaded; } ret = lzma_code(&strm, action); if (ret == LZMA_BUF_ERROR) { DISPLAYLEVEL(1, "zstd: %s: premature lzma end \n", srcFileName); decodingError = 1; break; } if (ret != LZMA_OK && ret != LZMA_STREAM_END) { DISPLAYLEVEL(1, "zstd: %s: lzma_code decoding error %d \n", srcFileName, ret); decodingError = 1; break; } { size_t const decompBytes = ress->dstBufferSize - strm.avail_out; if (decompBytes) { if (fwrite(ress->dstBuffer, 1, decompBytes, ress->dstFile) != decompBytes) { DISPLAYLEVEL(1, "zstd: %s \n", strerror(errno)); decodingError = 1; break; } outFileSize += decompBytes; strm.next_out = (BYTE*)ress->dstBuffer; strm.avail_out = ress->dstBufferSize; } } if (ret == LZMA_STREAM_END) break; } if (strm.avail_in > 0) memmove(ress->srcBuffer, strm.next_in, strm.avail_in); ress->srcBufferLoaded = strm.avail_in; lzma_end(&strm); return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize; } #endif #ifdef ZSTD_LZ4DECOMPRESS static unsigned long long FIO_decompressLz4Frame(dRess_t* ress, FILE* srcFile, const char* srcFileName) { unsigned long long filesize = 0; LZ4F_errorCode_t nextToLoad; LZ4F_decompressionContext_t dCtx; LZ4F_errorCode_t const errorCode = LZ4F_createDecompressionContext(&dCtx, LZ4F_VERSION); int decodingError = 0; if (LZ4F_isError(errorCode)) { DISPLAYLEVEL(1, "zstd: failed to create lz4 decompression context \n"); return FIO_ERROR_FRAME_DECODING; } /* Init feed with magic number (already consumed from FILE* sFile) */ { size_t inSize = 4; size_t outSize= 0; MEM_writeLE32(ress->srcBuffer, LZ4_MAGICNUMBER); nextToLoad = LZ4F_decompress(dCtx, ress->dstBuffer, &outSize, ress->srcBuffer, &inSize, NULL); if (LZ4F_isError(nextToLoad)) { DISPLAYLEVEL(1, "zstd: %s: lz4 header error : %s \n", srcFileName, LZ4F_getErrorName(nextToLoad)); LZ4F_freeDecompressionContext(dCtx); return FIO_ERROR_FRAME_DECODING; } } /* Main Loop */ for (;nextToLoad;) { size_t readSize; size_t pos = 0; size_t decodedBytes = ress->dstBufferSize; /* Read input */ if (nextToLoad > ress->srcBufferSize) nextToLoad = ress->srcBufferSize; readSize = fread(ress->srcBuffer, 1, nextToLoad, srcFile); if (!readSize) break; /* reached end of file or stream */ while ((pos < readSize) || (decodedBytes == ress->dstBufferSize)) { /* still to read, or still to flush */ /* Decode Input (at least partially) */ size_t remaining = readSize - pos; decodedBytes = ress->dstBufferSize; nextToLoad = LZ4F_decompress(dCtx, ress->dstBuffer, &decodedBytes, (char*)(ress->srcBuffer)+pos, &remaining, NULL); if (LZ4F_isError(nextToLoad)) { DISPLAYLEVEL(1, "zstd: %s: lz4 decompression error : %s \n", srcFileName, LZ4F_getErrorName(nextToLoad)); decodingError = 1; nextToLoad = 0; break; } pos += remaining; /* Write Block */ if (decodedBytes) { if (fwrite(ress->dstBuffer, 1, decodedBytes, ress->dstFile) != decodedBytes) { DISPLAYLEVEL(1, "zstd: %s \n", strerror(errno)); decodingError = 1; nextToLoad = 0; break; } filesize += decodedBytes; DISPLAYUPDATE(2, "\rDecompressed : %u MB ", (unsigned)(filesize>>20)); } if (!nextToLoad) break; } } /* can be out because readSize == 0, which could be an fread() error */ if (ferror(srcFile)) { DISPLAYLEVEL(1, "zstd: %s: read error \n", srcFileName); decodingError=1; } if (nextToLoad!