zstd/contrib/adaptive-compression/adapt.c
2017-07-19 09:43:17 -07:00

914 lines
33 KiB
C

/**
* Copyright (c) 2017-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free */
#include <pthread.h> /* pthread functions */
#include <string.h> /* memset */
#include "zstd_internal.h"
#include "util.h"
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define PRINT(...) fprintf(stdout, __VA_ARGS__)
#define DEBUG(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
#define FILE_CHUNK_SIZE 4 << 20
#define MAX_NUM_JOBS 2
#define stdinmark "/*stdin*\\"
#define stdoutmark "/*stdout*\\"
#define MAX_PATH 256
#define DEFAULT_DISPLAY_LEVEL 1
#define DEFAULT_COMPRESSION_LEVEL 6
#define DEFAULT_ADAPT_PARAM 1
#define MAX_COMPRESSION_LEVEL_CHANGE 3
static int g_displayLevel = DEFAULT_DISPLAY_LEVEL;
static unsigned g_compressionLevel = DEFAULT_COMPRESSION_LEVEL;
static unsigned g_displayStats = 0;
static UTIL_time_t g_startTime;
static size_t g_streamedSize = 0;
static unsigned g_useProgressBar = 0;
static UTIL_freq_t g_ticksPerSecond;
static unsigned g_forceCompressionLevel = 0;
typedef struct {
void* start;
size_t size;
size_t capacity;
} buffer_t;
typedef struct {
size_t filled;
buffer_t buffer;
} inBuff_t;
typedef struct {
unsigned waitCompressed;
unsigned waitReady;
unsigned waitWrite;
unsigned readyCounter;
unsigned compressedCounter;
unsigned writeCounter;
} cStat_t;
typedef struct {
buffer_t src;
buffer_t dst;
unsigned compressionLevel;
unsigned jobID;
unsigned lastJob;
size_t compressedSize;
size_t dictSize;
} jobDescription;
typedef struct {
pthread_mutex_t pMutex;
int noError;
} mutex_t;
typedef struct {
pthread_cond_t pCond;
int noError;
} cond_t;
typedef struct {
unsigned compressionLevel;
unsigned numActiveThreads;
unsigned numJobs;
unsigned nextJobID;
unsigned threadError;
unsigned jobReadyID;
unsigned jobCompressedID;
unsigned jobWriteID;
unsigned allJobsCompleted;
unsigned adaptParam;
unsigned compressionCompletionMeasured;
unsigned writeCompletionMeasured;
double compressionCompletion;
double writeCompletion;
mutex_t jobCompressed_mutex;
cond_t jobCompressed_cond;
mutex_t jobReady_mutex;
cond_t jobReady_cond;
mutex_t allJobsCompleted_mutex;
cond_t allJobsCompleted_cond;
mutex_t jobWrite_mutex;
cond_t jobWrite_cond;
mutex_t completion_mutex;
mutex_t stats_mutex;
size_t lastDictSize;
inBuff_t input;
cStat_t stats;
jobDescription* jobs;
ZSTD_CCtx* cctx;
} adaptCCtx;
typedef struct {
adaptCCtx* ctx;
FILE* dstFile;
} outputThreadArg;
typedef struct {
FILE* srcFile;
adaptCCtx* ctx;
outputThreadArg* otArg;
} fcResources;
static void freeCompressionJobs(adaptCCtx* ctx)
{
unsigned u;
for (u=0; u<ctx->numJobs; u++) {
jobDescription job = ctx->jobs[u];
free(job.dst.start);
free(job.src.start);
}
}
static int destroyMutex(mutex_t* mutex)
{
if (mutex->noError) {
int const ret = pthread_mutex_destroy(&mutex->pMutex);
return ret;
}
return 0;
}
static int destroyCond(cond_t* cond)
{
if (cond->noError) {
int const ret = pthread_cond_destroy(&cond->pCond);
return ret;
}
return 0;
}
static int freeCCtx(adaptCCtx* ctx)
{
if (!ctx) return 0;
{
int error = 0;
error |= destroyMutex(&ctx->jobCompressed_mutex);
error |= destroyCond(&ctx->jobCompressed_cond);
error |= destroyMutex(&ctx->jobReady_mutex);
error |= destroyCond(&ctx->jobReady_cond);
