zstd/tests/fuzzer.c
2019-09-11 14:25:30 -04:00

2762 lines
131 KiB
C

/*
* Copyright (c) 2015-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Compiler specific
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# define _CRT_SECURE_NO_WARNINGS /* fgets */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/*-************************************
* Includes
**************************************/
#include <stdlib.h> /* free */
#include <stdio.h> /* fgets, sscanf */
#include <string.h> /* strcmp */
#include <assert.h>
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressContinue, ZSTD_compressBlock */
#include "fse.h"
#include "zstd.h" /* ZSTD_VERSION_STRING */
#include "zstd_errors.h" /* ZSTD_getErrorCode */
#include "zstdmt_compress.h"
#define ZDICT_STATIC_LINKING_ONLY
#include "zdict.h" /* ZDICT_trainFromBuffer */
#include "datagen.h" /* RDG_genBuffer */
#include "mem.h"
#define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#include "xxhash.h" /* XXH64 */
#include "util.h"
#include "timefn.h" /* SEC_TO_MICRO, UTIL_time_t, UTIL_TIME_INITIALIZER, UTIL_clockSpanMicro, UTIL_getTime */
/*-************************************
* Constants
**************************************/
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
static const int FUZ_compressibility_default = 50;
static const int nbTestsDefault = 30000;
/*-************************************
* Display Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static U32 g_displayLevel = 2;
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
#define DISPLAYUPDATE(l, ...) \
if (g_displayLevel>=l) { \
if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
{ g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stderr); } \
}
/*-*******************************************************
* Compile time test
*********************************************************/
#undef MIN
#undef MAX
/* Declaring the function, to avoid -Wmissing-prototype */
void FUZ_bug976(void);
void FUZ_bug976(void)
{ /* these constants shall not depend on MIN() macro */
assert(ZSTD_HASHLOG_MAX < 31);
assert(ZSTD_CHAINLOG_MAX < 31);
}
/*-*******************************************************
* Internal functions
*********************************************************/
#define MIN(a,b) ((a)<(b)?(a):(b))
#define MAX(a,b) ((a)>(b)?(a):(b))
#define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r)))
static U32 FUZ_rand(U32* src)
{
static const U32 prime1 = 2654435761U;
static const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
static U32 FUZ_highbit32(U32 v32)
{
unsigned nbBits = 0;
if (v32==0) return 0;
while (v32) v32 >>= 1, nbBits++;
return nbBits;
}
/*=============================================
* Test macros
=============================================*/
#define CHECK_Z(f) { \
size_t const err = f; \
if (ZSTD_isError(err)) { \
DISPLAY("Error => %s : %s ", \
#f, ZSTD_getErrorName(err)); \
exit(1); \
} }
#define CHECK_VAR(var, fn) var = fn; if (ZSTD_isError(var)) { DISPLAYLEVEL(1, "%s : fails : %s \n", #fn, ZSTD_getErrorName(var)); goto _output_error; }
#define CHECK_NEWV(var, fn) size_t const CHECK_VAR(var, fn)
#define CHECK(fn) { CHECK_NEWV(err, fn); }
#define CHECKPLUS(var, fn, more) { CHECK_NEWV(var, fn); more; }
#define CHECK_OP(op, lhs, rhs) { \
if (!((lhs) op (rhs))) { \
DISPLAY("Error L%u => FAILED %s %s %s ", __LINE__, #lhs, #op, #rhs); \
goto _output_error; \
} \
}
#define CHECK_EQ(lhs, rhs) CHECK_OP(==, lhs, rhs)
#define CHECK_LT(lhs, rhs) CHECK_OP(<, lhs, rhs)
/*=============================================
* Memory Tests
=============================================*/
#if defined(__APPLE__) && defined(__MACH__)
#include <malloc/malloc.h> /* malloc_size */
typedef struct {
unsigned long long totalMalloc;
size_t currentMalloc;
size_t peakMalloc;
unsigned nbMalloc;
unsigned nbFree;
} mallocCounter_t;
static const mallocCounter_t INIT_MALLOC_COUNTER = { 0, 0, 0, 0, 0 };
static void* FUZ_mallocDebug(void* counter, size_t size)
{
mallocCounter_t* const mcPtr = (mallocCounter_t*)counter;
void* const ptr = malloc(size);
if (ptr==NULL) return NULL;
DISPLAYLEVEL(4, "allocating %u KB => effectively %u KB \n",
(unsigned)(size >> 10), (unsigned)(malloc_size(ptr) >> 10)); /* OS-X specific */
mcPtr->totalMalloc += size;
mcPtr->currentMalloc += size;
if (mcPtr->currentMalloc > mcPtr->peakMalloc)
mcPtr->peakMalloc = mcPtr->currentMalloc;
mcPtr->nbMalloc += 1;
return ptr;
}
static void FUZ_freeDebug(void* counter, void* address)
{
mallocCounter_t* const mcPtr = (mallocCounter_t*)counter;
DISPLAYLEVEL(4, "freeing %u KB \n", (unsigned)(malloc_size(address) >> 10));
mcPtr->nbFree += 1;
mcPtr->currentMalloc -= malloc_size(address); /* OS-X specific */
free(address);
}
static void FUZ_displayMallocStats(mallocCounter_t count)
{
DISPLAYLEVEL(3, "peak:%6u KB, nbMallocs:%2u, total:%6u KB \n",
(unsigned)(count.peakMalloc >> 10),
count.nbMalloc,
(unsigned)(count.totalMalloc >> 10));
}
static int FUZ_mallocTests_internal(unsigned seed, double compressibility, unsigned part,
void* inBuffer, size_t inSize, void* outBuffer, size_t outSize)
{
/* test only played in verbose mode, as they are long */
if (g_displayLevel<3) return 0;
/* Create compressible noise */
if (!inBuffer || !outBuffer) {
DISPLAY("Not enough memory, aborting\n");
exit(1);
}
RDG_genBuffer(inBuffer, inSize, compressibility, 0. /*auto*/, seed);
/* simple compression tests */
if (part <= 1)
{ int compressionLevel;
for (compressionLevel=1; compressionLevel<=6; compressionLevel++) {
mallocCounter_t malcount = INIT_MALLOC_COUNTER;
ZSTD_customMem const cMem = { FUZ_mallocDebug, FUZ_freeDebug, &malcount };
ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(cMem);
CHECK_Z( ZSTD_compressCCtx(cctx, outBuffer, outSize, inBuffer, inSize, compressionLevel) );
ZSTD_freeCCtx(cctx);
DISPLAYLEVEL(3, "compressCCtx level %i : ", compressionLevel);
FUZ_displayMallocStats(malcount);
} }
/* streaming compression tests */
if (part <= 2)
{ int compressionLevel;
for (compressionLevel=1; compressionLevel<=6; compressionLevel++) {
mallocCounter_t malcount = INIT_MALLOC_COUNTER;
ZSTD_customMem const cMem = { FUZ_mallocDebug, FUZ_freeDebug, &malcount };
ZSTD_CCtx* const cstream = ZSTD_createCStream_advanced(cMem);
ZSTD_outBuffer out = { outBuffer, outSize, 0 };
ZSTD_inBuffer in = { inBuffer, inSize, 0 };
CHECK_Z( ZSTD_initCStream(cstream, compressionLevel) );
CHECK_Z( ZSTD_compressStream(cstream, &out, &in) );
CHECK_Z( ZSTD_endStream(cstream, &out) );
ZSTD_freeCStream(cstream);
DISPLAYLEVEL(3, "compressStream level %i : ", compressionLevel);
FUZ_displayMallocStats(malcount);
} }
/* advanced MT API test */
if (part <= 3)
{ int nbThreads;
for (nbThreads=1; nbThreads<=4; nbThreads++) {
int compressionLevel;
for (compressionLevel=1; compressionLevel<=6; compressionLevel++) {
mallocCounter_t malcount = INIT_MALLOC_COUNTER;
ZSTD_customMem const cMem = { FUZ_mallocDebug, FUZ_freeDebug, &malcount };
ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(cMem);
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, compressionLevel) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, nbThreads) );
CHECK_Z( ZSTD_compress2(cctx, outBuffer, outSize, inBuffer, inSize) );
ZSTD_freeCCtx(cctx);
DISPLAYLEVEL(3, "compress_generic,-T%i,end level %i : ",
nbThreads, compressionLevel);
FUZ_displayMallocStats(malcount);
} } }
/* advanced MT streaming API test */
if (part <= 4)
{ int nbThreads;
for (nbThreads=1; nbThreads<=4; nbThreads++) {
int compressionLevel;
for (compressionLevel=1; compressionLevel<=6; compressionLevel++) {
mallocCounter_t malcount = INIT_MALLOC_COUNTER;
ZSTD_customMem const cMem = { FUZ_mallocDebug, FUZ_freeDebug, &malcount };
ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(cMem);
ZSTD_outBuffer out = { outBuffer, outSize, 0 };
ZSTD_inBuffer in = { inBuffer, inSize, 0 };
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, compressionLevel) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, nbThreads) );
CHECK_Z( ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_continue) );
while ( ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end) ) {}
ZSTD_freeCCtx(cctx);
DISPLAYLEVEL(3, "compress_generic,-T%i,continue level %i : ",
nbThreads, compressionLevel);
FUZ_displayMallocStats(malcount);
} } }
return 0;
}
static int FUZ_mallocTests(unsigned seed, double compressibility, unsigned part)
{
size_t const inSize = 64 MB + 16 MB + 4 MB + 1 MB + 256 KB + 64 KB; /* 85.3 MB */
size_t const outSize = ZSTD_compressBound(inSize);
void* const inBuffer = malloc(inSize);
void* const outBuffer = malloc(outSize);
int result;
/* Create compressible noise */
if (!inBuffer || !outBuffer) {
DISPLAY("Not enough memory, aborting \n");
exit(1);
}
result = FUZ_mallocTests_internal(seed, compressibility, part,
inBuffer, inSize, outBuffer, outSize);
free(inBuffer);
free(outBuffer);
return result;
}
#else
static int FUZ_mallocTests(unsigned seed, double compressibility, unsigned part)
{
(void)seed; (void)compressibility; (void)part;
return 0;
}
#endif
/*=============================================
* Unit tests
=============================================*/
static int basicUnitTests(U32 const seed, double compressibility)
{
size_t const CNBuffSize = 5 MB;
void* const CNBuffer = malloc(CNBuffSize);
size_t const compressedBufferSize = ZSTD_compressBound(CNBuffSize);
void* const compressedBuffer = malloc(compressedBufferSize);
void* const decodedBuffer = malloc(CNBuffSize);
int testResult = 0;
unsigned testNb=0;
size_t cSize;
/* Create compressible noise */
if (!CNBuffer || !compressedBuffer || !decodedBuffer) {
DISPLAY("Not enough memory, aborting\n");
testResult = 1;
goto _end;
}
RDG_genBuffer(CNBuffer, CNBuffSize, compressibility, 0., seed);
/* Basic tests */
DISPLAYLEVEL(3, "test%3u : ZSTD_getErrorName : ", testNb++);
{ const char* errorString = ZSTD_getErrorName(0);
DISPLAYLEVEL(3, "OK : %s \n", errorString);
}
DISPLAYLEVEL(3, "test%3u : ZSTD_getErrorName with wrong value : ", testNb++);
{ const char* errorString = ZSTD_getErrorName(499);
DISPLAYLEVEL(3, "OK : %s \n", errorString);
}
DISPLAYLEVEL(3, "test%3u : min compression level : ", testNb++);
{ int const mcl = ZSTD_minCLevel();
DISPLAYLEVEL(3, "%i (OK) \n", mcl);
}
DISPLAYLEVEL(3, "test%3u : compress %u bytes : ", testNb++, (unsigned)CNBuffSize);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
if (cctx==NULL) goto _output_error;
CHECK_VAR(cSize, ZSTD_compressCCtx(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize, 1) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : size of cctx for level 1 : ", testNb++);
{ size_t const cctxSize = ZSTD_sizeof_CCtx(cctx);
DISPLAYLEVEL(3, "%u bytes \n", (unsigned)cctxSize);
}
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "test%3i : decompress skippable frame -8 size : ", testNb++);
{
char const skippable8[] = "\x50\x2a\x4d\x18\xf8\xff\xff\xff";
size_t const size = ZSTD_decompress(NULL, 0, skippable8, 8);
if (!ZSTD_isError(size)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_getFrameContentSize test : ", testNb++);
{ unsigned long long const rSize = ZSTD_getFrameContentSize(compressedBuffer, cSize);
if (rSize != CNBuffSize) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_findDecompressedSize test : ", testNb++);
{ unsigned long long const rSize = ZSTD_findDecompressedSize(compressedBuffer, cSize);
if (rSize != CNBuffSize) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : tight ZSTD_decompressBound test : ", testNb++);
{
unsigned long long bound = ZSTD_decompressBound(compressedBuffer, cSize);
