zstd/lib/compress/zstdmt_compress.c
Yann Collet 1a2547f654 ZSTDMT_compressStream() becomes blocking when required to ensure forward progresses
In some (rare) cases, job list could be blocked by a first job still being processed,
while all following ones are completed, waiting to be flushed.
In such case, the current job-table implementation is unable to accept new job.
As a consequence, a call to ZSTDMT_compressStream() can be useless (nothing read, nothing flushed),
with the risk to trigger a busy-wait on the caller side
(needlessly loop over ZSTDMT_compressStream() ).

In such a case, ZSTDMT_compressStream() will block until the first job is completed and ready to flush.
It ensures some forward progress by guaranteeing it will flush at least a part of the completed job.
Energy-wasting busy-wait is avoided.
2017-01-22 23:49:52 -08:00

714 lines
30 KiB
C

/**
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
/* ====== Tuning parameters ====== */
#ifndef ZSTDMT_SECTION_LOGSIZE_MIN
# define ZSTDMT_SECTION_LOGSIZE_MIN 20 /* minimum size for a full compression job (20==2^20==1 MB) */
#endif
#define ZSTDMT_NBTHREADS_MAX 128
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/* ====== Dependencies ====== */
#include <stdlib.h> /* malloc */
#include <string.h> /* memcpy */
#include <pool.h> /* threadpool */
#include "threading.h" /* mutex */
#include "zstd_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstdmt_compress.h"
/* ====== Debug ====== */
#if 0
# include <stdio.h>
# include <unistd.h>
# include <sys/times.h>
static unsigned g_debugLevel = 3;
# define DEBUGLOGRAW(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __VA_ARGS__); }
# define DEBUGLOG(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __FILE__ ": "); fprintf(stderr, __VA_ARGS__); fprintf(stderr, " \n"); }
# define DEBUG_PRINTHEX(l,p,n) { \
unsigned debug_u; \
for (debug_u=0; debug_u<(n); debug_u++) \
DEBUGLOGRAW(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
DEBUGLOGRAW(l, " \n"); \
}
static unsigned long long GetCurrentClockTimeMicroseconds()
{
static clock_t _ticksPerSecond = 0;
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
struct tms junk; clock_t newTicks = (clock_t) times(&junk);
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
}
#define MUTEX_WAIT_TIME_DLEVEL 5
#define PTHREAD_MUTEX_LOCK(mutex) \
if (g_debugLevel>=MUTEX_WAIT_TIME_DLEVEL) { \
unsigned long long beforeTime = GetCurrentClockTimeMicroseconds(); \
pthread_mutex_lock(mutex); \
unsigned long long afterTime = GetCurrentClockTimeMicroseconds(); \
unsigned long long elapsedTime = (afterTime-beforeTime); \
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
elapsedTime, #mutex); \
} \
} else pthread_mutex_lock(mutex);
#else
# define DEBUGLOG(l, ...) {} /* disabled */
# define PTHREAD_MUTEX_LOCK(m) pthread_mutex_lock(m)
# define DEBUG_PRINTHEX(l,p,n) {}
#endif
/* ===== Buffer Pool ===== */
typedef struct buffer_s {
void* start;
size_t size;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 };
typedef struct ZSTDMT_bufferPool_s {
unsigned totalBuffers;
unsigned nbBuffers;
buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool;
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads)
{
unsigned const maxNbBuffers = 2*nbThreads + 2;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)calloc(1, sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t));
if (bufPool==NULL) return NULL;
bufPool->totalBuffers = maxNbBuffers;
bufPool->nbBuffers = 0;
return bufPool;
}
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
unsigned u;
if (!bufPool) return; /* compatibility with free on NULL */
for (u=0; u<bufPool->totalBuffers; u++)
free(bufPool->bTable[u].start);
free(bufPool);
}
/* assumption : invocation from main thread only ! */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* pool, size_t bSize)
{
if (pool->nbBuffers) { /* try to use an existing buffer */
buffer_t const buf = pool->bTable[--(pool->nbBuffers)];
size_t const availBufferSize = buf.size;
if ((availBufferSize >= bSize) & (availBufferSize <= 10*bSize)) /* large enough, but not too much */
return buf;
free(buf.start); /* size conditions not respected : scratch this buffer and create a new one */
}
/* create new buffer */
{ buffer_t buffer;
void* const start = malloc(bSize);
if (start==NULL) bSize = 0;
buffer.start = start; /* note : start can be NULL if malloc fails ! */
buffer.size = bSize;
return buffer;
}
}
/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* pool, buffer_t buf)
{
if (buf.start == NULL) return; /* release on NULL */