error |= destroyMutex(&ctx->allJobsCompleted_mutex);
error |= destroyCond(&ctx->allJobsCompleted_cond);
error |= destroyMutex(&ctx->jobWrite_mutex);
error |= destroyCond(&ctx->jobWrite_cond);
error |= destroyMutex(&ctx->completion_mutex);
error |= destroyMutex(&ctx->stats_mutex);
error |= ZSTD_isError(ZSTD_freeCCtx(ctx->cctx));
free(ctx->input.buffer.start);
if (ctx->jobs){
freeCompressionJobs(ctx);
free(ctx->jobs);
}
free(ctx);
return error;
}
}
static int initMutex(mutex_t* mutex)
{
int const ret = pthread_mutex_init(&mutex->pMutex, NULL);
mutex->noError = !ret;
return ret;
}
static int initCond(cond_t* cond)
{
int const ret = pthread_cond_init(&cond->pCond, NULL);
cond->noError = !ret;
return ret;
}
static int initCCtx(adaptCCtx* ctx, unsigned numJobs)
{
ctx->compressionLevel = g_compressionLevel;
{
int pthreadError = 0;
pthreadError |= initMutex(&ctx->jobCompressed_mutex);
pthreadError |= initCond(&ctx->jobCompressed_cond);
pthreadError |= initMutex(&ctx->jobReady_mutex);
pthreadError |= initCond(&ctx->jobReady_cond);
pthreadError |= initMutex(&ctx->allJobsCompleted_mutex);
pthreadError |= initCond(&ctx->allJobsCompleted_cond);
pthreadError |= initMutex(&ctx->jobWrite_mutex);
pthreadError |= initCond(&ctx->jobWrite_cond);
pthreadError |= initMutex(&ctx->completion_mutex);
pthreadError |= initMutex(&ctx->stats_mutex);
if (pthreadError) return pthreadError;
}
ctx->numJobs = numJobs;
ctx->jobReadyID = 0;
ctx->jobCompressedID = 0;
ctx->jobWriteID = 0;
ctx->lastDictSize = 0;
ctx->jobs = calloc(1, numJobs*sizeof(jobDescription));
if (!ctx->jobs) {
DISPLAY("Error: could not allocate space for jobs during context creation\n");
return 1;
}
/* initializing jobs */
{
unsigned jobNum;
for (jobNum=0; jobNum<numJobs; jobNum++) {
jobDescription* job = &ctx->jobs[jobNum];
job->src.start = malloc(2 * FILE_CHUNK_SIZE);
job->dst.start = malloc(ZSTD_compressBound(FILE_CHUNK_SIZE));
job->lastJob = 0;
if (!job->src.start || !job->dst.start) {
DISPLAY("Could not allocate buffers for jobs\n");
return 1;
}
job->src.capacity = FILE_CHUNK_SIZE;
job->dst.capacity = ZSTD_compressBound(FILE_CHUNK_SIZE);
}
}
ctx->nextJobID = 0;
ctx->threadError = 0;
ctx->allJobsCompleted = 0;
ctx->adaptParam = DEFAULT_ADAPT_PARAM;
ctx->cctx = ZSTD_createCCtx();
if (!ctx->cctx) {
DISPLAY("Error: could not allocate ZSTD_CCtx\n");
return 1;
}
ctx->input.filled = 0;
ctx->input.buffer.capacity = 2 * FILE_CHUNK_SIZE;
ctx->input.buffer.start = malloc(ctx->input.buffer.capacity);
if (!ctx->input.buffer.start) {
DISPLAY("Error: could not allocate input buffer\n");
return 1;
}
return 0;
}
static adaptCCtx* createCCtx(unsigned numJobs)
{
adaptCCtx* const ctx = calloc(1, sizeof(adaptCCtx));
if (ctx == NULL) {
DISPLAY("Error: could not allocate space for context\n");
return NULL;
}
{
int const error = initCCtx(ctx, numJobs);
if (error) {
freeCCtx(ctx);
return NULL;
}
return ctx;
}
}
static void signalErrorToThreads(adaptCCtx* ctx)
{
ctx->threadError = 1;
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
pthread_cond_signal(&ctx->jobReady_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
pthread_cond_signal(&ctx->jobCompressed_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
pthread_cond_signal(&ctx->jobWrite_cond.pCond);