if (bound != CNBuffSize) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_decompressBound test with invalid srcSize : ", testNb++);
{
unsigned long long bound = ZSTD_decompressBound(compressedBuffer, cSize - 1);
if (bound != ZSTD_CONTENTSIZE_ERROR) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, (unsigned)CNBuffSize);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (r != CNBuffSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t u;
for (u=0; u<CNBuffSize; u++) {
if (((BYTE*)decodedBuffer)[u] != ((BYTE*)CNBuffer)[u]) goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress with null dict : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx(); assert(dctx != NULL);
{ size_t const r = ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
NULL, 0);
if (r != CNBuffSize) goto _output_error;
}
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress with null DDict : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx(); assert(dctx != NULL);
{ size_t const r = ZSTD_decompress_usingDDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
NULL);
if (r != CNBuffSize) goto _output_error;
}
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress with 1 missing byte : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize-1);
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode((size_t)r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress with 1 too much byte : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize+1);
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress too large input : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, compressedBufferSize);
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_decompressBound test with content size missing : ", testNb++);
{ /* create compressed buffer with content size missing */
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, 0) );
CHECK_VAR(cSize, ZSTD_compress2(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize) );
ZSTD_freeCCtx(cctx);
}
{ /* ensure frame content size is missing */
ZSTD_frameHeader zfh;
size_t const ret = ZSTD_getFrameHeader(&zfh, compressedBuffer, compressedBufferSize);
if (ret != 0 || zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) goto _output_error;
}
{ /* ensure CNBuffSize <= decompressBound */
unsigned long long const bound = ZSTD_decompressBound(compressedBuffer, compressedBufferSize);
if (CNBuffSize > bound) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : check CCtx size after compressing empty input : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const r = ZSTD_compressCCtx(cctx, compressedBuffer, compressedBufferSize, NULL, 0, 19);
if (ZSTD_isError(r)) goto _output_error;
if (ZSTD_sizeof_CCtx(cctx) > (1U << 20)) goto _output_error;
ZSTD_freeCCtx(cctx);
cSize = r;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : decompress empty frame into NULL : ", testNb++);
{ size_t const r = ZSTD_decompress(NULL, 0, compressedBuffer, cSize);
if (ZSTD_isError(r)) goto _output_error;
if (r != 0) goto _output_error;
}
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_outBuffer output;
if (cctx==NULL) goto _output_error;
output.dst = compressedBuffer;
output.size = compressedBufferSize;
output.pos = 0;
CHECK_Z( ZSTD_initCStream(cctx, 1) ); /* content size unknown */
CHECK_Z( ZSTD_flushStream(cctx, &output) ); /* ensure no possibility to "concatenate" and determine the content size */
CHECK_Z( ZSTD_endStream(cctx, &output) );
ZSTD_freeCCtx(cctx);
/* single scan decompression */
{ size_t const r = ZSTD_decompress(NULL, 0, compressedBuffer, output.pos);
if (ZSTD_isError(r)) goto _output_error;
if (r != 0) goto _output_error;
}
/* streaming decompression */
{ ZSTD_DCtx* const dstream = ZSTD_createDStream();
ZSTD_inBuffer dinput;
ZSTD_outBuffer doutput;
size_t ipos;
if (dstream==NULL) goto _output_error;
dinput.src = compressedBuffer;
dinput.size = 0;
dinput.pos = 0;
doutput.dst = NULL;
doutput.size = 0;
doutput.pos = 0;
CHECK_Z ( ZSTD_initDStream(dstream) );
for (ipos=1; ipos<=output.pos; ipos++) {
dinput.size = ipos;
CHECK_Z ( ZSTD_decompressStream(dstream, &doutput, &dinput) );
}
if (doutput.pos != 0) goto _output_error;
ZSTD_freeDStream(dstream);
}
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : re-use CCtx with expanding block size : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_parameters const params = ZSTD_getParams(1, ZSTD_CONTENTSIZE_UNKNOWN, 0);
assert(params.fParams.contentSizeFlag == 1); /* block size will be adapted if pledgedSrcSize is enabled */
CHECK_Z( ZSTD_compressBegin_advanced(cctx, NULL, 0, params, 1 /*pledgedSrcSize*/) );
CHECK_Z( ZSTD_compressEnd(cctx, compressedBuffer, compressedBufferSize, CNBuffer, 1) ); /* creates a block size of 1 */
CHECK_Z( ZSTD_compressBegin_advanced(cctx, NULL, 0, params, ZSTD_CONTENTSIZE_UNKNOWN) ); /* re-use same parameters */
{ size_t const inSize = 2* 128 KB;
size_t const outSize = ZSTD_compressBound(inSize);
CHECK_Z( ZSTD_compressEnd(cctx, compressedBuffer, outSize, CNBuffer, inSize) );
/* will fail if blockSize is not resized */
}
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : re-using a CCtx should compress the same : ", testNb++);
{ size_t const sampleSize = 30;
int i;
for (i=0; i<20; i++)
((char*)CNBuffer)[i] = (char)i; /* ensure no match during initial section */
memcpy((char*)CNBuffer + 20, CNBuffer, 10); /* create one match, starting from beginning of sample, which is the difficult case (see #1241) */
for (i=1; i<=19; i++) {
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t size1, size2;
DISPLAYLEVEL(5, "l%i ", i);
size1 = ZSTD_compressCCtx(cctx, compressedBuffer, compressedBufferSize, CNBuffer, sampleSize, i);
CHECK_Z(size1);
size2 = ZSTD_compressCCtx(cctx, compressedBuffer, compressedBufferSize, CNBuffer, sampleSize, i);
CHECK_Z(size2);
CHECK_EQ(size1, size2);
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, i) );
size2 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, sampleSize);
CHECK_Z(size2);
CHECK_EQ(size1, size2);
size2 = ZSTD_compress2(cctx, compressedBuffer, ZSTD_compressBound(sampleSize) - 1, CNBuffer, sampleSize); /* force streaming, as output buffer is not large enough to guarantee success */
CHECK_Z(size2);
CHECK_EQ(size1, size2);
{ ZSTD_inBuffer inb;
ZSTD_outBuffer outb;
inb.src = CNBuffer;
inb.pos = 0;
inb.size = sampleSize;
outb.dst = compressedBuffer;
outb.pos = 0;
outb.size = ZSTD_compressBound(sampleSize) - 1; /* force streaming, as output buffer is not large enough to guarantee success */
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_end) );
assert(inb.pos == inb.size);
CHECK_EQ(size1, outb.pos);
}
ZSTD_freeCCtx(cctx);
}
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : btultra2 & 1st block : ", testNb++);
{ size_t const sampleSize = 1024;
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_inBuffer inb;
ZSTD_outBuffer outb;
inb.src = CNBuffer;
inb.pos = 0;
inb.size = 0;
outb.dst = compressedBuffer;
outb.pos = 0;
outb.size = compressedBufferSize;
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, ZSTD_maxCLevel()) );
inb.size = sampleSize; /* start with something, so that context is already used */
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_end) ); /* will break internal assert if stats_init is not disabled */
assert(inb.pos == inb.size);
outb.pos = 0; /* cancel output */
CHECK_Z( ZSTD_CCtx_setPledgedSrcSize(cctx, sampleSize) );
inb.size = 4; /* too small size : compression will be skipped */
inb.pos = 0;
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_flush) );
assert(inb.pos == inb.size);
inb.size += 5; /* too small size : compression will be skipped */
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_flush) );
assert(inb.pos == inb.size);
inb.size += 11; /* small enough to attempt compression */
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_flush) );
assert(inb.pos == inb.size);
assert(inb.pos < sampleSize);
inb.size = sampleSize; /* large enough to trigger stats_init, but no longer at beginning */
CHECK_Z( ZSTD_compressStream2(cctx, &outb, &inb, ZSTD_e_end) ); /* will break internal assert if stats_init is not disabled */
assert(inb.pos == inb.size);
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : ZSTD_CCtx_getParameter() : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_outBuffer out = {NULL, 0, 0};
ZSTD_inBuffer in = {NULL, 0, 0};
int value;
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 3);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, 0);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_hashLog, ZSTD_HASHLOG_MIN));
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 3);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, ZSTD_HASHLOG_MIN);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 7));
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 7);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, ZSTD_HASHLOG_MIN);
/* Start a compression job */
ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_continue);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 7);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, ZSTD_HASHLOG_MIN);
/* Reset the CCtx */
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 7);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, ZSTD_HASHLOG_MIN);
/* Reset the parameters */
ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_compressionLevel, &value));
CHECK_EQ(value, 3);
CHECK_Z(ZSTD_CCtx_getParameter(cctx, ZSTD_c_hashLog, &value));
CHECK_EQ(value, 0);
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
/* this test is really too long, and should be made faster */
DISPLAYLEVEL(3, "test%3d : overflow protection with large windowLog : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_parameters params = ZSTD_getParams(-999, ZSTD_CONTENTSIZE_UNKNOWN, 0);
size_t const nbCompressions = ((1U << 31) / CNBuffSize) + 2; /* ensure U32 overflow protection is triggered */
size_t cnb;
assert(cctx != NULL);
params.fParams.contentSizeFlag = 0;
params.cParams.windowLog = ZSTD_WINDOWLOG_MAX;
for (cnb = 0; cnb < nbCompressions; ++cnb) {
DISPLAYLEVEL(6, "run %zu / %zu \n", cnb, nbCompressions);
CHECK_Z( ZSTD_compressBegin_advanced(cctx, NULL, 0, params, ZSTD_CONTENTSIZE_UNKNOWN) ); /* re-use same parameters */
CHECK_Z( ZSTD_compressEnd(cctx, compressedBuffer, compressedBufferSize, CNBuffer, CNBuffSize) );
}
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3d : size down context : ", testNb++);
{ ZSTD_CCtx* const largeCCtx = ZSTD_createCCtx();
assert(largeCCtx != NULL);
CHECK_Z( ZSTD_compressBegin(largeCCtx, 19) ); /* streaming implies ZSTD_CONTENTSIZE_UNKNOWN, which maximizes memory usage */
CHECK_Z( ZSTD_compressEnd(largeCCtx, compressedBuffer, compressedBufferSize, CNBuffer, 1) );
{ size_t const largeCCtxSize = ZSTD_sizeof_CCtx(largeCCtx); /* size of context must be measured after compression */
{ ZSTD_CCtx* const smallCCtx = ZSTD_createCCtx();
assert(smallCCtx != NULL);
CHECK_Z(ZSTD_compressCCtx(smallCCtx, compressedBuffer, compressedBufferSize, CNBuffer, 1, 1));
{ size_t const smallCCtxSize = ZSTD_sizeof_CCtx(smallCCtx);
DISPLAYLEVEL(5, "(large) %zuKB > 32*%zuKB (small) : ",
largeCCtxSize>>10, smallCCtxSize>>10);
assert(largeCCtxSize > 32* smallCCtxSize); /* note : "too large" definition is handled within zstd_compress.c .
* make this test case extreme, so that it doesn't depend on a possibly fluctuating definition */
}
ZSTD_freeCCtx(smallCCtx);
}
{ U32 const maxNbAttempts = 1100; /* nb of usages before triggering size down is handled within zstd_compress.c.
* currently defined as 128x, but could be adjusted in the future.