if (pool->nbBuffers < pool->totalBuffers) {
pool->bTable[pool->nbBuffers++] = buf; /* store for later re-use */
return;
}
/* Reached bufferPool capacity (should not happen) */
free(buf.start);
}
/* ===== CCtx Pool ===== */
typedef struct {
unsigned totalCCtx;
unsigned availCCtx;
ZSTD_CCtx* cctx[1]; /* variable size */
} ZSTDMT_CCtxPool;
/* assumption : CCtxPool invocation only from main thread */
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
unsigned u;
for (u=0; u<pool->totalCCtx; u++)
ZSTD_freeCCtx(pool->cctx[u]); /* note : compatible with free on NULL */
free(pool);
}
/* ZSTDMT_createCCtxPool() :
* implies nbThreads >= 1 , checked by caller ZSTDMT_createCCtx() */
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads)
{
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) calloc(1, sizeof(ZSTDMT_CCtxPool) + (nbThreads-1)*sizeof(ZSTD_CCtx*));
if (!cctxPool) return NULL;
cctxPool->totalCCtx = nbThreads;
cctxPool->availCCtx = 0;
return cctxPool;
}
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* pool)
{
if (pool->availCCtx) {
pool->availCCtx--;
return pool->cctx[pool->availCCtx];
}
return ZSTD_createCCtx(); /* note : can be NULL, when creation fails ! */
}
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
if (cctx==NULL) return; /* compatibility with release on NULL */
if (pool->availCCtx < pool->totalCCtx)
pool->cctx[pool->availCCtx++] = cctx;
else
/* pool overflow : should not happen, since totalCCtx==nbThreads */
ZSTD_freeCCtx(cctx);
}
/* ===== Thread worker ===== */
typedef struct {
buffer_t buffer;
size_t filled;
} inBuff_t;
typedef struct {
ZSTD_CCtx* cctx;
buffer_t src;
const void* srcStart;
size_t srcSize;
buffer_t dstBuff;
size_t cSize;
size_t dstFlushed;
unsigned firstChunk;
unsigned lastChunk;
unsigned jobCompleted;
pthread_mutex_t* jobCompleted_mutex;
pthread_cond_t* jobCompleted_cond;
ZSTD_parameters params;
ZSTD_CDict* cdict;
const void* dict;
size_t dictSize;
unsigned long long fullFrameSize;
} ZSTDMT_jobDescription;
/* ZSTDMT_compressChunk() : POOL_function type */
void ZSTDMT_compressChunk(void* jobDescription)
{
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
buffer_t const dstBuff = job->dstBuff;
if (job->cdict) {
size_t const initError = ZSTD_compressBegin_usingCDict(job->cctx, job->cdict, job->fullFrameSize);
if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; }
} else {
size_t const initError = ZSTD_compressBegin_advanced(job->cctx, job->dict, job->dictSize, job->params, job->fullFrameSize);
if (ZSTD_isError(initError)) { job->cSize = initError; goto _endJob; }
}
if (!job->firstChunk) { /* flush frame header */
size_t const hSize = ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, 0);
if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; }
ZSTD_invalidateRepCodes(job->cctx);
}
DEBUGLOG(3, "Compressing : ");
DEBUG_PRINTHEX(3, job->srcStart, 12);
job->cSize = (job->lastChunk) ? /* last chunk signal */
ZSTD_compressEnd(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize) :
ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize);
DEBUGLOG(3, "compressed %u bytes into %u bytes (first:%u) (last:%u)", (unsigned)job->srcSize, (unsigned)job->cSize, job->firstChunk, job->lastChunk);
_endJob:
PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex);
job->jobCompleted = 1;
pthread_cond_signal(job->jobCompleted_cond);
pthread_mutex_unlock(job->jobCompleted_mutex);
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
struct ZSTDMT_CCtx_s {
POOL_ctx* factory;
ZSTDMT_bufferPool* buffPool;
ZSTDMT_CCtxPool* cctxPool;
pthread_mutex_t jobCompleted_mutex;
pthread_cond_t jobCompleted_cond;
size_t targetSectionSize;
size_t inBuffSize;
inBuff_t inBuff;
ZSTD_parameters params;
unsigned nbThreads;
unsigned jobIDMask;
unsigned doneJobID;
unsigned nextJobID;
unsigned frameEnded;
unsigned allJobsCompleted;
unsigned long long frameContentSize;
ZSTD_CDict* cdict;
ZSTDMT_jobDescription jobs[1]; /* variable size (must lies at the end) */
};
ZSTDMT_CCtx *ZSTDMT_createCCtx(unsigned nbThreads)
{
ZSTDMT_CCtx* cctx;
U32 const minNbJobs = nbThreads + 2;
U32 const nbJobsLog2 = ZSTD_highbit32(minNbJobs) + 1;
U32 const nbJobs = 1 << nbJobsLog2;
DEBUGLOG(4, "nbThreads : %u ; minNbJobs : %u ; nbJobsLog2 : %u ; nbJobs : %u \n",
nbThreads, minNbJobs, nbJobsLog2, nbJobs);
if ((nbThreads < 1) | (nbThreads > ZSTDMT_NBTHREADS_MAX)) return NULL;
cctx = (ZSTDMT_CCtx*) calloc(1, sizeof(ZSTDMT_CCtx) + nbJobs*sizeof(ZSTDMT_jobDescription));
if (!cctx) return NULL;
cctx->nbThreads = nbThreads;
cctx->jobIDMask = nbJobs - 1;