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
pthread_cond_signal(&ctx->allJobsCompleted_cond.pCond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
}
static void waitUntilAllJobsCompleted(adaptCCtx* ctx)
{
if (!ctx) return;
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
while (ctx->allJobsCompleted == 0 && !ctx->threadError) {
pthread_cond_wait(&ctx->allJobsCompleted_cond.pCond, &ctx->allJobsCompleted_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
}
/* this function normalizes counters when compression level is changing */
static void reduceCounters(adaptCCtx* ctx)
{
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
unsigned const min = MIN(ctx->stats.compressedCounter, MIN(ctx->stats.writeCounter, ctx->stats.readyCounter));
ctx->stats.writeCounter -= min;
ctx->stats.compressedCounter -= min;
ctx->stats.readyCounter -= min;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
}
/*
* Compression level is changed depending on which part of the compression process is lagging
* Currently, three theads exist for job creation, compression, and file writing respectively.
* adaptCompressionLevel() increments or decrements compression level based on which of the threads is lagging
* job creation or file writing lag => increased compression level
* compression thread lag => decreased compression level
* detecting which thread is lagging is done by keeping track of how many calls each thread makes to pthread_cond_wait
*/
static void adaptCompressionLevel(adaptCCtx* ctx)
{
if (g_forceCompressionLevel) {
ctx->compressionLevel = g_compressionLevel;
}
else {
unsigned reset = 0;
unsigned allSlow;
unsigned compressWaiting;
unsigned writeWaiting;
unsigned createWaiting;
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
allSlow = ctx->adaptParam < ctx->stats.compressedCounter && ctx->adaptParam < ctx->stats.writeCounter && ctx->adaptParam < ctx->stats.readyCounter;
compressWaiting = ctx->adaptParam < ctx->stats.readyCounter;
writeWaiting = ctx->adaptParam < ctx->stats.compressedCounter;
createWaiting = ctx->adaptParam < ctx->stats.writeCounter;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
{
unsigned const writeSlow = (compressWaiting && createWaiting);
unsigned const compressSlow = (writeWaiting && createWaiting);
unsigned const createSlow = (compressWaiting && writeWaiting);
DEBUG(2, "createWaiting: %u, compressWaiting: %u, writeWaiting: %u\n", createWaiting, compressWaiting, writeWaiting);
if (allSlow) {
reset = 1;
}
else if ((writeSlow || createSlow) && ctx->compressionLevel < (unsigned)ZSTD_maxCLevel()) {
DEBUG(3, "increasing compression level %u\n", ctx->compressionLevel);
double completion;
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
completion = ctx->writeCompletion;
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
{
unsigned const maxChange = (unsigned)((1-completion) * (MAX_COMPRESSION_LEVEL_CHANGE - 1)) + 1;
unsigned const change = writeSlow ? MIN(maxChange, ZSTD_maxCLevel() - ctx->compressionLevel) : 1;
DEBUG(2, "writeSlow: %u, change: %u\n", writeSlow, change);
DEBUG(2, "write completion: %f\n", completion);
ctx->compressionLevel += change;
reset = 1;
}
}
else if (compressSlow && ctx->compressionLevel > 1) {
double completion;
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