* make this test long enough so that it's not too much tied to the current definition within zstd_compress.c */
unsigned u;
for (u=0; u<maxNbAttempts; u++) {
CHECK_Z(ZSTD_compressCCtx(largeCCtx, compressedBuffer, compressedBufferSize, CNBuffer, 1, 1));
if (ZSTD_sizeof_CCtx(largeCCtx) < largeCCtxSize) break; /* sized down */
}
DISPLAYLEVEL(5, "size down after %u attempts : ", u);
if (u==maxNbAttempts) goto _output_error; /* no sizedown happened */
}
}
ZSTD_freeCCtx(largeCCtx);
}
DISPLAYLEVEL(3, "OK \n");
/* Static CCtx tests */
#define STATIC_CCTX_LEVEL 3
DISPLAYLEVEL(3, "test%3i : create static CCtx for level %u :", testNb++, STATIC_CCTX_LEVEL);
{ size_t const staticCCtxSize = ZSTD_estimateCStreamSize(STATIC_CCTX_LEVEL);
void* const staticCCtxBuffer = malloc(staticCCtxSize);
size_t const staticDCtxSize = ZSTD_estimateDCtxSize();
void* const staticDCtxBuffer = malloc(staticDCtxSize);
if (staticCCtxBuffer==NULL || staticDCtxBuffer==NULL) {
free(staticCCtxBuffer);
free(staticDCtxBuffer);
DISPLAY("Not enough memory, aborting\n");
testResult = 1;
goto _end;
}
{ ZSTD_CCtx* staticCCtx = ZSTD_initStaticCCtx(staticCCtxBuffer, staticCCtxSize);
ZSTD_DCtx* staticDCtx = ZSTD_initStaticDCtx(staticDCtxBuffer, staticDCtxSize);
if ((staticCCtx==NULL) || (staticDCtx==NULL)) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init CCtx for level %u : ", testNb++, STATIC_CCTX_LEVEL);
{ size_t const r = ZSTD_compressBegin(staticCCtx, STATIC_CCTX_LEVEL);
if (ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : simple compression test with static CCtx : ", testNb++);
CHECK_VAR(cSize, ZSTD_compressCCtx(staticCCtx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize, STATIC_CCTX_LEVEL) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n",
(unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : simple decompression test with static DCtx : ", testNb++);
{ size_t const r = ZSTD_decompressDCtx(staticDCtx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize);
if (r != CNBuffSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t u;
for (u=0; u<CNBuffSize; u++) {
if (((BYTE*)decodedBuffer)[u] != ((BYTE*)CNBuffer)[u])
goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init CCtx for too large level (must fail) : ", testNb++);
{ size_t const r = ZSTD_compressBegin(staticCCtx, ZSTD_maxCLevel());
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init CCtx for small level %u (should work again) : ", testNb++, 1);
CHECK( ZSTD_compressBegin(staticCCtx, 1) );
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init CStream for small level %u : ", testNb++, 1);
CHECK( ZSTD_initCStream(staticCCtx, 1) );
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init static CStream with dictionary (should fail) : ", testNb++);
{ size_t const r = ZSTD_initCStream_usingDict(staticCCtx, CNBuffer, 64 KB, 1);
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : init DStream (should fail) : ", testNb++);
{ size_t const r = ZSTD_initDStream(staticDCtx);
if (ZSTD_isError(r)) goto _output_error; }
{ ZSTD_outBuffer output = { decodedBuffer, CNBuffSize, 0 };
ZSTD_inBuffer input = { compressedBuffer, ZSTD_FRAMEHEADERSIZE_MAX+1, 0 };
size_t const r = ZSTD_decompressStream(staticDCtx, &output, &input);
if (!ZSTD_isError(r)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
}
free(staticCCtxBuffer);
free(staticDCtxBuffer);
}
DISPLAYLEVEL(3, "test%3i : Static negative levels : ", testNb++);
{ size_t const cctxSizeN1 = ZSTD_estimateCCtxSize(-1);
size_t const cctxSizeP1 = ZSTD_estimateCCtxSize(1);
size_t const cstreamSizeN1 = ZSTD_estimateCStreamSize(-1);
size_t const cstreamSizeP1 = ZSTD_estimateCStreamSize(1);
if (!(0 < cctxSizeN1 && cctxSizeN1 <= cctxSizeP1)) goto _output_error;
if (!(0 < cstreamSizeN1 && cstreamSizeN1 <= cstreamSizeP1)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
/* ZSTDMT simple MT compression test */
DISPLAYLEVEL(3, "test%3i : create ZSTDMT CCtx : ", testNb++);
{ ZSTDMT_CCtx* const mtctx = ZSTDMT_createCCtx(2);
if (mtctx==NULL) {
DISPLAY("mtctx : not enough memory, aborting \n");
testResult = 1;
goto _end;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3u : compress %u bytes with 2 threads : ", testNb++, (unsigned)CNBuffSize);
CHECK_VAR(cSize, ZSTDMT_compressCCtx(mtctx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize,
1) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : decompressed size test : ", testNb++);
{ unsigned long long const rSize = ZSTD_getFrameContentSize(compressedBuffer, cSize);
if (rSize != CNBuffSize) {
DISPLAY("ZSTD_getFrameContentSize incorrect : %u != %u \n", (unsigned)rSize, (unsigned)CNBuffSize);
goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, (unsigned)CNBuffSize);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (r != CNBuffSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t u;
for (u=0; u<CNBuffSize; u++) {
if (((BYTE*)decodedBuffer)[u] != ((BYTE*)CNBuffer)[u]) goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : compress -T2 with checksum : ", testNb++);
{ ZSTD_parameters params = ZSTD_getParams(1, CNBuffSize, 0);
params.fParams.checksumFlag = 1;
params.fParams.contentSizeFlag = 1;
CHECK_VAR(cSize, ZSTDMT_compress_advanced(mtctx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize,
NULL, params, 3 /*overlapRLog*/) );
}
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, (unsigned)CNBuffSize);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (r != CNBuffSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
ZSTDMT_freeCCtx(mtctx);
}
DISPLAYLEVEL(3, "test%3i : compress -T2 with/without literals compression : ", testNb++)
{ ZSTD_CCtx* cctx = ZSTD_createCCtx();
size_t cSize1, cSize2;
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 1) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 2) );
cSize1 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, CNBuffSize);
CHECK(cSize1);
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_literalCompressionMode, ZSTD_lcm_uncompressed) );
cSize2 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, CNBuffSize);
CHECK(cSize2);
CHECK_LT(cSize1, cSize2);
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Multithreaded ZSTD_compress2() with rsyncable : ", testNb++)
{ ZSTD_CCtx* cctx = ZSTD_createCCtx();
/* Set rsyncable and don't give the ZSTD_compressBound(CNBuffSize) so
* ZSTDMT is forced to not take the shortcut.
*/
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 1) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers, 1) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_rsyncable, 1) );
CHECK( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize - 1, CNBuffer, CNBuffSize) );
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : setting multithreaded parameters : ", testNb++)
{ ZSTD_CCtx_params* params = ZSTD_createCCtxParams();
int value;
/* Check that the overlap log and job size are unset. */
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_overlapLog, &value) );
CHECK_EQ(value, 0);
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_jobSize, &value) );
CHECK_EQ(value, 0);
/* Set and check the overlap log and job size. */
CHECK( ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, 5) );
CHECK( ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, 2 MB) );
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_overlapLog, &value) );
CHECK_EQ(value, 5);
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_jobSize, &value) );
CHECK_EQ(value, 2 MB);
/* Set the number of workers and check the overlap log and job size. */
CHECK( ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, 2) );
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_overlapLog, &value) );
CHECK_EQ(value, 5);
CHECK( ZSTD_CCtxParams_getParameter(params, ZSTD_c_jobSize, &value) );
CHECK_EQ(value, 2 MB);
ZSTD_freeCCtxParams(params);
}
DISPLAYLEVEL(3, "OK \n");
/* Simple API multiframe test */
DISPLAYLEVEL(3, "test%3i : compress multiple frames : ", testNb++);
{ size_t off = 0;
int i;
int const segs = 4;
/* only use the first half so we don't push against size limit of compressedBuffer */
size_t const segSize = (CNBuffSize / 2) / segs;
for (i = 0; i < segs; i++) {
CHECK_NEWV(r, ZSTD_compress(
(BYTE*)compressedBuffer + off, CNBuffSize - off,
(BYTE*)CNBuffer + segSize * (size_t)i, segSize,
5) );
off += r;
if (i == segs/2) {
/* insert skippable frame */
const U32 skipLen = 129 KB;
MEM_writeLE32((BYTE*)compressedBuffer + off, ZSTD_MAGIC_SKIPPABLE_START);
MEM_writeLE32((BYTE*)compressedBuffer + off + 4, skipLen);
off += skipLen + ZSTD_SKIPPABLEHEADERSIZE;
}
}
cSize = off;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : get decompressed size of multiple frames : ", testNb++);
{ unsigned long long const r = ZSTD_findDecompressedSize(compressedBuffer, cSize);
if (r != CNBuffSize / 2) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : get tight decompressed bound of multiple frames : ", testNb++);
{ unsigned long long const bound = ZSTD_decompressBound(compressedBuffer, cSize);
if (bound != CNBuffSize / 2) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress multiple frames : ", testNb++);
{ CHECK_NEWV(r, ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize));
if (r != CNBuffSize / 2) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
if (memcmp(decodedBuffer, CNBuffer, CNBuffSize / 2) != 0) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
/* Dictionary and CCtx Duplication tests */
{ ZSTD_CCtx* const ctxOrig = ZSTD_createCCtx();
ZSTD_CCtx* const ctxDuplicated = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
static const size_t dictSize = 551;
assert(dctx != NULL); assert(ctxOrig != NULL); assert(ctxDuplicated != NULL);
DISPLAYLEVEL(3, "test%3i : copy context too soon : ", testNb++);
{ size_t const copyResult = ZSTD_copyCCtx(ctxDuplicated, ctxOrig, 0);
if (!ZSTD_isError(copyResult)) goto _output_error; } /* error must be detected */
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : load dictionary into context : ", testNb++);
CHECK( ZSTD_compressBegin_usingDict(ctxOrig, CNBuffer, dictSize, 2) );
CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig, 0) ); /* Begin_usingDict implies unknown srcSize, so match that */
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : compress with flat dictionary : ", testNb++);
cSize = 0;
CHECKPLUS(r, ZSTD_compressEnd(ctxOrig,
compressedBuffer, compressedBufferSize,
(const char*)CNBuffer + dictSize, CNBuffSize - dictSize),
cSize += r);
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : frame built with flat dictionary should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
CNBuffer, dictSize),
if (r != CNBuffSize - dictSize) goto _output_error);
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : compress with duplicated context : ", testNb++);
{ size_t const cSizeOrig = cSize;
cSize = 0;
CHECKPLUS(r, ZSTD_compressEnd(ctxDuplicated,
compressedBuffer, compressedBufferSize,
(const char*)CNBuffer + dictSize, CNBuffSize - dictSize),
cSize += r);
if (cSize != cSizeOrig) goto _output_error; /* should be identical ==> same size */
}
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : frame built with duplicated context should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
CNBuffer, dictSize),
if (r != CNBuffSize - dictSize) goto _output_error);
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress with DDict : ", testNb++);
{ ZSTD_DDict* const ddict = ZSTD_createDDict(CNBuffer, dictSize);
size_t const r = ZSTD_decompress_usingDDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, ddict);
if (r != CNBuffSize - dictSize) goto _output_error;
DISPLAYLEVEL(3, "OK (size of DDict : %u) \n", (unsigned)ZSTD_sizeof_DDict(ddict));
ZSTD_freeDDict(ddict);
}
DISPLAYLEVEL(3, "test%3i : decompress with static DDict : ", testNb++);
{ size_t const ddictBufferSize = ZSTD_estimateDDictSize(dictSize, ZSTD_dlm_byCopy);
void* const ddictBuffer = malloc(ddictBufferSize);
if (ddictBuffer == NULL) goto _output_error;
{ const ZSTD_DDict* const ddict = ZSTD_initStaticDDict(ddictBuffer, ddictBufferSize, CNBuffer, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
