/* Fuzzer test tool for zstd Copyright (C) Yann Collet 2014-2016 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. You can contact the author at : - ZSTD homepage : http://www.zstd.net */ /*-************************************ * Compiler specific **************************************/ #ifdef _MSC_VER /* Visual Studio */ # define _CRT_SECURE_NO_WARNINGS /* fgets */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ #endif /*-************************************ * Includes **************************************/ #include /* free */ #include /* fgets, sscanf */ #include /* timeb */ #include /* strcmp */ #include /* clock_t */ #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressContinue */ #include "zstd.h" /* ZSTD_VERSION_STRING, ZSTD_getErrorCode */ #include "zdict.h" /* ZDICT_trainFromBuffer */ #include "datagen.h" /* RDG_genBuffer */ #include "mem.h" #define XXH_STATIC_LINKING_ONLY #include "xxhash.h" /* XXH64 */ /*-************************************ * Constants **************************************/ #define KB *(1U<<10) #define MB *(1U<<20) #define GB *(1U<<30) static const U32 FUZ_compressibility_default = 50; static const U32 nbTestsDefault = 30000; /*-************************************ * Display Macros **************************************/ #define DISPLAY(...) fprintf(stderr, __VA_ARGS__) #define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } static U32 g_displayLevel = 2; #define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \ if ((FUZ_clockSpan(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \ { g_displayClock = clock(); DISPLAY(__VA_ARGS__); \ if (g_displayLevel>=4) fflush(stdout); } } static const clock_t g_refreshRate = CLOCKS_PER_SEC * 150 / 1000; static clock_t g_displayClock = 0; /*-******************************************************* * Fuzzer functions *********************************************************/ #define MIN(a,b) ((a)<(b)?(a):(b)) static clock_t FUZ_clockSpan(clock_t cStart) { return clock() - cStart; /* works even when overflow; max span ~ 30mn */ } #define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r))) static unsigned FUZ_rand(unsigned* src) { static const U32 prime1 = 2654435761U; static const U32 prime2 = 2246822519U; U32 rand32 = *src; rand32 *= prime1; rand32 += prime2; rand32 = FUZ_rotl32(rand32, 13); *src = rand32; return rand32 >> 5; } static unsigned FUZ_highbit32(U32 v32) { unsigned nbBits = 0; if (v32==0) return 0; while (v32) v32 >>= 1, nbBits++; return nbBits; } #define CHECKTEST(var, fn) size_t const var = fn; if (ZSTD_isError(var)) goto _output_error #define CHECK(fn) { CHECKTEST(err, fn); } #define CHECKPLUS(var, fn, more) { CHECKTEST(var, fn); more; } static int basicUnitTests(U32 seed, double compressibility) { size_t const CNBuffSize = 5 MB; void* const CNBuffer = malloc(CNBuffSize); void* const compressedBuffer = malloc(ZSTD_compressBound(CNBuffSize)); void* const decodedBuffer = malloc(CNBuffSize); int testResult = 0; U32 testNb=0; size_t cSize; /* Create compressible noise */ if (!CNBuffer || !compressedBuffer || !decodedBuffer) { DISPLAY("Not enough memory, aborting\n"); testResult = 1; goto _end; } RDG_genBuffer(CNBuffer, CNBuffSize, compressibility, 0., seed); /* Basic tests */ DISPLAYLEVEL(4, "test%3i : compress %u bytes : ", testNb++, (U32)CNBuffSize); CHECKPLUS(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(CNBuffSize), CNBuffer, CNBuffSize, 1), cSize=r ); DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : decompress %u bytes : ", testNb++, (U32)CNBuffSize); CHECKPLUS( r , ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize), if (r != CNBuffSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : check decompressed result : ", testNb++); { size_t u; for (u=0; u have same size */ } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100); DISPLAYLEVEL(4, "test%3i : frame built with duplicated context should be decompressible : ", testNb++); CHECKPLUS(r, ZSTD_decompress_usingDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, CNBuffer, dictSize), if (r != CNBuffSize - dictSize) goto _output_error); DISPLAYLEVEL(4, "OK \n"); DISPLAYLEVEL(4, "test%3i : check content size on