completion = ctx->compressionCompletion;
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
{
unsigned const maxChange = (unsigned)((1-completion) * (MAX_COMPRESSION_LEVEL_CHANGE-1)) + 1;
unsigned const change = MIN(maxChange, ctx->compressionLevel - 1);
DEBUG(3, "decreasing compression level %u\n", ctx->compressionLevel);
DEBUG(3, "completion: %f\n", completion);
ctx->compressionLevel -= change;
reset = 1;
}
}
if (reset) {
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
ctx->stats.readyCounter = 0;
ctx->stats.writeCounter = 0;
ctx->stats.compressedCounter = 0;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
ctx->compressionCompletion = 1;
ctx->compressionCompletionMeasured = 0;
ctx->writeCompletion = 1;
ctx->writeCompletionMeasured = 0;
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
}
}
}
}
static size_t getUseableDictSize(unsigned compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, 0, 0);
unsigned overlapLog = compressionLevel >= (unsigned)ZSTD_maxCLevel() ? 0 : 3;
size_t overlapSize = 1 << (params.cParams.windowLog - overlapLog);
return overlapSize;
}
static void* compressionThread(void* arg)
{
adaptCCtx* ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
DEBUG(3, "compressionThread(): waiting on job ready\n");
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
while(currJob + 1 > ctx->jobReadyID && !ctx->threadError) {
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
ctx->stats.waitReady++;
ctx->stats.readyCounter++;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
reduceCounters(ctx);
adaptCompressionLevel(ctx);
DEBUG(3, "waiting on job ready, nextJob: %u\n", currJob);
pthread_cond_wait(&ctx->jobReady_cond.pCond, &ctx->jobReady_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
DEBUG(3, "compressionThread(): continuing after job ready\n");
DEBUG(3, "DICTIONARY ENDED\n");
DEBUG(3, "%.*s", (int)job->src.size, (char*)job->src.start);
/* compress the data */
{
unsigned const cLevel = ctx->compressionLevel;
DEBUG(3, "cLevel used: %u\n", cLevel);
DEBUG(3, "compression level used: %u\n", cLevel);
/* begin compression */
{
size_t const useDictSize = MIN(getUseableDictSize(cLevel), job->dictSize);
DEBUG(3, "useDictSize: %zu, job->dictSize: %zu\n", useDictSize, job->dictSize);
size_t const dictModeError = ZSTD_setCCtxParameter(ctx->cctx, ZSTD_p_forceRawDict, 1);
size_t const initError = ZSTD_compressBegin_usingDict(ctx->cctx, job->src.start + job->dictSize - useDictSize, useDictSize, cLevel);
size_t const windowSizeError = ZSTD_setCCtxParameter(ctx->cctx, ZSTD_p_forceWindow, 1);
if (ZSTD_isError(dictModeError) || ZSTD_isError(initError) || ZSTD_isError(windowSizeError)) {
DISPLAY("Error: something went wrong while starting compression\n");
signalErrorToThreads(ctx);
return arg;
}
}
/* continue compression */
if (currJob != 0) { /* not first job flush/overwrite the frame header */
size_t const hSize = ZSTD_compressContinue(ctx->cctx, job->dst.start, job->dst.capacity, job->src.start + job->dictSize, 0);
if (ZSTD_isError(hSize)) {
DISPLAY("Error: something went wrong while continuing compression\n");
job->compressedSize = hSize;
signalErrorToThreads(ctx);
return arg;
}
ZSTD_invalidateRepCodes(ctx->cctx);
}
job->compressedSize = (job->lastJob) ?