size_t const r = ZSTD_decompress_usingDDict(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize, ddict);
if (r != CNBuffSize - dictSize) goto _output_error;
}
free(ddictBuffer);
DISPLAYLEVEL(3, "OK (size of static DDict : %u) \n", (unsigned)ddictBufferSize);
}
DISPLAYLEVEL(3, "test%3i : check content size on duplicated context : ", testNb++);
{ size_t const testSize = CNBuffSize / 3;
{ ZSTD_parameters p = ZSTD_getParams(2, testSize, dictSize);
p.fParams.contentSizeFlag = 1;
CHECK( ZSTD_compressBegin_advanced(ctxOrig, CNBuffer, dictSize, p, testSize-1) );
}
CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig, testSize) );
CHECK_VAR(cSize, ZSTD_compressEnd(ctxDuplicated, compressedBuffer, ZSTD_compressBound(testSize),
(const char*)CNBuffer + dictSize, testSize) );
{ ZSTD_frameHeader zfh;
if (ZSTD_getFrameHeader(&zfh, compressedBuffer, cSize)) goto _output_error;
if ((zfh.frameContentSize != testSize) && (zfh.frameContentSize != 0)) goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
if ((int)(compressibility * 100 + 0.1) == FUZ_compressibility_default) { /* test only valid with known input */
size_t const flatdictSize = 22 KB;
size_t const contentSize = 9 KB;
const void* const dict = (const char*)CNBuffer;
const void* const contentStart = (const char*)dict + flatdictSize;
size_t const target_nodict_cSize[22+1] = { 3840, 3770, 3870, 3830, 3770,
3770, 3770, 3770, 3750, 3750,
3740, 3670, 3670, 3660, 3660,
3660, 3660, 3660, 3660, 3660,
3660, 3660, 3660 };
size_t const target_wdict_cSize[22+1] = { 2830, 2890, 2890, 2820, 2940,
2950, 2950, 2920, 2900, 2890,
2910, 2910, 2910, 2770, 2760,
2750, 2750, 2750, 2750, 2750,
2750, 2750, 2750 };
int l = 1;
int const maxLevel = ZSTD_maxCLevel();
DISPLAYLEVEL(3, "test%3i : flat-dictionary efficiency test : \n", testNb++);
assert(maxLevel == 22);
RDG_genBuffer(CNBuffer, flatdictSize + contentSize, compressibility, 0., seed);
DISPLAYLEVEL(4, "content hash : %016llx; dict hash : %016llx \n", XXH64(contentStart, contentSize, 0), XXH64(dict, flatdictSize, 0));
for ( ; l <= maxLevel; l++) {
size_t const nodict_cSize = ZSTD_compress(compressedBuffer, compressedBufferSize,
contentStart, contentSize, l);
if (nodict_cSize > target_nodict_cSize[l]) {
DISPLAYLEVEL(1, "error : compression at level %i worse than expected (%u > %u) \n",
l, (unsigned)nodict_cSize, (unsigned)target_nodict_cSize[l]);
goto _output_error;
}
DISPLAYLEVEL(4, "level %i : max expected %u >= reached %u \n",
l, (unsigned)target_nodict_cSize[l], (unsigned)nodict_cSize);
}
for ( l=1 ; l <= maxLevel; l++) {
size_t const wdict_cSize = ZSTD_compress_usingDict(ctxOrig,
compressedBuffer, compressedBufferSize,
contentStart, contentSize,
dict, flatdictSize,
l);
if (wdict_cSize > target_wdict_cSize[l]) {
DISPLAYLEVEL(1, "error : compression with dictionary at level %i worse than expected (%u > %u) \n",
l, (unsigned)wdict_cSize, (unsigned)target_wdict_cSize[l]);
goto _output_error;
}
DISPLAYLEVEL(4, "level %i with dictionary : max expected %u >= reached %u \n",
l, (unsigned)target_wdict_cSize[l], (unsigned)wdict_cSize);
}
DISPLAYLEVEL(4, "compression efficiency tests OK \n");
}
ZSTD_freeCCtx(ctxOrig);
ZSTD_freeCCtx(ctxDuplicated);
ZSTD_freeDCtx(dctx);
}
/* Dictionary and dictBuilder tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const dictBufferCapacity = 16 KB;
void* const dictBuffer = malloc(dictBufferCapacity);
size_t const totalSampleSize = 1 MB;
size_t const sampleUnitSize = 8 KB;
U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize);
size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t));
size_t dictSize;
U32 dictID;
if (dictBuffer==NULL || samplesSizes==NULL) {
free(dictBuffer);
free(samplesSizes);
goto _output_error;
}
DISPLAYLEVEL(3, "test%3i : dictBuilder on cyclic data : ", testNb++);
assert(compressedBufferSize >= totalSampleSize);
{ U32 u; for (u=0; u<totalSampleSize; u++) ((BYTE*)decodedBuffer)[u] = (BYTE)u; }
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
{ size_t const sDictSize = ZDICT_trainFromBuffer(dictBuffer, dictBufferCapacity,
decodedBuffer, samplesSizes, nbSamples);
if (ZDICT_isError(sDictSize)) goto _output_error;
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)sDictSize);
}
DISPLAYLEVEL(3, "test%3i : dictBuilder : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
dictSize = ZDICT_trainFromBuffer(dictBuffer, dictBufferCapacity,
CNBuffer, samplesSizes, nbSamples);
if (ZDICT_isError(dictSize)) goto _output_error;
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : Multithreaded COVER dictBuilder : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
{ ZDICT_cover_params_t coverParams;
memset(&coverParams, 0, sizeof(coverParams));
coverParams.steps = 8;
coverParams.nbThreads = 4;
dictSize = ZDICT_optimizeTrainFromBuffer_cover(
dictBuffer, dictBufferCapacity,
CNBuffer, samplesSizes, nbSamples/8, /* less samples for faster tests */
&coverParams);
if (ZDICT_isError(dictSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : COVER dictBuilder with shrinkDict: ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
{ ZDICT_cover_params_t coverParams;
memset(&coverParams, 0, sizeof(coverParams));
coverParams.steps = 8;
coverParams.nbThreads = 4;
coverParams.shrinkDict = 1;
coverParams.shrinkDictMaxRegression = 1;
dictSize = ZDICT_optimizeTrainFromBuffer_cover(
dictBuffer, dictBufferCapacity,
CNBuffer, samplesSizes, nbSamples/8, /* less samples for faster tests */
&coverParams);
if (ZDICT_isError(dictSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : Multithreaded FASTCOVER dictBuilder : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
{ ZDICT_fastCover_params_t fastCoverParams;
memset(&fastCoverParams, 0, sizeof(fastCoverParams));
fastCoverParams.steps = 8;
fastCoverParams.nbThreads = 4;
dictSize = ZDICT_optimizeTrainFromBuffer_fastCover(
dictBuffer, dictBufferCapacity,
CNBuffer, samplesSizes, nbSamples,
&fastCoverParams);
if (ZDICT_isError(dictSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : FASTCOVER dictBuilder with shrinkDict: ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
{ ZDICT_fastCover_params_t fastCoverParams;
memset(&fastCoverParams, 0, sizeof(fastCoverParams));
fastCoverParams.steps = 8;
fastCoverParams.nbThreads = 4;
fastCoverParams.shrinkDict = 1;
fastCoverParams.shrinkDictMaxRegression = 1;
dictSize = ZDICT_optimizeTrainFromBuffer_fastCover(
dictBuffer, dictBufferCapacity,
CNBuffer, samplesSizes, nbSamples,
&fastCoverParams);
if (ZDICT_isError(dictSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : check dictID : ", testNb++);
dictID = ZDICT_getDictID(dictBuffer, dictSize);
if (dictID==0) goto _output_error;
DISPLAYLEVEL(3, "OK : %u \n", (unsigned)dictID);
DISPLAYLEVEL(3, "test%3i : compress with dictionary : ", testNb++);
cSize = ZSTD_compress_usingDict(cctx, compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize,
dictBuffer, dictSize, 4);
if (ZSTD_isError(cSize)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : retrieve dictID from dictionary : ", testNb++);
{ U32 const did = ZSTD_getDictID_fromDict(dictBuffer, dictSize);
if (did != dictID) goto _output_error; /* non-conformant (content-only) dictionary */
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : retrieve dictID from frame : ", testNb++);
{ U32 const did = ZSTD_getDictID_fromFrame(compressedBuffer, cSize);
if (did != dictID) goto _output_error; /* non-conformant (content-only) dictionary */
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : frame built with dictionary should be decompressible : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx(); assert(dctx != NULL);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : estimate CDict size : ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBuffSize, dictSize);
size_t const estimatedSize = ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byRef);
DISPLAYLEVEL(3, "OK : %u \n", (unsigned)estimatedSize);
}
DISPLAYLEVEL(3, "test%3i : compress with CDict ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBuffSize, dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictSize,
ZSTD_dlm_byRef, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
assert(cdict != NULL);
DISPLAYLEVEL(3, "(size : %u) : ", (unsigned)ZSTD_sizeof_CDict(cdict));
cSize = ZSTD_compress_usingCDict(cctx, compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize, cdict);
ZSTD_freeCDict(cdict);
if (ZSTD_isError(cSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : retrieve dictID from frame : ", testNb++);
{ U32 const did = ZSTD_getDictID_fromFrame(compressedBuffer, cSize);
if (did != dictID) goto _output_error; /* non-conformant (content-only) dictionary */
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : frame built with dictionary should be decompressible : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx(); assert(dctx != NULL);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : compress with static CDict : ", testNb++);
{ int const maxLevel = ZSTD_maxCLevel();
int level;
for (level = 1; level <= maxLevel; ++level) {
ZSTD_compressionParameters const cParams = ZSTD_getCParams(level, CNBuffSize, dictSize);
size_t const cdictSize = ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
void* const cdictBuffer = malloc(cdictSize);
if (cdictBuffer==NULL) goto _output_error;
{ const ZSTD_CDict* const cdict = ZSTD_initStaticCDict(
cdictBuffer, cdictSize,
dictBuffer, dictSize,
ZSTD_dlm_byCopy, ZSTD_dct_auto,
cParams);
if (cdict == NULL) {
DISPLAY("ZSTD_initStaticCDict failed ");
goto _output_error;
}
cSize = ZSTD_compress_usingCDict(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, MIN(10 KB, CNBuffSize), cdict);
if (ZSTD_isError(cSize)) {
DISPLAY("ZSTD_compress_usingCDict failed ");
goto _output_error;
} }
free(cdictBuffer);
} }
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : ZSTD_compress_usingCDict_advanced, no contentSize, no dictID : ", testNb++);
{ ZSTD_frameParameters const fParams = { 0 /* frameSize */, 1 /* checksum */, 1 /* noDictID*/ };
ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBuffSize, dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, cParams, ZSTD_defaultCMem);
assert(cdict != NULL);
cSize = ZSTD_compress_usingCDict_advanced(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize,
cdict, fParams);
ZSTD_freeCDict(cdict);
if (ZSTD_isError(cSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : try retrieving contentSize from frame : ", testNb++);
{ U64 const contentSize = ZSTD_getFrameContentSize(compressedBuffer, cSize);
if (contentSize != ZSTD_CONTENTSIZE_UNKNOWN) goto _output_error;
}
DISPLAYLEVEL(3, "OK (unknown)\n");
DISPLAYLEVEL(3, "test%3i : frame built without dictID should be decompressible : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx();
assert(dctx != NULL);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_compress_advanced, no dictID : ", testNb++);
{ ZSTD_parameters p = ZSTD_getParams(3, CNBuffSize, dictSize);
p.fParams.noDictIDFlag = 1;
cSize = ZSTD_compress_advanced(cctx, compressedBuffer, compressedBufferSize,
CNBuffer, CNBuffSize,
dictBuffer, dictSize, p);
if (ZSTD_isError(cSize)) goto _output_error;
}
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(3, "test%3i : frame built without dictID should be decompressible : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx(); assert(dctx != NULL);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : dictionary containing only header should return error : ", testNb++);
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx();
assert(dctx != NULL);
{ const size_t ret = ZSTD_decompress_usingDict(
dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize,
"\x37\xa4\x30\xec\x11\x22\x33\x44", 8);
if (ZSTD_getErrorCode(ret) != ZSTD_error_dictionary_corrupted)
goto _output_error;
}
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Building cdict w/ ZSTD_dm_fullDict on a good dictionary : ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBuffSize, dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_fullDict, cParams, ZSTD_defaultCMem);
if (cdict==NULL) goto _output_error;