=0) { DISPLAYLEVEL(1, "zstd: %s: unfinished lz4 stream \n", srcFileName); decodingError=1; } LZ4F_freeDecompressionContext(dCtx); ress->srcBufferLoaded = 0; /* LZ4F will reach exact frame boundary */ return decodingError ? FIO_ERROR_FRAME_DECODING : filesize; } #endif /** FIO_decompressFrames() : * Find and decode frames inside srcFile * srcFile presumed opened and valid * @return : 0 : OK * 1 : error */ static int FIO_decompressFrames(dRess_t ress, FILE* srcFile, const char* dstFileName, const char* srcFileName) { unsigned readSomething = 0; unsigned long long filesize = 0; assert(srcFile != NULL); /* for each frame */ for ( ; ; ) { /* check magic number -> version */ size_t const toRead = 4; const BYTE* const buf = (const BYTE*)ress.srcBuffer; if (ress.srcBufferLoaded < toRead) /* load up to 4 bytes for header */ ress.srcBufferLoaded += fread((char*)ress.srcBuffer + ress.srcBufferLoaded, (size_t)1, toRead - ress.srcBufferLoaded, srcFile); if (ress.srcBufferLoaded==0) { if (readSomething==0) { /* srcFile is empty (which is invalid) */ DISPLAYLEVEL(1, "zstd: %s: unexpected end of file \n", srcFileName); return 1; } /* else, just reached frame boundary */ break; /* no more input */ } readSomething = 1; /* there is at least 1 byte in srcFile */ if (ress.srcBufferLoaded < toRead) { DISPLAYLEVEL(1, "zstd: %s: unknown header \n", srcFileName); return 1; } if (ZSTD_isFrame(buf, ress.srcBufferLoaded)) { unsigned long long const frameSize = FIO_decompressZstdFrame(&ress, srcFile, srcFileName, filesize); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; } else if (buf[0] == 31 && buf[1] == 139) { /* gz magic number */ #ifdef ZSTD_GZDECOMPRESS unsigned long long const frameSize = FIO_decompressGzFrame(&ress, srcFile, srcFileName); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: gzip file cannot be uncompressed (zstd compiled without HAVE_ZLIB) -- ignored \n", srcFileName); return 1; #endif } else if ((buf[0] == 0xFD && buf[1] == 0x37) /* xz magic number */ || (buf[0] == 0x5D && buf[1] == 0x00)) { /* lzma header (no magic number) */ #ifdef ZSTD_LZMADECOMPRESS unsigned long long const frameSize = FIO_decompressLzmaFrame(&ress, srcFile, srcFileName, buf[0] != 0xFD); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: xz/lzma file cannot be uncompressed (zstd compiled without HAVE_LZMA) -- ignored \n", srcFileName); return 1; #endif } else if (MEM_readLE32(buf) == LZ4_MAGICNUMBER) { #ifdef ZSTD_LZ4DECOMPRESS unsigned long long const frameSize = FIO_decompressLz4Frame(&ress, srcFile, srcFileName); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: lz4 file cannot be uncompressed (zstd compiled without HAVE_LZ4) -- ignored \n", srcFileName); return 1; #endif } else if ((g_overwrite) && !strcmp (dstFileName, stdoutmark)) { /* pass-through mode */ return FIO_passThrough(ress.dstFile, srcFile, ress.srcBuffer, ress.srcBufferSize, ress.srcBufferLoaded); } else { DISPLAYLEVEL(1, "zstd: %s: unsupported format \n", srcFileName); return 1; } } /* for each frame */ /* Final Status */ DISPLAYLEVEL(2, "\r%79s\r", ""); DISPLAYLEVEL(2, "%-20s: %llu bytes \n", srcFileName, filesize); return 0; } /** FIO_decompressSrcFile() : Decompression `srcFileName` into `ress.dstFile` @return : 0 : OK 1 : operation not started */ static int FIO_decompressSrcFile(dRess_t ress, const char* dstFileName, const char* srcFileName) { FILE* srcFile; int result; if (UTIL_isDirectory(srcFileName)) { DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName); return 1; } srcFile = FIO_openSrcFile(srcFileName); if (srcFile==NULL) return 1; result = FIO_decompressFrames(ress, srcFile, dstFileName, srcFileName); /* Close file */ if (fclose(srcFile)) { DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); /* error should not happen */ return 1; } if ( g_removeSrcFile /* --rm */ && (result==0) /* decompression successful */ && strcmp(srcFileName, stdinmark) ) /* not stdin */ { /* We must clear the handler, since after this point calling it would * delete both the source and destination files. */ clearHandler(); if (FIO_remove(srcFileName)) { /* failed to remove src file */ DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); return 1; } } return result; } /** FIO_decompressFile_extRess() : decompress `srcFileName` into `dstFileName` @return : 0 : OK 1 : operation aborted (src not available, dst already taken, etc.) */ static int FIO_decompressDstFile(dRess_t ress, const char* dstFileName, const char* srcFileName) { int result; stat_t statbuf; int stat_result = 0; ress.dstFile = FIO_openDstFile(dstFileName); if (ress.dstFile==0) return 1; /* Must ony be added after FIO_openDstFile() succeeds. * Otherwise we may delete the destination file if at already exists, and * the user presses Ctrl-C when asked if they wish to overwrite. */ addHandler(dstFileName); if ( strcmp(srcFileName, stdinmark) && UTIL_getFileStat(srcFileName, &statbuf) ) stat_result = 1; result = FIO_decompressSrcFile(ress, dstFileName, srcFileName); clearHandler(); if (fclose(ress.dstFile)) { DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno)); result = 1; } if ( (result != 0) /* operation failure */ && strcmp(dstFileName, nulmark) /* special case : don't remove() /dev/null (#316) */ && strcmp(dstFileName, stdoutmark) ) /* special case : don't remove() stdout */ FIO_remove(dstFileName); /* remove decompression artefact; note don't do anything special if remove() fails */ else { /* operation success */ if ( strcmp(dstFileName, stdoutmark) /* special case : don't chmod stdout */ && strcmp(dstFileName, nulmark) /* special case : don't chmod /dev/null */ && stat_result ) /* file permissions correctly extracted from src */ UTIL_setFileStat(dstFileName, &statbuf); /* transfer file permissions from src into dst */ } signal(SIGINT, SIG_DFL); return result; } int FIO_decompressFilename(const char* dstFileName, const char* srcFileName, const char* dictFileName) { dRess_t const ress = FIO_createDResources(dictFileName); int const decodingError = FIO_decompressDstFile(ress, dstFileName, srcFileName); FIO_freeDResources(ress); return decodingError; } #define MAXSUFFIXSIZE 8 int FIO_decompressMultipleFilenames(const char** srcNamesTable, unsigned nbFiles, const char* outFileName, const char* dictFileName) { int skippedFiles = 0; int missingFiles = 0; dRess_t ress = FIO_createDResources(dictFileName); if (outFileName) { unsigned u; ress.dstFile = FIO_openDstFile(outFileName); if (ress.dstFile == 0) EXM_THROW(71, "cannot open %s", outFileName); for (u=0; ucompressedSize = UTIL_getFileSize(inFileName); /* begin analyzing frame */ for ( ; ; ) { BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; size_t const numBytesRead = fread(headerBuffer, 1, sizeof(headerBuffer), srcFile); if (numBytesRead < ZSTD_frameHeaderSize_min) { if ( feof(srcFile) && (numBytesRead == 0) && (info->compressedSize > 0) && (info->compressedSize != UTIL_FILESIZE_UNKNOWN) ) { break; } else if (feof(srcFile)) { DISPLAY("Error: reached end of file with incomplete frame\n"); detectError = 2; break; } else { DISPLAY("Error: did not reach end of file but ran out of frames\n"); detectError = 1; break; } } { U32 const magicNumber = MEM_readLE32(headerBuffer); /* Zstandard frame */ if (magicNumber == ZSTD_MAGICNUMBER) { ZSTD_frameHeader header; U64 const frameContentSize = ZSTD_getFrameContentSize(headerBuffer, numBytesRead); if (frameContentSize == ZSTD_CONTENTSIZE_ERROR || frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { info->decompUnavailable = 1; } else { info->decompressedSize += frameContentSize; } if (ZSTD_getFrameHeader(&header, headerBuffer, numBytesRead) != 0) { DISPLAY("Error: could not decode frame header\n"); detectError = 1; break; } info->windowSize = header.windowSize; /* move to the end of the frame header */ { size_t const headerSize = ZSTD_frameHeaderSize(headerBuffer, numBytesRead); if (ZSTD_isError(headerSize)) { DISPLAY("Error: could not determine frame header size\n"); detectError = 1; break; } { int const ret = fseek(srcFile, ((long)headerSize)-((long)numBytesRead), SEEK_CUR); if (ret != 0) { DISPLAY("Error: could not move to end of frame header\n"); detectError = 1; break; } } } /* skip the rest of the blocks in the frame */ { int lastBlock = 0; do { BYTE blockHeaderBuffer[3]; size_t const readBytes = fread(blockHeaderBuffer, 1, 3, srcFile); if (readBytes != 3) { DISPLAY("There was a problem reading the block header\n"); detectError = 1; break; } { U32 const blockHeader = MEM_readLE24(blockHeaderBuffer); U32 const blockTypeID = (blockHeader >> 1) & 3; U32 const isRLE = (blockTypeID == 1); U32 const isWrongBlock = (blockTypeID == 3); long const blockSize = isRLE ? 1 : (long)(blockHeader >> 3); if (isWrongBlock) { DISPLAY("Error: unsupported block type \n"); detectError = 1; break; } lastBlock = blockHeader & 1; { int const ret = fseek(srcFile, blockSize, SEEK_CUR); if (ret != 0) { DISPLAY("Error: could not skip to end of block\n"); detectError = 1; break; } } } } while (lastBlock != 1); if (detectError) break; } /* check if checksum is used */ { BYTE const frameHeaderDescriptor = headerBuffer[4]; int const contentChecksumFlag = (frameHeaderDescriptor & (1 << 2)) >> 2; if (contentChecksumFlag) { int const ret = fseek(srcFile, 4, SEEK_CUR); info->usesCheck = 1; if (ret != 0) { DISPLAY("Error: could not skip past checksum\n"); detectError = 1; break; } } } info->numActualFrames++; } /* Skippable frame */ else if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { U32 const frameSize = MEM_readLE32(headerBuffer + 4); long const seek = (long)(8 + frameSize - numBytesRead); int const ret = LONG_SEEK(srcFile, seek, SEEK_CUR); if (ret != 0) { DISPLAY("Error: could not find end of skippable frame\n"); detectError = 1; break; } info->numSkippableFrames++; } /* unknown content */ else { detectError = 2; break; } } } /* end analyzing frame */ fclose(srcFile); info->nbFiles = 1; return detectError; } static int getFileInfo(fileInfo_t* info, const char* srcFileName) { int const isAFile = UTIL_isRegularFile(srcFileName); if (!isAFile) { DISPLAY("Error : %s is not a file", srcFileName); return 3; } return getFileInfo_fileConfirmed(info, srcFileName); } static void displayInfo(const char* inFileName, const fileInfo_t* info, int displayLevel){ unsigned const unit = info->compressedSize < (1 MB) ? (1 KB) : (1 MB); const char* const unitStr = info->compressedSize < (1 MB) ? "KB" : "MB"; double const windowSizeUnit = (double)info->windowSize / unit; double const compressedSizeUnit = (double)info->compressedSize / unit; double const decompressedSizeUnit = (double)info->decompressedSize / unit; double const ratio = (info->compressedSize == 0) ? 