ZSTD_compressEnd (ctx->cctx, job->dst.start, job->dst.capacity, job->src.start + job->dictSize, job->src.size) :
ZSTD_compressContinue(ctx->cctx, job->dst.start, job->dst.capacity, job->src.start + job->dictSize, job->src.size);
if (ZSTD_isError(job->compressedSize)) {
DISPLAY("Error: something went wrong during compression: %s\n", ZSTD_getErrorName(job->compressedSize));
signalErrorToThreads(ctx);
return arg;
}
job->dst.size = job->compressedSize;
}
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
ctx->jobCompressedID++;
DEBUG(3, "signaling for job %u\n", currJob);
pthread_cond_signal(&ctx->jobCompressed_cond.pCond);
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
DEBUG(3, "finished job compression %u\n", currJob);
currJob++;
if (job->lastJob || ctx->threadError) {
/* finished compressing all jobs */
DEBUG(3, "all jobs finished compressing\n");
break;
}
}
return arg;
}
static void displayProgress(unsigned jobDoneID, unsigned cLevel, unsigned last)
{
if (!g_useProgressBar) return;
UTIL_time_t currTime;
UTIL_getTime(&currTime);
double const timeElapsed = (double)(UTIL_getSpanTimeMicro(g_ticksPerSecond, g_startTime, currTime) / 1000.0);
double const sizeMB = (double)g_streamedSize / (1 << 20);
double const avgCompRate = sizeMB * 1000 / timeElapsed;
fprintf(stderr, "\r| %4u jobs completed | Current Compresion Level: %2u | Time Elapsed: %5.0f ms | Data Size: %7.1f MB | Avg Compression Rate: %6.2f MB/s |", jobDoneID, cLevel, timeElapsed, sizeMB, avgCompRate);
if (last) {
fprintf(stderr, "\n");
}
else {
fflush(stderr);
}
}
static void* outputThread(void* arg)
{
outputThreadArg* const otArg = (outputThreadArg*)arg;
adaptCCtx* const ctx = otArg->ctx;
FILE* const dstFile = otArg->dstFile;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
DEBUG(3, "outputThread(): waiting on job compressed\n");
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
while (currJob + 1 > ctx->jobCompressedID && !ctx->threadError) {
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
ctx->stats.waitCompressed++;
ctx->stats.compressedCounter++;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
reduceCounters(ctx);
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
if (!ctx->compressionCompletionMeasured) {
ctx->compressionCompletion = ZSTD_getCompletion(ctx->cctx);
ctx->compressionCompletionMeasured = 1;
DEBUG(3, "output detected completion: %f\n", ctx->compressionCompletion);
}
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
adaptCompressionLevel(ctx);
DEBUG(3, "waiting on job compressed, nextJob: %u\n", currJob);
pthread_cond_wait(&ctx->jobCompressed_cond.pCond, &ctx->jobCompressed_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
DEBUG(3, "outputThread(): continuing after job compressed\n");
{
size_t const compressedSize = job->compressedSize;
size_t remaining = compressedSize;
if (ZSTD_isError(compressedSize)) {
DISPLAY("Error: an error occurred during compression\n");
signalErrorToThreads(ctx);
return arg;
}
{
// size_t const writeSize = fwrite(job->dst.start, 1, compressedSize, dstFile);
size_t const blockSize = 4 << 20;
size_t pos = 0;
for ( ; ; ) {
size_t const writeSize = MIN(remaining, blockSize);
size_t const ret = fwrite(job->dst.start + pos, 1, writeSize, dstFile);
if (ret != writeSize) break;
pos += ret;
remaining -= ret;
/* update completion variable for writing */
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
if (!ctx->writeCompletionMeasured) {
ctx->writeCompletion = 1 - (double)remaining/compressedSize;
}
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
if (remaining == 0) break;
}
if (pos != compressedSize) {
DISPLAY("Error: an error occurred during file write operation\n");
signalErrorToThreads(ctx);
return arg;
}
}
}
DEBUG(3, "finished job write %u\n", currJob);
currJob++;
displayProgress(currJob, ctx->compressionLevel, job->lastJob);
DEBUG(3, "locking job write mutex\n");