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Building cdict w/ ZSTD_dm_fullDict on a rawContent (must fail) : ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBuffSize, dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced((const char*)dictBuffer+1, dictSize-1, ZSTD_dlm_byRef, ZSTD_dct_fullDict, cParams, ZSTD_defaultCMem);
if (cdict!=NULL) goto _output_error;
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading rawContent starting with dict header w/ ZSTD_dm_auto should fail : ", testNb++);
{
size_t ret;
MEM_writeLE32((char*)dictBuffer+2, ZSTD_MAGIC_DICTIONARY);
/* Either operation is allowed to fail, but one must fail. */
ret = ZSTD_CCtx_loadDictionary_advanced(
cctx, (const char*)dictBuffer+2, dictSize-2, ZSTD_dlm_byRef, ZSTD_dct_auto);
if (!ZSTD_isError(ret)) {
ret = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100));
if (!ZSTD_isError(ret)) goto _output_error;
}
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading rawContent starting with dict header w/ ZSTD_dm_rawContent should pass : ", testNb++);
{
size_t ret;
MEM_writeLE32((char*)dictBuffer+2, ZSTD_MAGIC_DICTIONARY);
ret = ZSTD_CCtx_loadDictionary_advanced(
cctx, (const char*)dictBuffer+2, dictSize-2, ZSTD_dlm_byRef, ZSTD_dct_rawContent);
if (ZSTD_isError(ret)) goto _output_error;
ret = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100));
if (ZSTD_isError(ret)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_CCtx_refCDict() then set parameters : ", testNb++);
{ ZSTD_CDict* const cdict = ZSTD_createCDict(CNBuffer, dictSize, 1);
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 1) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_hashLog, 12 ));
CHECK_Z( ZSTD_CCtx_refCDict(cctx, cdict) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 1) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_hashLog, 12 ));
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading dictionary before setting parameters is the same as loading after : ", testNb++);
{
size_t size1, size2;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 7) );
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, CNBuffer, MIN(CNBuffSize, 10 KB)) );
size1 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size1)) goto _output_error;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, CNBuffer, MIN(CNBuffSize, 10 KB)) );
CHECK_Z( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 7) );
size2 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size2)) goto _output_error;
if (size1 != size2) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a dictionary clears the prefix : ", testNb++);
{
CHECK_Z( ZSTD_CCtx_refPrefix(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a dictionary clears the cdict : ", testNb++);
{
ZSTD_CDict* const cdict = ZSTD_createCDict(dictBuffer, dictSize, 1);
CHECK_Z( ZSTD_CCtx_refCDict(cctx, cdict) );
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a cdict clears the prefix : ", testNb++);
{
ZSTD_CDict* const cdict = ZSTD_createCDict(dictBuffer, dictSize, 1);
CHECK_Z( ZSTD_CCtx_refPrefix(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_CCtx_refCDict(cctx, cdict) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a cdict clears the dictionary : ", testNb++);
{
ZSTD_CDict* const cdict = ZSTD_createCDict(dictBuffer, dictSize, 1);
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_CCtx_refCDict(cctx, cdict) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a prefix clears the dictionary : ", testNb++);
{
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_CCtx_refPrefix(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loading a prefix clears the cdict : ", testNb++);
{
ZSTD_CDict* const cdict = ZSTD_createCDict(dictBuffer, dictSize, 1);
CHECK_Z( ZSTD_CCtx_refCDict(cctx, cdict) );
CHECK_Z( ZSTD_CCtx_refPrefix(cctx, (const char*)dictBuffer, dictSize) );
CHECK_Z( ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100)) );
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loaded dictionary persists across reset session : ", testNb++);
{
size_t size1, size2;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, CNBuffer, MIN(CNBuffSize, 10 KB)) );
size1 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size1)) goto _output_error;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only);
size2 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size2)) goto _output_error;
if (size1 != size2) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Loaded dictionary is cleared after resetting parameters : ", testNb++);
{
size_t size1, size2;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, CNBuffer, MIN(CNBuffSize, 10 KB)) );
size1 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size1)) goto _output_error;
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
size2 = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
if (ZSTD_isError(size2)) goto _output_error;
if (size1 == size2) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_CCtx_loadDictionary(cctx, dictBuffer, dictSize) );
cSize = ZSTD_compress2(cctx, compressedBuffer, compressedBufferSize, CNBuffer, MIN(CNBuffSize, 100 KB));
CHECK_Z(cSize);
DISPLAYLEVEL(3, "test%3i : ZSTD_decompressDCtx() with dictionary : ", testNb++);
{
ZSTD_DCtx* dctx = ZSTD_createDCtx();
size_t ret;
/* We should fail to decompress without a dictionary. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
ret = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (!ZSTD_isError(ret)) goto _output_error;
/* We should succeed to decompress with the dictionary. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_DCtx_loadDictionary(dctx, dictBuffer, dictSize) );
CHECK_Z( ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
/* The dictionary should presist across calls. */
CHECK_Z( ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
/* When we reset the context the dictionary is cleared. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
ret = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (!ZSTD_isError(ret)) goto _output_error;
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_decompressDCtx() with ddict : ", testNb++);
{
ZSTD_DCtx* dctx = ZSTD_createDCtx();
ZSTD_DDict* ddict = ZSTD_createDDict(dictBuffer, dictSize);
size_t ret;
/* We should succeed to decompress with the ddict. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_DCtx_refDDict(dctx, ddict) );
CHECK_Z( ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
/* The ddict should presist across calls. */
CHECK_Z( ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
/* When we reset the context the ddict is cleared. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
ret = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (!ZSTD_isError(ret)) goto _output_error;
ZSTD_freeDCtx(dctx);
ZSTD_freeDDict(ddict);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : ZSTD_decompressDCtx() with prefix : ", testNb++);
{
ZSTD_DCtx* dctx = ZSTD_createDCtx();
size_t ret;
/* We should succeed to decompress with the prefix. */
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
CHECK_Z( ZSTD_DCtx_refPrefix_advanced(dctx, dictBuffer, dictSize, ZSTD_dct_auto) );
CHECK_Z( ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
/* The prefix should be cleared after the first compression. */
ret = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (!ZSTD_isError(ret)) goto _output_error;
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Dictionary with non-default repcodes : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
dictSize = ZDICT_trainFromBuffer(dictBuffer, dictSize,
CNBuffer, samplesSizes, nbSamples);
if (ZDICT_isError(dictSize)) goto _output_error;
/* Set all the repcodes to non-default */
{
BYTE* dictPtr = (BYTE*)dictBuffer;
BYTE* dictLimit = dictPtr + dictSize - 12;
/* Find the repcodes */
while (dictPtr < dictLimit &&
(MEM_readLE32(dictPtr) != 1 || MEM_readLE32(dictPtr + 4) != 4 ||
MEM_readLE32(dictPtr + 8) != 8)) {
++dictPtr;
}
if (dictPtr >= dictLimit) goto _output_error;
MEM_writeLE32(dictPtr + 0, 10);
MEM_writeLE32(dictPtr + 4, 10);
MEM_writeLE32(dictPtr + 8, 10);
/* Set the last 8 bytes to 'x' */
memset((BYTE*)dictBuffer + dictSize - 8, 'x', 8);
}
/* The optimal parser checks all the repcodes.
* Make sure at least one is a match >= targetLength so that it is
* immediately chosen. This will make sure that the compressor and
* decompressor agree on at least one of the repcodes.
*/
{ size_t dSize;
BYTE data[1024];
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
ZSTD_compressionParameters const cParams = ZSTD_getCParams(19, CNBuffSize, dictSize);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictBuffer, dictSize,
ZSTD_dlm_byRef, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
assert(dctx != NULL); assert(cdict != NULL);
memset(data, 'x', sizeof(data));
cSize = ZSTD_compress_usingCDict(cctx, compressedBuffer, compressedBufferSize,
data, sizeof(data), cdict);
ZSTD_freeCDict(cdict);
if (ZSTD_isError(cSize)) { DISPLAYLEVEL(5, "Compression error %s : ", ZSTD_getErrorName(cSize)); goto _output_error; }
dSize = ZSTD_decompress_usingDict(dctx, decodedBuffer, sizeof(data), compressedBuffer, cSize, dictBuffer, dictSize);
if (ZSTD_isError(dSize)) { DISPLAYLEVEL(5, "Decompression error %s : ", ZSTD_getErrorName(dSize)); goto _output_error; }
if (memcmp(data, decodedBuffer, sizeof(data))) { DISPLAYLEVEL(5, "Data corruption : "); goto _output_error; }
ZSTD_freeDCtx(dctx);
}
DISPLAYLEVEL(3, "OK \n");
ZSTD_freeCCtx(cctx);
free(dictBuffer);
free(samplesSizes);
}
/* COVER dictionary builder tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t dictSize = 16 KB;
size_t optDictSize = dictSize;
void* dictBuffer = malloc(dictSize);
size_t const totalSampleSize = 1 MB;
size_t const sampleUnitSize = 8 KB;
U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize);
size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t));
U32 seed32 = seed;
ZDICT_cover_params_t params;
U32 dictID;
if (dictBuffer==NULL || samplesSizes==NULL) {
free(dictBuffer);
free(samplesSizes);
goto _output_error;
}
DISPLAYLEVEL(3, "test%3i : ZDICT_trainFromBuffer_cover : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
memset(&params, 0, sizeof(params));
params.d = 1 + (FUZ_rand(&seed32) % 16);
params.k = params.d + (FUZ_rand(&seed32) % 256);
dictSize = ZDICT_trainFromBuffer_cover(dictBuffer, dictSize,
CNBuffer, samplesSizes, nbSamples,
params);
if (ZDICT_isError(dictSize)) goto _output_error;
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)dictSize);
DISPLAYLEVEL(3, "test%3i : check dictID : ", testNb++);
dictID = ZDICT_getDictID(dictBuffer, dictSize);
if (dictID==0) goto _output_error;
DISPLAYLEVEL(3, "OK : %u \n", (unsigned)dictID);
DISPLAYLEVEL(3, "test%3i : ZDICT_optimizeTrainFromBuffer_cover : ", testNb++);
memset(&params, 0, sizeof(params));
params.steps = 4;
optDictSize = ZDICT_optimizeTrainFromBuffer_cover(dictBuffer, optDictSize,
CNBuffer, samplesSizes,
nbSamples / 4, &params);
if (ZDICT_isError(optDictSize)) goto _output_error;
DISPLAYLEVEL(3, "OK, created dictionary of size %u \n", (unsigned)optDictSize);
DISPLAYLEVEL(3, "test%3i : check dictID : ", testNb++);
dictID = ZDICT_getDictID(dictBuffer, optDictSize);
if (dictID==0) goto _output_error;
DISPLAYLEVEL(3, "OK : %u \n", (unsigned)dictID);
ZSTD_freeCCtx(cctx);
free(dictBuffer);
free(samplesSizes);
}
/* Decompression defense tests */
DISPLAYLEVEL(3, "test%3i : Check input length for magic number : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 3); /* too small input */
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Check magic Number : ", testNb++);
((char*)(CNBuffer))[0] = 1;
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 4);
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* content size verification test */
DISPLAYLEVEL(3, "test%3i : Content size verification : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const srcSize = 5000;
size_t const wrongSrcSize = (srcSize + 1000);
ZSTD_parameters params = ZSTD_getParams(1, wrongSrcSize, 0);
params.fParams.contentSizeFlag = 1;
CHECK( ZSTD_compressBegin_advanced(cctx, NULL, 0, params, wrongSrcSize) );