cctx->allJobsCompleted = 1;
cctx->factory = POOL_create(nbThreads, 1);
cctx->buffPool = ZSTDMT_createBufferPool(nbThreads);
cctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads);
if (!cctx->factory | !cctx->buffPool | !cctx->cctxPool) { /* one object was not created */
ZSTDMT_freeCCtx(cctx);
return NULL;
}
pthread_mutex_init(&cctx->jobCompleted_mutex, NULL); /* Todo : check init function return */
pthread_cond_init(&cctx->jobCompleted_cond, NULL);
return cctx;
}
/* ZSTDMT_releaseAllJobResources() :
* Ensure all workers are killed first. */
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
{
unsigned jobID;
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].dstBuff);
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[jobID].src);
mtctx->jobs[jobID].src = g_nullBuffer;
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[jobID].cctx);
mtctx->jobs[jobID].cctx = NULL;
}
memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription));
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->inBuff.buffer);
mtctx->inBuff.buffer = g_nullBuffer;
mtctx->allJobsCompleted = 1;
}
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
if (mtctx==NULL) return 0; /* compatible with free on NULL */
ZSTD_freeCDict(mtctx->cdict);
POOL_free(mtctx->factory);
if (!mtctx->allJobsCompleted) ZSTDMT_releaseAllJobResources(mtctx); /* stop workers first */
ZSTDMT_freeBufferPool(mtctx->buffPool); /* release job resources into pools first */
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
pthread_mutex_destroy(&mtctx->jobCompleted_mutex);
pthread_cond_destroy(&mtctx->jobCompleted_cond);
free(mtctx);
return 0;
}
size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2);
unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + (srcSize < chunkTargetSize) /* min 1 */;
unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads);
size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks;
size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */
size_t remainingSrcSize = srcSize;
const char* const srcStart = (const char*)src;
size_t frameStartPos = 0;
DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize);
DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize);
params.fParams.contentSizeFlag = 1;
{ unsigned u;
for (u=0; u<nbChunks; u++) {
size_t const chunkSize = MIN(remainingSrcSize, avgChunkSize);
size_t const dstBufferCapacity = u ? ZSTD_compressBound(chunkSize) : dstCapacity;
buffer_t const dstAsBuffer = { dst, dstCapacity };
buffer_t const dstBuffer = u ? ZSTDMT_getBuffer(mtctx->buffPool, dstBufferCapacity) : dstAsBuffer;
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool);
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */
mtctx->jobs[u].jobCompleted = 1;
nbChunks = u+1;
break; /* let's wait for previous jobs to complete, but don't start new ones */
}
mtctx->jobs[u].srcStart = srcStart + frameStartPos;
mtctx->jobs[u].srcSize = chunkSize;
mtctx->jobs[u].fullFrameSize = srcSize;
mtctx->jobs[u].params = params;
mtctx->jobs[u].dstBuff = dstBuffer;
mtctx->jobs[u].cctx = cctx;
mtctx->jobs[u].firstChunk = (u==0);
mtctx->jobs[u].lastChunk = (u==nbChunks-1);
mtctx->jobs[u].jobCompleted = 0;
mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex;
mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond;
DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize);
DEBUG_PRINTHEX(3, mtctx->jobs[u].srcStart, 12);
POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]);
frameStartPos += chunkSize;
remainingSrcSize -= chunkSize;
} }
/* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */
{ unsigned chunkID;
size_t error = 0, dstPos = 0;
for (chunkID=0; chunkID<nbChunks; chunkID++) {
DEBUGLOG(3, "waiting for chunk %u ", chunkID);
PTHREAD_MUTEX_LOCK(&mtctx->jobCompleted_mutex);
while (mtctx->jobs[chunkID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID);
pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&mtctx->jobCompleted_mutex);
DEBUGLOG(3, "ready to write chunk %u ", chunkID);
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx);
mtctx->jobs[chunkID].cctx = NULL;
mtctx->jobs[chunkID].srcStart = NULL;
{ size_t const cSize = mtctx->jobs[chunkID].cSize;
if (ZSTD_isError(cSize)) error = cSize;
if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
if (chunkID) { /* note : chunk 0 is already written directly into dst */
if (!error) memcpy((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize);
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff);
mtctx->jobs[chunkID].dstBuff = g_nullBuffer;
}
dstPos += cSize ;
}
}