duplicated context : ", testNb++); { size_t const testSize = CNBuffSize / 3; { ZSTD_compressionParameters const cPar = ZSTD_getCParams(2, testSize, dictSize); ZSTD_frameParameters const fPar = { 1 , 0 , 0 }; ZSTD_parameters p; p.cParams = cPar; p.fParams = fPar; CHECK( ZSTD_compressBegin_advanced(ctxOrig, CNBuffer, dictSize, p, testSize-1) ); } CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig) ); CHECKPLUS(r, ZSTD_compressContinue(ctxDuplicated, compressedBuffer, ZSTD_compressBound(testSize), (const char*)CNBuffer + dictSize, CNBuffSize - dictSize), cSize = r); { ZSTD_frameParams fp; if (ZSTD_getFrameParams(&fp, compressedBuffer, cSize)) goto _output_error; if ((fp.frameContentSize != testSize) && (fp.frameContentSize != 0)) goto _output_error; } } DISPLAYLEVEL(4, "OK \n"); ZSTD_freeCCtx(ctxOrig); ZSTD_freeCCtx(ctxDuplicated); ZSTD_freeDCtx(dctx); } /* Dictionary and dictBuilder tests */ { ZSTD_CCtx* const cctx = ZSTD_createCCtx(); ZSTD_DCtx* const dctx = ZSTD_createDCtx(); size_t dictSize = 16 KB; void* dictBuffer = malloc(dictSize); size_t const totalSampleSize = 1 MB; size_t const sampleUnitSize = 8 KB; U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize); size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t)); if (dictBuffer==NULL || samplesSizes==NULL) { free(dictBuffer); free(samplesSizes); goto _output_error; } DISPLAYLEVEL(4, "test%3i : dictBuilder : ", testNb++); { U32 u; for (u=0; u _3BYTESTESTLENGTH+3 */ U32 const id = FUZ_rand(&rSeed) & NB3BYTESSEQMASK; ((BYTE*)CNBuffer)[i+0] = _3BytesSeqs[id][0]; ((BYTE*)CNBuffer)[i+1] = _3BytesSeqs[id][1]; ((BYTE*)CNBuffer)[i+2] = _3BytesSeqs[id][2]; } }} DISPLAYLEVEL(4, "test%3i : compress lots 3-bytes sequences : ", testNb++); { CHECKTEST(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(_3BYTESTESTLENGTH), CNBuffer, _3BYTESTESTLENGTH, 19) ); cSize = r; } DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/_3BYTESTESTLENGTH*100); DISPLAYLEVEL(4, "test%3i : decompress lots 3-bytes sequence : ", testNb++); { CHECKTEST(r, ZSTD_decompress(decodedBuffer, _3BYTESTESTLENGTH, compressedBuffer, cSize) ); if (r != _3BYTESTESTLENGTH) goto _output_error; } DISPLAYLEVEL(4, "OK \n"); _end: free(CNBuffer); free(compressedBuffer); free(decodedBuffer); return testResult; _output_error: testResult = 1; DISPLAY("Error detected in Unit tests ! \n"); goto _end; } static size_t findDiff(const void* buf1, const void* buf2, size_t max) { const BYTE* b1 = (const BYTE*)buf1; const BYTE* b2 = (const BYTE*)buf2; size_t u; for (u=0; u "); DISPLAY(__VA_ARGS__); \ DISPLAY(" (seed %u, test nb %u) \n", seed, testNb); goto _output_error; } static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, U32 const maxDurationS, double compressibility) { static const U32 maxSrcLog = 23; static const U32 maxSampleLog = 22; size_t const srcBufferSize = (size_t)1<= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); } else { DISPLAYUPDATE(2, "\r%6u ", testNb); } FUZ_rand(&coreSeed); { U32 const prime1 = 2654435761U; lseed = coreSeed ^ prime1; } /* srcBuffer selection [0-4] */ { U32 buffNb = FUZ_rand(&lseed) & 0x7F; if (buffNb & 7) buffNb=2; /* most common : compressible (P) */ else { buffNb >>= 3; if (buffNb & 7) { const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */ buffNb = tnb[buffNb >> 3]; } else { const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */ buffNb = tnb[buffNb >> 3]; } } srcBuffer = cNoiseBuffer[buffNb]; } /* select src segment */ sampleSize = FUZ_randomLength(&lseed, maxSampleLog); /* create sample buffer (to catch read error with valgrind & sanitizers) */ sampleBuffer = (BYTE*)malloc(sampleSize); CHECK(sampleBuffer==NULL, "not enough memory for sample buffer"); { size_t const sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize); memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); } crcOrig = XXH64(sampleBuffer, sampleSize, 0); /* compression tests */ { unsigned const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (FUZ_highbit32((U32)sampleSize)/3))) + 1; cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel); CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed"); /* compression failure test : too small dest buffer */ if (cSize > 3) { const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ const size_t tooSmallSize = cSize - missing; const U32 endMark = 0x4DC2B1A9; memcpy(dstBuffer+tooSmallSize, &endMark, 4); { size_t const errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel); CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (U32)tooSmallSize, (U32)cSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+tooSmallSize, 4); CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow"); } } } /* frame header decompression test */ { ZSTD_frameParams dParams; size_t const check = ZSTD_getFrameParams(&dParams, cBuffer, cSize); CHECK(ZSTD_isError(check), "Frame Parameters extraction failed"); CHECK(dParams.frameContentSize != sampleSize, "Frame content size incorrect"); } /* successful decompression test */ { size_t const margin = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1; size_t const dSize = ZSTD_decompress(dstBuffer, sampleSize + margin, cBuffer, cSize); CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (U32)sampleSize, (U32)cSize); { U64 const crcDest = XXH64(dstBuffer, sampleSize, 0); CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (U32)findDiff(sampleBuffer, dstBuffer, sampleSize), (U32)sampleSize); } } free(sampleBuffer); /* no longer useful after this point */ /* truncated src decompression test */ { size_t const missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = cSize - missing; void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch read overflows */ CHECK(cBufferTooSmall == NULL, "not enough memory !"); memcpy(cBufferTooSmall, cBuffer, tooSmallSize); { size_t const errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); } free(cBufferTooSmall); } /* too small dst decompression test */ if (sampleSize > 3) { size_t const missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */ size_t const tooSmallSize = sampleSize - missing; static const BYTE token = 0xA9; dstBuffer[tooSmallSize] = token; { size_t const errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize); CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (U32)errorCode, (U32)tooSmallSize); } CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow"); } /* noisy src decompression test */ if (cSize > 6) { /* insert noise into src */ { U32 const maxNbBits = FUZ_highbit32((U32)(cSize-4)); size_t pos = 4; /* preserve magic number (too easy to detect) */ for (;;) { /* keep some original src */ { U32 const nbBits = FUZ_rand(&lseed) % maxNbBits; size_t const mask = (1<sampleSize), "ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (U32)decompressResult, (U32)sampleSize); } { U32 endCheck; memcpy(&endCheck, dstBuffer+sampleSize, 4); CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow"); } } } /* noisy src decompression test */ /*===== Streaming compression test, scattered segments and dictionary =====*/ { U32 const testLog = FUZ_rand(&lseed) % maxSrcLog; int const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (testLog/3))) + 1; maxTestSize = FUZ_rLogLength(&lseed, testLog); if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1; dictSize = FUZ_randomLength(&lseed, maxSampleLog); /* needed also for decompression */ dict = srcBuffer + (FUZ_rand(&lseed) % (srcBufferSize - dictSize)); if (FUZ_rand(&lseed) & 0xF) { size_t const errorCode = ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, cLevel); CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); } else { ZSTD_compressionParameters const cPar = ZSTD_getCParams(cLevel, 0, dictSize); ZSTD_frameParameters const fpar = { FUZ_rand(&lseed)&1 /* contentSizeFlag */, !