0 : ((double)info->decompressedSize)/info->compressedSize; const char* const checkString = (info->usesCheck ? "XXH64" : "None"); if (displayLevel <= 2) { if (!info->decompUnavailable) { DISPLAYOUT("%6d %5d %7.2f %2s %9.2f %2s %5.3f %5s %s\n", info->numSkippableFrames + info->numActualFrames, info->numSkippableFrames, compressedSizeUnit, unitStr, decompressedSizeUnit, unitStr, ratio, checkString, inFileName); } else { DISPLAYOUT("%6d %5d %7.2f %2s %5s %s\n", info->numSkippableFrames + info->numActualFrames, info->numSkippableFrames, compressedSizeUnit, unitStr, checkString, inFileName); } } else { DISPLAYOUT("%s \n", inFileName); DISPLAYOUT("# Zstandard Frames: %d\n", info->numActualFrames); if (info->numSkippableFrames) DISPLAYOUT("# Skippable Frames: %d\n", info->numSkippableFrames); DISPLAYOUT("Window Size: %.2f %2s (%llu B)\n", windowSizeUnit, unitStr, (unsigned long long)info->windowSize); DISPLAYOUT("Compressed Size: %.2f %2s (%llu B)\n", compressedSizeUnit, unitStr, (unsigned long long)info->compressedSize); if (!info->decompUnavailable) { DISPLAYOUT("Decompressed Size: %.2f %2s (%llu B)\n", decompressedSizeUnit, unitStr, (unsigned long long)info->decompressedSize); DISPLAYOUT("Ratio: %.4f\n", ratio); } DISPLAYOUT("Check: %s\n", checkString); DISPLAYOUT("\n"); } } static fileInfo_t FIO_addFInfo(fileInfo_t fi1, fileInfo_t fi2) { fileInfo_t total; memset(&total, 0, sizeof(total)); total.numActualFrames = fi1.numActualFrames + fi2.numActualFrames; total.numSkippableFrames = fi1.numSkippableFrames + fi2.numSkippableFrames; total.compressedSize = fi1.compressedSize + fi2.compressedSize; total.decompressedSize = fi1.decompressedSize + fi2.decompressedSize; total.decompUnavailable = fi1.decompUnavailable | fi2.decompUnavailable; total.usesCheck = fi1.usesCheck & fi2.usesCheck; total.nbFiles = fi1.nbFiles + fi2.nbFiles; return total; } static int FIO_listFile(fileInfo_t* total, const char* inFileName, int displayLevel){ fileInfo_t info; memset(&info, 0, sizeof(info)); { int const error = getFileInfo(&info, inFileName); if (error == 1) { /* display error, but provide output */ DISPLAY("An error occurred while getting file info \n"); } else if (error == 2) { DISPLAYOUT("File %s not compressed by zstd \n", inFileName); if (displayLevel > 2) DISPLAYOUT("\n"); return 1; } else if (error == 3) { /* error occurred while opening the file */ if (displayLevel > 2) DISPLAYOUT("\n"); return 1; } displayInfo(inFileName, &info, displayLevel); *total = FIO_addFInfo(*total, info); return error; } } int FIO_listMultipleFiles(unsigned numFiles, const char** filenameTable, int displayLevel){ unsigned u; for (u=0; u 1 && displayLevel <= 2) { /* display total */ unsigned const unit = total.compressedSize < (1 MB) ? (1 KB) : (1 MB); const char* const unitStr = total.compressedSize < (1 MB) ? "KB" : "MB"; double const compressedSizeUnit = (double)total.compressedSize / unit; double const decompressedSizeUnit = (double)total.decompressedSize / unit; double const ratio = (total.compressedSize == 0) ? 0 : ((double)total.decompressedSize)/total.compressedSize; const char* const checkString = (total.usesCheck ? "XXH64" : ""); DISPLAYOUT("----------------------------------------------------------------- \n"); if (total.decompUnavailable) { DISPLAYOUT("%6d %5d %7.2f %2s %5s %u files\n", total.numSkippableFrames + total.numActualFrames, total.numSkippableFrames, compressedSizeUnit, unitStr, checkString, total.nbFiles); } else { DISPLAYOUT("%6d %5d %7.2f %2s %9.2f %2s %5.3f %5s %u files\n", total.numSkippableFrames + total.numActualFrames, total.numSkippableFrames, compressedSizeUnit, unitStr, decompressedSizeUnit, unitStr, ratio, checkString, total.nbFiles); } } return error; } } #endif /* #ifndef ZSTD_NODECOMPRESS */