if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos);
return error ? error : dstPos;
}
}
/* ====================================== */
/* ======= Streaming API ======= */
/* ====================================== */
#if 1
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* zcs) {
while (zcs->doneJobID < zcs->nextJobID) {
unsigned const jobID = zcs->doneJobID & zcs->jobIDMask;
PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex);
while (zcs->jobs[jobID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex);
}
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
zcs->doneJobID++;
}
}
static size_t ZSTDMT_initCStream_internal(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize, unsigned updateDict,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_customMem const cmem = { NULL, NULL, NULL };
if (zcs->allJobsCompleted == 0) { /* previous job not correctly finished */
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
zcs->allJobsCompleted = 1;
}
params.fParams.checksumFlag = 0; /* current limitation : no checksum (to be lifted in a later version) */
zcs->params = params;
if (updateDict) {
ZSTD_freeCDict(zcs->cdict); zcs->cdict = NULL;
if (dict && dictSize) {
zcs->cdict = ZSTD_createCDict_advanced(dict, dictSize, 0, params, cmem);
if (zcs->cdict == NULL) return ERROR(memory_allocation);
} }
zcs->frameContentSize = pledgedSrcSize;
zcs->targetSectionSize = (size_t)1 << MAX(ZSTDMT_SECTION_LOGSIZE_MIN, (zcs->params.cParams.windowLog + 2));
zcs->inBuffSize = zcs->targetSectionSize + ((size_t)1 << zcs->params.cParams.windowLog);
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
if (zcs->inBuff.buffer.start == NULL) return ERROR(memory_allocation);
zcs->inBuff.filled = 0;
zcs->doneJobID = 0;
zcs->nextJobID = 0;
zcs->frameEnded = 0;
zcs->allJobsCompleted = 0;
return 0;
}
size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
return ZSTDMT_initCStream_internal(zcs, dict, dictSize, 1, params, pledgedSrcSize);
}
/* ZSTDMT_resetCStream() :
* pledgedSrcSize is optional and can be zero == unknown */
size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* zcs, unsigned long long pledgedSrcSize)
{
return ZSTDMT_initCStream_internal(zcs, NULL, 0, 0, zcs->params, pledgedSrcSize);
}
size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) {
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0);
return ZSTDMT_initCStream_internal(zcs, NULL, 0, 1, params, 0);
}
size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
if (zcs->frameEnded) return ERROR(stage_wrong); /* current frame being ended. Only flush is allowed. Restart with init */
/* fill input buffer */
{ size_t const toLoad = MIN(input->size - input->pos, zcs->inBuffSize - zcs->inBuff.filled);
memcpy((char*)zcs->inBuff.buffer.start + zcs->inBuff.filled, input->src, toLoad);
input->pos += toLoad;
zcs->inBuff.filled += toLoad;
}
if ( (zcs->inBuff.filled == zcs->inBuffSize) /* filled enough : let's compress */
&& (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) { /* avoid overwriting job round buffer */
size_t const dstBufferCapacity = ZSTD_compressBound(zcs->targetSectionSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool);
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
DEBUGLOG(1, "preparing job %u to compress %u bytes \n", (U32)zcs->nextJobID, (U32)zcs->targetSectionSize);
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = zcs->targetSectionSize;
zcs->jobs[jobID].params = zcs->params;
zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL;
zcs->jobs[jobID].dict = NULL;
zcs->jobs[jobID].dictSize = 0;
zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0);
zcs->jobs[jobID].lastChunk = 0;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input - save remaining into it */
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
zcs->inBuff.filled = (U32)(zcs->inBuffSize - zcs->targetSectionSize);
memcpy(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->targetSectionSize, zcs->inBuff.filled);
DEBUGLOG(3, "posting job %u (%u bytes) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* This call is blocking if all workers are busy */
zcs->nextJobID++;
}
/* check if there is any data available to flush */
{ unsigned const jobID = zcs->doneJobID & zcs->jobIDMask;
unsigned jobCompleted;
pthread_mutex_lock(&zcs->jobCompleted_mutex);
while (zcs->jobs[jobID].jobCompleted == 0 && zcs->inBuff.filled == zcs->inBuffSize) {
/* when no new job could be started, block until there is something to flush, ensuring forward progress */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex);