(FUZ_rand(&lseed)&3) /* contentChecksumFlag*/, 0 /*NodictID*/ }; /* note : since dictionary is fake, dictIDflag has no impact */ ZSTD_parameters p; size_t errorCode; p.cParams = cPar; p.fParams = fpar; errorCode = ZSTD_compressBegin_advanced(refCtx, dict, dictSize, p, 0); CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_advanced error : %s", ZSTD_getErrorName(errorCode)); } { size_t const errorCode = ZSTD_copyCCtx(ctx, refCtx); CHECK (ZSTD_isError(errorCode), "ZSTD_copyCCtx error : %s", ZSTD_getErrorName(errorCode)); } } XXH64_reset(&xxhState, 0); { U32 const nbChunks = (FUZ_rand(&lseed) & 127) + 2; U32 n; for (totalTestSize=0, cSize=0, n=0 ; n maxTestSize) break; { size_t const compressResult = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+segmentStart, segmentSize); CHECK (ZSTD_isError(compressResult), "multi-segments compression error : %s", ZSTD_getErrorName(compressResult)); cSize += compressResult; } XXH64_update(&xxhState, srcBuffer+segmentStart, segmentSize); memcpy(mirrorBuffer + totalTestSize, srcBuffer+segmentStart, segmentSize); totalTestSize += segmentSize; } } { size_t const flushResult = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize); CHECK (ZSTD_isError(flushResult), "multi-segments epilogue error : %s", ZSTD_getErrorName(flushResult)); cSize += flushResult; } crcOrig = XXH64_digest(&xxhState); /* streaming decompression test */ if (dictSize<8) dictSize=0, dict=NULL; /* disable dictionary */ { size_t const errorCode = ZSTD_decompressBegin_usingDict(dctx, dict, dictSize); CHECK (ZSTD_isError(errorCode), "ZSTD_decompressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); } totalCSize = 0; totalGenSize = 0; while (totalCSize < cSize) { size_t const inSize = ZSTD_nextSrcSizeToDecompress(dctx); size_t const genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize); CHECK (ZSTD_isError(genSize), "streaming decompression error : %s", ZSTD_getErrorName(genSize)); totalGenSize += genSize; totalCSize += inSize; } CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded"); CHECK (totalGenSize != totalTestSize, "streaming decompressed data : wrong size") CHECK (totalCSize != cSize, "compressed data should be fully read") { U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0); if (crcDest!=crcOrig) { size_t const errorPos = findDiff(mirrorBuffer, dstBuffer, totalTestSize); CHECK (1, "streaming decompressed data corrupted : byte %u / %u (%02X!=%02X)", (U32)errorPos, (U32)totalTestSize, dstBuffer[errorPos], mirrorBuffer[errorPos]); } } } /* for ( ; (testNb <= nbTests) */ DISPLAY("\r%u fuzzer tests completed \n", testNb-1); _cleanup: ZSTD_freeCCtx(refCtx); ZSTD_freeCCtx(ctx); ZSTD_freeDCtx(dctx); free(cNoiseBuffer[0]); free(cNoiseBuffer[1]); free(cNoiseBuffer[2]); free(cNoiseBuffer[3]); free(cNoiseBuffer[4]); free(cBuffer); free(dstBuffer); free(mirrorBuffer); return result; _output_error: result = 1; goto _cleanup; } /*_******************************************************* * Command line *********************************************************/ int FUZ_usage(const char* programName) { DISPLAY( "Usage :\n"); DISPLAY( " %s [args]\n", programName); DISPLAY( "\n"); DISPLAY( "Arguments :\n"); DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault); DISPLAY( " -s# : Select seed (default:prompt user)\n"); DISPLAY( " -t# : Select starting test number (default:0)\n"); DISPLAY( " -P# : Select compressibility in %% (default:%u%%)\n", FUZ_compressibility_default); DISPLAY( " -v : verbose\n"); DISPLAY( " -p : pause at the end\n"); DISPLAY( " -h : display help and exit\n"); return 0; } int main(int argc, const char** argv) { U32 seed=0; int seedset=0; int argNb; int nbTests = nbTestsDefault; int testNb = 0; U32 proba = FUZ_compressibility_default; int result=0; U32 mainPause = 0; U32 maxDuration = 0; const char* programName = argv[0]; /* Check command line */ for (argNb=1; argNb='0') && (*argument<='9')) { nbTests *= 10; nbTests += *argument - '0'; argument++; } break; case 'T': argument++; nbTests=0; maxDuration=0; while ((*argument>='0') && (*argument<='9')) { maxDuration *= 10; maxDuration += *argument - '0'; argument++; } if (*argument=='m') maxDuration *=60, argument++; if (*argument=='n') argument++; break; case 's': argument++; seed=0; seedset=1; while ((*argument>='0') && (*argument<='9')) { seed *= 10; seed += *argument - '0'; argument++; } break; case 't': argument++; testNb=0; while ((*argument>='0') && (*argument<='9')) { testNb *= 10; testNb += *argument - '0'; argument++; } break; case 'P': /* compressibility % */ argument++; proba=0; while ((*argument>='0') && (*argument<='9')) { proba *= 10; proba += *argument - '0'; argument++; } if (proba>100) proba=100; break; default: return FUZ_usage(programName); } } } } /* for (argNb=1; argNb