{ size_t const result = ZSTD_compressEnd(cctx, decodedBuffer, CNBuffSize, CNBuffer, srcSize);
if (!ZSTD_isError(result)) goto _output_error;
if (ZSTD_getErrorCode(result) != ZSTD_error_srcSize_wrong) goto _output_error;
DISPLAYLEVEL(3, "OK : %s \n", ZSTD_getErrorName(result));
}
ZSTD_freeCCtx(cctx);
}
/* negative compression level test : ensure simple API and advanced API produce same result */
DISPLAYLEVEL(3, "test%3i : negative compression level : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const srcSize = CNBuffSize / 5;
int const compressionLevel = -1;
assert(cctx != NULL);
{ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, srcSize, 0);
size_t const cSize_1pass = ZSTD_compress_advanced(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, srcSize,
NULL, 0,
params);
if (ZSTD_isError(cSize_1pass)) goto _output_error;
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, compressionLevel) );
{ size_t const compressionResult = ZSTD_compress2(cctx,
compressedBuffer, compressedBufferSize,
CNBuffer, srcSize);
DISPLAYLEVEL(5, "simple=%zu vs %zu=advanced : ", cSize_1pass, compressionResult);
if (ZSTD_isError(compressionResult)) goto _output_error;
if (compressionResult != cSize_1pass) goto _output_error;
} }
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
/* parameters order test */
{ size_t const inputSize = CNBuffSize / 2;
U64 xxh64;
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
DISPLAYLEVEL(3, "test%3i : parameters in order : ", testNb++);
assert(cctx != NULL);
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 2) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_enableLongDistanceMatching, 1) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, 18) );
{ size_t const compressedSize = ZSTD_compress2(cctx,
compressedBuffer, ZSTD_compressBound(inputSize),
CNBuffer, inputSize);
CHECK(compressedSize);
cSize = compressedSize;
xxh64 = XXH64(compressedBuffer, compressedSize, 0);
}
DISPLAYLEVEL(3, "OK (compress : %u -> %u bytes)\n", (unsigned)inputSize, (unsigned)cSize);
ZSTD_freeCCtx(cctx);
}
{ ZSTD_CCtx* cctx = ZSTD_createCCtx();
DISPLAYLEVEL(3, "test%3i : parameters disordered : ", testNb++);
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_windowLog, 18) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_enableLongDistanceMatching, 1) );
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, 2) );
{ size_t const result = ZSTD_compress2(cctx,
compressedBuffer, ZSTD_compressBound(inputSize),
CNBuffer, inputSize);
CHECK(result);
if (result != cSize) goto _output_error; /* must result in same compressed result, hence same size */
if (XXH64(compressedBuffer, result, 0) != xxh64) goto _output_error; /* must result in exactly same content, hence same hash */
DISPLAYLEVEL(3, "OK (compress : %u -> %u bytes)\n", (unsigned)inputSize, (unsigned)result);
}
ZSTD_freeCCtx(cctx);
}
}
/* advanced parameters for decompression */
{ ZSTD_DCtx* const dctx = ZSTD_createDCtx();
assert(dctx != NULL);
DISPLAYLEVEL(3, "test%3i : get dParameter bounds ", testNb++);
{ ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax);
CHECK(bounds.error);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : wrong dParameter : ", testNb++);
{ size_t const sr = ZSTD_DCtx_setParameter(dctx, (ZSTD_dParameter)999999, 0);
if (!ZSTD_isError(sr)) goto _output_error;
}
{ ZSTD_bounds const bounds = ZSTD_dParam_getBounds((ZSTD_dParameter)999998);
if (!ZSTD_isError(bounds.error)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : out of bound dParameter : ", testNb++);
{ size_t const sr = ZSTD_DCtx_setParameter(dctx, ZSTD_d_windowLogMax, 9999);
if (!ZSTD_isError(sr)) goto _output_error;
}
{ size_t const sr = ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (ZSTD_format_e)888);
if (!ZSTD_isError(sr)) goto _output_error;
}
DISPLAYLEVEL(3, "OK \n");
ZSTD_freeDCtx(dctx);
}
/* custom formats tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
size_t const inputSize = CNBuffSize / 2; /* won't cause pb with small dict size */
assert(dctx != NULL); assert(cctx != NULL);
/* basic block compression */
DISPLAYLEVEL(3, "test%3i : magic-less format test : ", testNb++);
CHECK( ZSTD_CCtx_setParameter(cctx, ZSTD_c_format, ZSTD_f_zstd1_magicless) );
{ ZSTD_inBuffer in = { CNBuffer, inputSize, 0 };
ZSTD_outBuffer out = { compressedBuffer, ZSTD_compressBound(inputSize), 0 };
size_t const result = ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end);
if (result != 0) goto _output_error;
if (in.pos != in.size) goto _output_error;
cSize = out.pos;
}
DISPLAYLEVEL(3, "OK (compress : %u -> %u bytes)\n", (unsigned)inputSize, (unsigned)cSize);
DISPLAYLEVEL(3, "test%3i : decompress normally (should fail) : ", testNb++);
{ size_t const decodeResult = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (ZSTD_getErrorCode(decodeResult) != ZSTD_error_prefix_unknown) goto _output_error;
DISPLAYLEVEL(3, "OK : %s \n", ZSTD_getErrorName(decodeResult));
}
DISPLAYLEVEL(3, "test%3i : decompress of magic-less frame : ", testNb++);
ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters);
CHECK( ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, ZSTD_f_zstd1_magicless) );
{ ZSTD_frameHeader zfh;
size_t const zfhrt = ZSTD_getFrameHeader_advanced(&zfh, compressedBuffer, cSize, ZSTD_f_zstd1_magicless);
if (zfhrt != 0) goto _output_error;
}
/* one shot */
{ size_t const result = ZSTD_decompressDCtx(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize);
if (result != inputSize) goto _output_error;
DISPLAYLEVEL(3, "one-shot OK, ");
}
/* streaming */
{ ZSTD_inBuffer in = { compressedBuffer, cSize, 0 };
ZSTD_outBuffer out = { decodedBuffer, CNBuffSize, 0 };
size_t const result = ZSTD_decompressStream(dctx, &out, &in);
if (result != 0) goto _output_error;
if (in.pos != in.size) goto _output_error;
if (out.pos != inputSize) goto _output_error;
DISPLAYLEVEL(3, "streaming OK : regenerated %u bytes \n", (unsigned)out.pos);
}
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
}
/* block API tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
static const size_t dictSize = 65 KB;
static const size_t blockSize = 100 KB; /* won't cause pb with small dict size */
size_t cSize2;
assert(cctx != NULL); assert(dctx != NULL);
/* basic block compression */
DISPLAYLEVEL(3, "test%3i : Block compression test : ", testNb++);
CHECK( ZSTD_compressBegin(cctx, 5) );
CHECK( ZSTD_getBlockSize(cctx) >= blockSize);
CHECK_VAR(cSize, ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), CNBuffer, blockSize) );
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Block decompression test : ", testNb++);
CHECK( ZSTD_decompressBegin(dctx) );
{ CHECK_NEWV(r, ZSTD_decompressBlock(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
if (r != blockSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* very long stream of block compression */
DISPLAYLEVEL(3, "test%3i : Huge block streaming compression test : ", testNb++);
CHECK( ZSTD_compressBegin(cctx, -199) ); /* we just want to quickly overflow internal U32 index */
CHECK( ZSTD_getBlockSize(cctx) >= blockSize);
{ U64 const toCompress = 5000000000ULL; /* > 4 GB */
U64 compressed = 0;
while (compressed < toCompress) {
size_t const blockCSize = ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), CNBuffer, blockSize);
assert(blockCSize != 0);
if (ZSTD_isError(blockCSize)) goto _output_error;
compressed += blockCSize;
} }
DISPLAYLEVEL(3, "OK \n");
/* dictionary block compression */
DISPLAYLEVEL(3, "test%3i : Dictionary Block compression test : ", testNb++);
CHECK( ZSTD_compressBegin_usingDict(cctx, CNBuffer, dictSize, 5) );
CHECK_VAR(cSize, ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize, blockSize));
RDG_genBuffer((char*)CNBuffer+dictSize+blockSize, blockSize, 0.0, 0.0, seed); /* create a non-compressible second block */
{ CHECK_NEWV(r, ZSTD_compressBlock(cctx, (char*)compressedBuffer+cSize, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize+blockSize, blockSize) ); /* for cctx history consistency */
assert(r == 0); /* non-compressible block */ }
memcpy((char*)compressedBuffer+cSize, (char*)CNBuffer+dictSize+blockSize, blockSize); /* send non-compressed block (without header) */
CHECK_VAR(cSize2, ZSTD_compressBlock(cctx, (char*)compressedBuffer+cSize+blockSize, ZSTD_compressBound(blockSize),
(char*)CNBuffer+dictSize+2*blockSize, blockSize));
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Dictionary Block decompression test : ", testNb++);
CHECK( ZSTD_decompressBegin_usingDict(dctx, CNBuffer, dictSize) );
{ CHECK_NEWV( r, ZSTD_decompressBlock(dctx, decodedBuffer, blockSize, compressedBuffer, cSize) );
if (r != blockSize) {
DISPLAYLEVEL(1, "ZSTD_decompressBlock() with _usingDict() fails : %u, instead of %u expected \n", (unsigned)r, (unsigned)blockSize);
goto _output_error;
} }
memcpy((char*)decodedBuffer+blockSize, (char*)compressedBuffer+cSize, blockSize);
ZSTD_insertBlock(dctx, (char*)decodedBuffer+blockSize, blockSize); /* insert non-compressed block into dctx history */
{ CHECK_NEWV( r, ZSTD_decompressBlock(dctx, (char*)decodedBuffer+2*blockSize, blockSize, (char*)compressedBuffer+cSize+blockSize, cSize2) );
if (r != blockSize) {
DISPLAYLEVEL(1, "ZSTD_decompressBlock() with _usingDict() and after insertBlock() fails : %u, instead of %u expected \n", (unsigned)r, (unsigned)blockSize);
goto _output_error;
} }
assert(memcpy((char*)CNBuffer+dictSize, decodedBuffer, blockSize*3)); /* ensure regenerated content is identical to origin */
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : Block compression with CDict : ", testNb++);
{ ZSTD_CDict* const cdict = ZSTD_createCDict(CNBuffer, dictSize, 3);
if (cdict==NULL) goto _output_error;
CHECK( ZSTD_compressBegin_usingCDict(cctx, cdict) );
CHECK( ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize, blockSize) );
ZSTD_freeCDict(cdict);
}
DISPLAYLEVEL(3, "OK \n");
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
}
/* long rle test */
{ size_t sampleSize = 0;
DISPLAYLEVEL(3, "test%3i : Long RLE test : ", testNb++);
RDG_genBuffer(CNBuffer, sampleSize, compressibility, 0., seed+1);
memset((char*)CNBuffer+sampleSize, 'B', 256 KB - 1);
sampleSize += 256 KB - 1;
RDG_genBuffer((char*)CNBuffer+sampleSize, 96 KB, compressibility, 0., seed+2);
sampleSize += 96 KB;
cSize = ZSTD_compress(compressedBuffer, ZSTD_compressBound(sampleSize), CNBuffer, sampleSize, 1);
if (ZSTD_isError(cSize)) goto _output_error;
{ CHECK_NEWV(regenSize, ZSTD_decompress(decodedBuffer, sampleSize, compressedBuffer, cSize));
if (regenSize!=sampleSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
}
/* Multiple blocks of zeros test */
#define LONGZEROSLENGTH 1000000 /* 1MB of zeros */
DISPLAYLEVEL(3, "test%3i : compress %u zeroes : ", testNb++, LONGZEROSLENGTH);
memset(CNBuffer, 0, LONGZEROSLENGTH);
CHECK_VAR(cSize, ZSTD_compress(compressedBuffer, ZSTD_compressBound(LONGZEROSLENGTH), CNBuffer, LONGZEROSLENGTH, 1) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/LONGZEROSLENGTH*100);
DISPLAYLEVEL(3, "test%3i : decompress %u zeroes : ", testNb++, LONGZEROSLENGTH);
{ CHECK_NEWV(r, ZSTD_decompress(decodedBuffer, LONGZEROSLENGTH, compressedBuffer, cSize) );
if (r != LONGZEROSLENGTH) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* All zeroes test (test bug #137) */
#define ZEROESLENGTH 100
DISPLAYLEVEL(3, "test%3i : compress %u zeroes : ", testNb++, ZEROESLENGTH);
memset(CNBuffer, 0, ZEROESLENGTH);
CHECK_VAR(cSize, ZSTD_compress(compressedBuffer, ZSTD_compressBound(ZEROESLENGTH), CNBuffer, ZEROESLENGTH, 1) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/ZEROESLENGTH*100);
DISPLAYLEVEL(3, "test%3i : decompress %u zeroes : ", testNb++, ZEROESLENGTH);
{ CHECK_NEWV(r, ZSTD_decompress(decodedBuffer, ZEROESLENGTH, compressedBuffer, cSize) );
if (r != ZEROESLENGTH) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* nbSeq limit test */
#define _3BYTESTESTLENGTH 131000
#define NB3BYTESSEQLOG 9
#define NB3BYTESSEQ (1 << NB3BYTESSEQLOG)
#define NB3BYTESSEQMASK (NB3BYTESSEQ-1)
/* creates a buffer full of 3-bytes sequences */
{ BYTE _3BytesSeqs[NB3BYTESSEQ][3];
U32 rSeed = 1;
/* create batch of 3-bytes sequences */
{ int i;