}
jobCompleted = zcs->jobs[jobID].jobCompleted;
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
if (jobCompleted) {
ZSTDMT_jobDescription const job = zcs->jobs[jobID];
size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos);
DEBUGLOG(1, "flush %u bytes from job %u ", (U32)toWrite, zcs->doneJobID);
ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx);
zcs->jobs[jobID].cctx = NULL;
ZSTDMT_releaseBuffer(zcs->buffPool, job.src);
zcs->jobs[jobID].srcStart = NULL; zcs->jobs[jobID].src = g_nullBuffer;
if (ZSTD_isError(job.cSize)) {
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return job.cSize;
}
memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite);
output->pos += toWrite;
zcs->jobs[jobID].dstFlushed += toWrite;
DEBUGLOG(1, "remaining : %u bytes ", (U32)(job.cSize - job.dstFlushed));
if (zcs->jobs[jobID].dstFlushed == job.cSize) { /* output buffer fully flushed => go to next one */
ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff);
zcs->jobs[jobID].dstBuff = g_nullBuffer;
zcs->jobs[jobID].jobCompleted = 0;
zcs->doneJobID++;
} } }
/* recommended next input size : fill current input buffer */
return zcs->inBuffSize - zcs->inBuff.filled;
}
static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned endFrame)
{
size_t const srcSize = zcs->inBuff.filled;
DEBUGLOG(1, "flushing : %u bytes to compress", (U32)srcSize);
if ( ((srcSize > 0) || (endFrame && !zcs->frameEnded))
&& (zcs->nextJobID <= zcs->doneJobID + zcs->jobIDMask) ) {
size_t const dstBufferCapacity = ZSTD_compressBound(srcSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool);
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = srcSize;
zcs->jobs[jobID].params = zcs->params;
zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL;
zcs->jobs[jobID].dict = NULL;
zcs->jobs[jobID].dictSize = 0;
zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0);
zcs->jobs[jobID].lastChunk = endFrame;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input */
if (!endFrame) {
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
zcs->inBuff.filled = 0;
if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
} else {
zcs->inBuff.buffer = g_nullBuffer;
zcs->inBuff.filled = 0;
zcs->frameEnded = 1;
}
DEBUGLOG(1, "posting job %u : %u bytes (end:%u) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->jobs[jobID].lastChunk, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */
zcs->nextJobID++;
}
/* check if there is any data available to flush */
DEBUGLOG(1, "zcs->doneJobID : %u ; zcs->nextJobID : %u ", zcs->doneJobID, zcs->nextJobID);
if (zcs->doneJobID == zcs->nextJobID) return 0; /* all flushed ! */
{ unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask;
PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex);
while (zcs->jobs[wJobID].jobCompleted==0) {
DEBUGLOG(5, "waiting for jobCompleted signal from job %u", zcs->doneJobID); /* we want to block when waiting for data to flush */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex);
}
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
{ /* job completed : output can be flushed */
ZSTDMT_jobDescription job = zcs->jobs[wJobID];
size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos);
DEBUGLOG(1, "Flushing %u bytes from job %u ", (U32)toWrite, zcs->doneJobID);
ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[wJobID].cctx = NULL; /* release cctx for future task */
ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[wJobID].srcStart = NULL; zcs->jobs[wJobID].src = g_nullBuffer;
if (ZSTD_isError(job.cSize)) {
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return job.cSize;
}
memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite);
output->pos += toWrite;
job.dstFlushed += toWrite;
if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => next one */
ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[wJobID].dstBuff = g_nullBuffer;
zcs->jobs[wJobID].jobCompleted = 0;
zcs->doneJobID++;
} else {
zcs->jobs[wJobID].dstFlushed = job.dstFlushed;
}
/* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */
if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed);
if ((zcs->doneJobID < zcs->nextJobID) || (zcs->inBuff.filled)) return 1; /* still some buffer to flush */
zcs->allJobsCompleted = zcs->frameEnded;
return 0;
} }
}
size_t ZSTDMT_flushStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
return ZSTDMT_flushStream_internal(zcs, output, 0);
}
size_t ZSTDMT_endStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
return ZSTDMT_flushStream_internal(zcs, output, 1);
}
#endif