for (i=0; i < NB3BYTESSEQ; i++) {
_3BytesSeqs[i][0] = (BYTE)(FUZ_rand(&rSeed) & 255);
_3BytesSeqs[i][1] = (BYTE)(FUZ_rand(&rSeed) & 255);
_3BytesSeqs[i][2] = (BYTE)(FUZ_rand(&rSeed) & 255);
} }
/* randomly fills CNBuffer with prepared 3-bytes sequences */
{ int i;
for (i=0; i < _3BYTESTESTLENGTH; i += 3) { /* note : CNBuffer size > _3BYTESTESTLENGTH+3 */
U32 const id = FUZ_rand(&rSeed) & NB3BYTESSEQMASK;
((BYTE*)CNBuffer)[i+0] = _3BytesSeqs[id][0];
((BYTE*)CNBuffer)[i+1] = _3BytesSeqs[id][1];
((BYTE*)CNBuffer)[i+2] = _3BytesSeqs[id][2];
} } }
DISPLAYLEVEL(3, "test%3i : growing nbSeq : ", testNb++);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const maxNbSeq = _3BYTESTESTLENGTH / 3;
size_t const bound = ZSTD_compressBound(_3BYTESTESTLENGTH);
size_t nbSeq = 1;
while (nbSeq <= maxNbSeq) {
CHECK(ZSTD_compressCCtx(cctx, compressedBuffer, bound, CNBuffer, nbSeq * 3, 19));
/* Check every sequence for the first 100, then skip more rapidly. */
if (nbSeq < 100) {
++nbSeq;
} else {
nbSeq += (nbSeq >> 2);
}
}
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : compress lots 3-bytes sequences : ", testNb++);
CHECK_VAR(cSize, ZSTD_compress(compressedBuffer, ZSTD_compressBound(_3BYTESTESTLENGTH),
CNBuffer, _3BYTESTESTLENGTH, 19) );
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (unsigned)cSize, (double)cSize/_3BYTESTESTLENGTH*100);
DISPLAYLEVEL(3, "test%3i : decompress lots 3-bytes sequence : ", testNb++);
{ CHECK_NEWV(r, ZSTD_decompress(decodedBuffer, _3BYTESTESTLENGTH, compressedBuffer, cSize) );
if (r != _3BYTESTESTLENGTH) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : growing literals buffer : ", testNb++);
RDG_genBuffer(CNBuffer, CNBuffSize, 0.0, 0.1, seed);
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
size_t const bound = ZSTD_compressBound(CNBuffSize);
size_t size = 1;
while (size <= CNBuffSize) {
CHECK(ZSTD_compressCCtx(cctx, compressedBuffer, bound, CNBuffer, size, 3));
/* Check every size for the first 100, then skip more rapidly. */
if (size < 100) {
++size;
} else {
size += (size >> 2);
}
}
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : incompressible data and ill suited dictionary : ", testNb++);
{ /* Train a dictionary on low characters */
size_t dictSize = 16 KB;
void* const dictBuffer = malloc(dictSize);
size_t const totalSampleSize = 1 MB;
size_t const sampleUnitSize = 8 KB;
U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize);
size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t));
if (!dictBuffer || !samplesSizes) goto _output_error;
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
dictSize = ZDICT_trainFromBuffer(dictBuffer, dictSize, CNBuffer, samplesSizes, nbSamples);
if (ZDICT_isError(dictSize)) goto _output_error;
/* Reverse the characters to make the dictionary ill suited */
{ U32 u;
for (u = 0; u < CNBuffSize; ++u) {
((BYTE*)CNBuffer)[u] = 255 - ((BYTE*)CNBuffer)[u];
}
}
{ /* Compress the data */
size_t const inputSize = 500;
size_t const outputSize = ZSTD_compressBound(inputSize);
void* const outputBuffer = malloc(outputSize);
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
if (!outputBuffer || !cctx) goto _output_error;
CHECK(ZSTD_compress_usingDict(cctx, outputBuffer, outputSize, CNBuffer, inputSize, dictBuffer, dictSize, 1));
free(outputBuffer);
ZSTD_freeCCtx(cctx);
}
free(dictBuffer);
free(samplesSizes);
}
DISPLAYLEVEL(3, "OK \n");
/* findFrameCompressedSize on skippable frames */
DISPLAYLEVEL(3, "test%3i : frame compressed size of skippable frame : ", testNb++);
{ const char* frame = "\x50\x2a\x4d\x18\x05\x0\x0\0abcde";
size_t const frameSrcSize = 13;
if (ZSTD_findFrameCompressedSize(frame, frameSrcSize) != frameSrcSize) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* error string tests */
DISPLAYLEVEL(3, "test%3i : testing ZSTD error code strings : ", testNb++);
if (strcmp("No error detected", ZSTD_getErrorName((ZSTD_ErrorCode)(0-ZSTD_error_no_error))) != 0) goto _output_error;
if (strcmp("No error detected", ZSTD_getErrorString(ZSTD_error_no_error)) != 0) goto _output_error;
if (strcmp("Unspecified error code", ZSTD_getErrorString((ZSTD_ErrorCode)(0-ZSTD_error_GENERIC))) != 0) goto _output_error;
if (strcmp("Error (generic)", ZSTD_getErrorName((size_t)0-ZSTD_error_GENERIC)) != 0) goto _output_error;
if (strcmp("Error (generic)", ZSTD_getErrorString(ZSTD_error_GENERIC)) != 0) goto _output_error;
if (strcmp("No error detected", ZSTD_getErrorName(ZSTD_error_GENERIC)) != 0) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : testing ZSTD dictionary sizes : ", testNb++);
RDG_genBuffer(CNBuffer, CNBuffSize, compressibility, 0., seed);
{
size_t const size = MIN(128 KB, CNBuffSize);
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_CDict* const lgCDict = ZSTD_createCDict(CNBuffer, size, 1);
ZSTD_CDict* const smCDict = ZSTD_createCDict(CNBuffer, 1 KB, 1);
ZSTD_frameHeader lgHeader;
ZSTD_frameHeader smHeader;
CHECK_Z(ZSTD_compress_usingCDict(cctx, compressedBuffer, compressedBufferSize, CNBuffer, size, lgCDict));
CHECK_Z(ZSTD_getFrameHeader(&lgHeader, compressedBuffer, compressedBufferSize));
CHECK_Z(ZSTD_compress_usingCDict(cctx, compressedBuffer, compressedBufferSize, CNBuffer, size, smCDict));
CHECK_Z(ZSTD_getFrameHeader(&smHeader, compressedBuffer, compressedBufferSize));
if (lgHeader.windowSize != smHeader.windowSize) goto _output_error;
ZSTD_freeCDict(smCDict);
ZSTD_freeCDict(lgCDict);
ZSTD_freeCCtx(cctx);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : testing FSE_normalizeCount() PR#1255: ", testNb++);
{
short norm[32];
unsigned count[32];
unsigned const tableLog = 5;
size_t const nbSeq = 32;
unsigned const maxSymbolValue = 31;
size_t i;
for (i = 0; i < 32; ++i)
count[i] = 1;
/* Calling FSE_normalizeCount() on a uniform distribution should not
* cause a division by zero.
*/
FSE_normalizeCount(norm, tableLog, count, nbSeq, maxSymbolValue);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : table cleanliness through index reduction : ", testNb++);
{
int cLevel;
size_t approxIndex = 0;
size_t maxIndex = ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX)); /* ZSTD_CURRENT_MAX from zstd_compress_internal.h */
/* vastly overprovision space in a static context so that we can do all
* this without ever reallocating, which would reset the indices */
size_t const staticCCtxSize = 2 * ZSTD_estimateCCtxSize(22);
void* const staticCCtxBuffer = malloc(staticCCtxSize);
ZSTD_CCtx* cctx = ZSTD_initStaticCCtx(staticCCtxBuffer, staticCCtxSize);
/* bump the indices so the following compressions happen at high
* indices. */
{
ZSTD_outBuffer out = { compressedBuffer, compressedBufferSize, 0 };
ZSTD_inBuffer in = { CNBuffer, CNBuffSize, 0 };
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, -500));
while (approxIndex <= (maxIndex / 4) * 3) {
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_flush));
approxIndex += in.pos;
CHECK(in.pos == in.size);
in.pos = 0;
out.pos = 0;
}
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end));
}
/* spew a bunch of stuff into the table area */
for (cLevel = 1; cLevel <= 22; cLevel++) {
ZSTD_outBuffer out = { compressedBuffer, compressedBufferSize / cLevel, 0 };
ZSTD_inBuffer in = { CNBuffer, CNBuffSize, 0 };
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, cLevel));
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_flush));
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end));
approxIndex += in.pos;
}
/* now crank the indices so we overflow */
{
ZSTD_outBuffer out = { compressedBuffer, compressedBufferSize, 0 };
ZSTD_inBuffer in = { CNBuffer, CNBuffSize, 0 };
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, -500));
while (approxIndex <= maxIndex) {
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_flush));
approxIndex += in.pos;
CHECK(in.pos == in.size);
in.pos = 0;
out.pos = 0;
}
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end));
}
/* do a bunch of compressions again in low indices and ensure we don't
* hit untracked invalid indices */
for (cLevel = 1; cLevel <= 22; cLevel++) {
ZSTD_outBuffer out = { compressedBuffer, compressedBufferSize / cLevel, 0 };
ZSTD_inBuffer in = { CNBuffer, CNBuffSize, 0 };
ZSTD_CCtx_reset(cctx, ZSTD_reset_session_and_parameters);
CHECK_Z(ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, cLevel));
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_flush));
CHECK_Z(ZSTD_compressStream2(cctx, &out, &in, ZSTD_e_end));
approxIndex += in.pos;
}
ZSTD_freeCCtx(cctx);
free(staticCCtxBuffer);
}
DISPLAYLEVEL(3, "OK \n");
_end:
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
return testResult;
_output_error:
testResult = 1;
DISPLAY("Error detected in Unit tests ! \n");
goto _end;
}
static size_t findDiff(const void* buf1, const void* buf2, size_t max)
{
const BYTE* b1 = (const BYTE*)buf1;
const BYTE* b2 = (const BYTE*)buf2;
size_t u;
for (u=0; u<max; u++) {
if (b1[u] != b2[u]) break;
}
return u;
}
static ZSTD_parameters FUZ_makeParams(ZSTD_compressionParameters cParams, ZSTD_frameParameters fParams)
{
ZSTD_parameters params;
params.cParams = cParams;
params.fParams = fParams;
return params;
}
static size_t FUZ_rLogLength(U32* seed, U32 logLength)
{
size_t const lengthMask = ((size_t)1 << logLength) - 1;
return (lengthMask+1) + (FUZ_rand(seed) & lengthMask);
}
static size_t FUZ_randomLength(U32* seed, U32 maxLog)
{
U32 const logLength = FUZ_rand(seed) % maxLog;
return FUZ_rLogLength(seed, logLength);
}
#undef CHECK
#define CHECK(cond, ...) { \
if (cond) { \
DISPLAY("Error => "); \
DISPLAY(__VA_ARGS__); \
DISPLAY(" (seed %u, test nb %u) \n", (unsigned)seed, testNb); \
goto _output_error; \
} }
#undef CHECK_Z
#define CHECK_Z(f) { \
size_t const err = f; \
if (ZSTD_isError(err)) { \
DISPLAY("Error => %s : %s ", \
#f, ZSTD_getErrorName(err)); \
DISPLAY(" (seed %u, test nb %u) \n", (unsigned)seed, testNb); \
goto _output_error; \
} }
static int fuzzerTests(U32 seed, unsigned nbTests, unsigned startTest, U32 const maxDurationS, double compressibility, int bigTests)
{
static const U32 maxSrcLog = 23;
static const U32 maxSampleLog = 22;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
size_t const dstBufferSize = (size_t)1<<maxSampleLog;
size_t const cBufferSize = ZSTD_compressBound(dstBufferSize);
BYTE* cNoiseBuffer[5];
BYTE* const cBuffer = (BYTE*) malloc (cBufferSize);
BYTE* const dstBuffer = (BYTE*) malloc (dstBufferSize);
BYTE* const mirrorBuffer = (BYTE*) malloc (dstBufferSize);
ZSTD_CCtx* const refCtx = ZSTD_createCCtx();
ZSTD_CCtx* const ctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
U32 result = 0;
unsigned testNb = 0;
U32 coreSeed = seed;
UTIL_time_t const startClock = UTIL_getTime();
U64 const maxClockSpan = maxDurationS * SEC_TO_MICRO;
int const cLevelLimiter = bigTests ? 3 : 2;
/* allocation */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4]
|| !dstBuffer || !mirrorBuffer || !cBuffer || !refCtx || !ctx || !dctx,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++) FUZ_rand(&coreSeed);
/* main test loop */
for ( ; (testNb <= nbTests) || (UTIL_clockSpanMicro(startClock) < maxClockSpan); testNb++ ) {
BYTE* srcBuffer; /* jumping pointer */
U32 lseed;
size_t sampleSize, maxTestSize, totalTestSize;
size_t cSize, totalCSize, totalGenSize;
U64 crcOrig;
BYTE* sampleBuffer;
const BYTE* dict;
size_t dictSize;
/* notification */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
{ U32 const prime1 = 2654435761U; lseed = coreSeed ^ prime1; }
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* select src segment */
sampleSize = FUZ_randomLength(&lseed, maxSampleLog);
/* create sample buffer (to catch read error with valgrind & sanitizers) */
sampleBuffer = (BYTE*)malloc(sampleSize);
CHECK(sampleBuffer==NULL, "not enough memory for sample buffer");
{ size_t const sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize);
memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); }
crcOrig = XXH64(sampleBuffer, sampleSize, 0);
/* compression tests */
{ int const cLevelPositive =
( FUZ_rand(&lseed) %
(ZSTD_maxCLevel() - (FUZ_highbit32((U32)sampleSize) / cLevelLimiter)) )
+ 1;
int const cLevel = ((FUZ_rand(&lseed) & 15) == 3) ?
- (int)((FUZ_rand(&lseed) & 7) + 1) : /* test negative cLevel */
cLevelPositive;
DISPLAYLEVEL(5, "fuzzer t%u: Simple compression test (level %i) \n", testNb, cLevel);
cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel);
CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed : %s", ZSTD_getErrorName(cSize));
/* compression failure test : too small dest buffer */
assert(cSize > 3);
{ const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1;
const size_t tooSmallSize = cSize - missing;
const unsigned endMark = 0x4DC2B1A9;
memcpy(dstBuffer+tooSmallSize, &endMark, sizeof(endMark));
DISPLAYLEVEL(5, "fuzzer t%u: compress into too small buffer of size %u (missing %u bytes) \n",
testNb, (unsigned)tooSmallSize, (unsigned)missing);
{ size_t const errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel);
CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (unsigned)tooSmallSize, (unsigned)cSize); }
{ unsigned endCheck; memcpy(&endCheck, dstBuffer+tooSmallSize, sizeof(endCheck));
CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow (check.%08X != %08X.mark)", endCheck, endMark); }
} }
/* frame header decompression test */
{ ZSTD_frameHeader zfh;
CHECK_Z( ZSTD_getFrameHeader(&zfh, cBuffer, cSize) );
CHECK(zfh.frameContentSize != sampleSize, "Frame content size incorrect");
}
/* Decompressed size test */
{ unsigned long long const rSize = ZSTD_findDecompressedSize(cBuffer, cSize);
CHECK(rSize != sampleSize, "decompressed size incorrect");
}
/* successful decompression test */
DISPLAYLEVEL(5, "fuzzer t%u: simple decompression test \n", testNb);
{ size_t const margin = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1;
size_t const dSize = ZSTD_decompress(dstBuffer, sampleSize + margin, cBuffer, cSize);
CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (unsigned)sampleSize, (unsigned)cSize);
{ U64 const crcDest = XXH64(dstBuffer, sampleSize, 0);
CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (unsigned)findDiff(sampleBuffer, dstBuffer, sampleSize), (unsigned)sampleSize);
} }
free(sampleBuffer); /* no longer useful after this point */
/* truncated src decompression test */
DISPLAYLEVEL(5, "fuzzer t%u: decompression of truncated source \n", testNb);
{ size_t const missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */
size_t const tooSmallSize = cSize - missing;
void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch read overflows */
CHECK(cBufferTooSmall == NULL, "not enough memory !");
memcpy(cBufferTooSmall, cBuffer, tooSmallSize);
{ size_t const errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize);
CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); }
free(cBufferTooSmall);
}
/* too small dst decompression test */
DISPLAYLEVEL(5, "fuzzer t%u: decompress into too small dst buffer \n", testNb);
if (sampleSize > 3) {
size_t const missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */
size_t const tooSmallSize = sampleSize - missing;
static const BYTE token = 0xA9;
dstBuffer[tooSmallSize] = token;
{ size_t const errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize);
CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (unsigned)errorCode, (unsigned)tooSmallSize); }
CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow");
}
/* noisy src decompression test */
if (cSize > 6) {
/* insert noise into src */
{ U32 const maxNbBits = FUZ_highbit32((U32)(cSize-4));
size_t pos = 4; /* preserve magic number (too easy to detect) */
for (;;) {
/* keep some original src */
{ U32 const nbBits = FUZ_rand(&lseed) % maxNbBits;
size_t const mask = (1<<nbBits) - 1;
size_t const skipLength = FUZ_rand(&lseed) & mask;
pos += skipLength;
}
if (pos >= cSize) break;
/* add noise */
{ U32 const nbBitsCodes = FUZ_rand(&lseed) % maxNbBits;
U32 const nbBits = nbBitsCodes ? nbBitsCodes-1 : 0;
size_t const mask = (1<<nbBits) - 1;
size_t const rNoiseLength = (FUZ_rand(&lseed) & mask) + 1;
size_t const noiseLength = MIN(rNoiseLength, cSize-pos);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseLength);
memcpy(cBuffer + pos, srcBuffer + noiseStart, noiseLength);
pos += noiseLength;
} } }
/* decompress noisy source */
DISPLAYLEVEL(5, "fuzzer t%u: decompress noisy source \n", testNb);
{ U32 const endMark = 0xA9B1C3D6;
memcpy(dstBuffer+sampleSize, &endMark, 4);
{ size_t const decompressResult = ZSTD_decompress(dstBuffer, sampleSize, cBuffer, cSize);
/* result *may* be an unlikely success, but even then, it must strictly respect dst buffer boundaries */
CHECK((!ZSTD_isError(decompressResult)) && (decompressResult>sampleSize),
"ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (unsigned)decompressResult, (unsigned)sampleSize);
}
{ U32 endCheck; memcpy(&endCheck, dstBuffer+sampleSize, 4);
CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow");
} } } /* noisy src decompression test */
/*===== Bufferless streaming compression test, scattered segments and dictionary =====*/
DISPLAYLEVEL(5, "fuzzer t%u: Bufferless streaming compression test \n", testNb);
{ U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog;
int const cLevel = (FUZ_rand(&lseed) %
(ZSTD_maxCLevel() -
(MAX(testLog, dictLog) / cLevelLimiter))) +
1;
maxTestSize = FUZ_rLogLength(&lseed, testLog);
if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1;
dictSize = FUZ_rLogLength(&lseed, dictLog); /* needed also for decompression */
dict = srcBuffer + (FUZ_rand(&lseed) % (srcBufferSize - dictSize));
DISPLAYLEVEL(6, "fuzzer t%u: Compressing up to <=%u bytes at level %i with dictionary size %u \n",
testNb, (unsigned)maxTestSize, cLevel, (unsigned)dictSize);
if (FUZ_rand(&lseed) & 0xF) {
CHECK_Z ( ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, cLevel) );
} else {
ZSTD_compressionParameters const cPar = ZSTD_getCParams(cLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize);
ZSTD_frameParameters const fPar = { FUZ_rand(&lseed)&1 /* contentSizeFlag */,
!(FUZ_rand(&lseed)&3) /* contentChecksumFlag*/,
0 /*NodictID*/ }; /* note : since dictionary is fake, dictIDflag has no impact */
ZSTD_parameters const p = FUZ_makeParams(cPar, fPar);
CHECK_Z ( ZSTD_compressBegin_advanced(refCtx, dict, dictSize, p, 0) );
}
CHECK_Z( ZSTD_copyCCtx(ctx, refCtx, 0) );
}
{ U32 const nbChunks = (FUZ_rand(&lseed) & 127) + 2;
U32 n;
XXH64_state_t xxhState;
XXH64_reset(&xxhState, 0);
for (totalTestSize=0, cSize=0, n=0 ; n<nbChunks ; n++) {
size_t const segmentSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const segmentStart = FUZ_rand(&lseed) % (srcBufferSize - segmentSize);
if (cBufferSize-cSize < ZSTD_compressBound(segmentSize)) break; /* avoid invalid dstBufferTooSmall */
if (totalTestSize+segmentSize > maxTestSize) break;
{ size_t const compressResult = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+segmentStart, segmentSize);
CHECK (ZSTD_isError(compressResult), "multi-segments compression error : %s", ZSTD_getErrorName(compressResult));
cSize += compressResult;
}
XXH64_update(&xxhState, srcBuffer+segmentStart, segmentSize);
memcpy(mirrorBuffer + totalTestSize, srcBuffer+segmentStart, segmentSize);
totalTestSize += segmentSize;
}
{ size_t const flushResult = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize, NULL, 0);
CHECK (ZSTD_isError(flushResult), "multi-segments epilogue error : %s", ZSTD_getErrorName(flushResult));
cSize += flushResult;
}
crcOrig = XXH64_digest(&xxhState);
}
/* streaming decompression test */
DISPLAYLEVEL(5, "fuzzer t%u: Bufferless streaming decompression test \n", testNb);
/* ensure memory requirement is good enough (should always be true) */
{ ZSTD_frameHeader zfh;
CHECK( ZSTD_getFrameHeader(&zfh, cBuffer, ZSTD_FRAMEHEADERSIZE_MAX),
"ZSTD_getFrameHeader(): error retrieving frame information");
{ size_t const roundBuffSize = ZSTD_decodingBufferSize_min(zfh.windowSize, zfh.frameContentSize);
CHECK_Z(roundBuffSize);
CHECK((roundBuffSize > totalTestSize) && (zfh.frameContentSize!=ZSTD_CONTENTSIZE_UNKNOWN),
"ZSTD_decodingBufferSize_min() requires more memory (%u) than necessary (%u)",
(unsigned)roundBuffSize, (unsigned)totalTestSize );
} }
if (dictSize<8) dictSize=0, dict=NULL; /* disable dictionary */
CHECK_Z( ZSTD_decompressBegin_usingDict(dctx, dict, dictSize) );
totalCSize = 0;
totalGenSize = 0;
while (totalCSize < cSize) {
size_t const inSize = ZSTD_nextSrcSizeToDecompress(dctx);
size_t const genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize);
CHECK (ZSTD_isError(genSize), "ZSTD_decompressContinue error : %s", ZSTD_getErrorName(genSize));
totalGenSize += genSize;
totalCSize += inSize;
}
CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded");
CHECK (totalGenSize != totalTestSize, "streaming decompressed data : wrong size")
CHECK (totalCSize != cSize, "compressed data should be fully read")
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
CHECK(crcOrig != crcDest, "streaming decompressed data corrupted (pos %u / %u)",
(unsigned)findDiff(mirrorBuffer, dstBuffer, totalTestSize), (unsigned)totalTestSize);
}
} /* for ( ; (testNb <= nbTests) */
DISPLAY("\r%u fuzzer tests completed \n", testNb-1);
_cleanup:
ZSTD_freeCCtx(refCtx);
ZSTD_freeCCtx(ctx);
ZSTD_freeDCtx(dctx);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(cBuffer);
free(dstBuffer);
free(mirrorBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/*_*******************************************************
* Command line
*********************************************************/
static int FUZ_usage(const char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%i) \n", nbTestsDefault);
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_compressibility_default);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
/*! readU32FromChar() :
@return : unsigned integer value read from input in `char` format
allows and interprets K, KB, KiB, M, MB and MiB suffix.
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : function result can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
if ((**stringPtr=='K') || (**stringPtr=='M')) {
result <<= 10;
if (**stringPtr=='M') result <<= 10;
(*stringPtr)++ ;
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
*/
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
int main(int argc, const char** argv)
{
U32 seed = 0;
int seedset = 0;
int argNb;
int nbTests = nbTestsDefault;
int testNb = 0;
int proba = FUZ_compressibility_default;
int result = 0;
U32 mainPause = 0;
U32 maxDuration = 0;
int bigTests = 1;
U32 memTestsOnly = 0;
const char* const programName = argv[0];
/* Check command line */
for (argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
if(!argument) continue; /* Protection if argument empty */
/* Handle commands. Aggregated commands are allowed */
if (argument[0]=='-') {
if (longCommandWArg(&argument, "--memtest=")) { memTestsOnly = readU32FromChar(&argument); continue; }
if (!strcmp(argument, "--memtest")) { memTestsOnly=1; continue; }
if (!strcmp(argument, "--no-big-tests")) { bigTests=0; continue; }
argument++;
while (*argument!=0) {
switch(*argument)
{
case 'h':
return FUZ_usage(programName);
case 'v':
argument++;
g_displayLevel++;
break;
case 'q':
argument++;
g_displayLevel--;
break;
case 'p': /* pause at the end */
argument++;
mainPause = 1;
break;
case 'i':
argument++; maxDuration = 0;
nbTests = (int)readU32FromChar(&argument);
break;
case 'T':
argument++;
nbTests = 0;
maxDuration = readU32FromChar(&argument);
if (*argument=='s') argument++; /* seconds */
if (*argument=='m') maxDuration *= 60, argument++; /* minutes */
if (*argument=='n') argument++;
break;
case 's':
argument++;
seedset = 1;
seed = readU32FromChar(&argument);
break;
case 't':
argument++;
testNb = (int)readU32FromChar(&argument);
break;
case 'P': /* compressibility % */
argument++;
proba = (int)readU32FromChar(&argument);
if (proba>100) proba = 100;
break;
default:
return (FUZ_usage(programName), 1);
} } } } /* for (argNb=1; argNb<argc; argNb++) */
/* Get Seed */
DISPLAY("Starting zstd tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION_STRING);
if (!seedset) {
time_t const t = time(NULL);
U32 const h = XXH32(&t, sizeof(t), 1);
seed = h % 10000;
}
DISPLAY("Seed = %u\n", (unsigned)seed);
if (proba!=FUZ_compressibility_default) DISPLAY("Compressibility : %i%%\n", proba);
if (memTestsOnly) {
g_displayLevel = MAX(3, g_displayLevel);
return FUZ_mallocTests(seed, ((double)proba) / 100, memTestsOnly);
}
if (nbTests < testNb) nbTests = testNb;
if (testNb==0)
result = basicUnitTests(0, ((double)proba) / 100); /* constant seed for predictability */
if (!result)
result = fuzzerTests(seed, nbTests, testNb, maxDuration, ((double)proba) / 100, bigTests);
if (mainPause) {
int unused;
DISPLAY("Press Enter \n");
unused = getchar();
(void)unused;
}
return result;
}