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
ctx->jobWriteID++;
pthread_cond_signal(&ctx->jobWrite_cond.pCond);
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
DEBUG(3, "unlocking job write mutex\n");
if (job->lastJob || ctx->threadError) {
/* finished with all jobs */
DEBUG(3, "all jobs finished writing\n");
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
ctx->allJobsCompleted = 1;
pthread_cond_signal(&ctx->allJobsCompleted_cond.pCond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
break;
}
}
return arg;
}
static int createCompressionJob(adaptCCtx* ctx, size_t srcSize, int last)
{
unsigned const nextJob = ctx->nextJobID;
unsigned const nextJobIndex = nextJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[nextJobIndex];
DEBUG(3, "createCompressionJob(): wait for job write\n");
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
DEBUG(3, "Creating new compression job -- nextJob: %u, jobCompressedID: %u, jobWriteID: %u, numJObs: %u\n", nextJob,ctx->jobCompressedID, ctx->jobWriteID, ctx->numJobs);
while (nextJob - ctx->jobWriteID >= ctx->numJobs && !ctx->threadError) {
pthread_mutex_lock(&ctx->stats_mutex.pMutex);
ctx->stats.waitWrite++;
ctx->stats.writeCounter++;
pthread_mutex_unlock(&ctx->stats_mutex.pMutex);
reduceCounters(ctx);
pthread_mutex_lock(&ctx->completion_mutex.pMutex);
ctx->writeCompletionMeasured = 1;
pthread_mutex_unlock(&ctx->completion_mutex.pMutex);
adaptCompressionLevel(ctx);
DEBUG(3, "waiting on job Write, nextJob: %u\n", nextJob);
pthread_cond_wait(&ctx->jobWrite_cond.pCond, &ctx->jobWrite_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
DEBUG(3, "createCompressionJob(): continuing after job write\n");
DEBUG(3, "filled: %zu, srcSize: %zu\n", ctx->input.filled, srcSize);
job->compressionLevel = ctx->compressionLevel;
job->src.size = srcSize;
job->jobID = nextJob;
job->lastJob = last;
{
/* swap buffer */
void* const copy = job->src.start;
job->src.start = ctx->input.buffer.start;
ctx->input.buffer.start = copy;
}
job->dictSize = ctx->lastDictSize;
DEBUG(3, "finished job creation %u\n", nextJob);
ctx->nextJobID++;
DEBUG(3, "filled: %zu, srcSize: %zu\n", ctx->input.filled, srcSize);
/* if not on the last job, reuse data as dictionary in next job */
if (!last) {
size_t const oldDictSize = ctx->lastDictSize;
DEBUG(3, "oldDictSize %zu\n", oldDictSize);
memcpy(ctx->input.buffer.start, job->src.start + oldDictSize, srcSize);
ctx->lastDictSize = srcSize;
ctx->input.filled = srcSize;
}
/* signal job ready */
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
ctx->jobReadyID++;
pthread_cond_signal(&ctx->jobReady_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
return 0;
}
static void printStats(cStat_t stats)
{
DISPLAY("========STATISTICS========\n");
DISPLAY("# times waited on job ready: %u\n", stats.waitReady);
DISPLAY("# times waited on job compressed: %u\n", stats.waitCompressed);
DISPLAY("# times waited on job Write: %u\n\n", stats.waitWrite);
}
static int performCompression(adaptCCtx* ctx, FILE* const srcFile, outputThreadArg* otArg)
{
if (!ctx || !srcFile || !otArg) {
return 1;
}
/* create output thread */
{
pthread_t out;
if (pthread_create(&out, NULL, &outputThread, otArg)) {
DISPLAY("Error: could not create output thread\n");
signalErrorToThreads(ctx);
return 1;
}
}
/* create compression thread */
{
pthread_t compression;
if (pthread_create(&compression, NULL, &compressionThread, ctx)) {
DISPLAY("Error: could not create compression thread\n");
signalErrorToThreads(ctx);
return 1;
}
}
/* creating jobs */
for ( ; ; ) {
size_t const readSize = fread(ctx->input.buffer.start + ctx->input.filled, 1, FILE_CHUNK_SIZE, srcFile);
if (readSize != FILE_CHUNK_SIZE && !feof(srcFile)) {
DISPLAY("Error: problem occurred during read from src file\n");
signalErrorToThreads(ctx);
return 1;
}
g_streamedSize += readSize;
/* reading was fine, now create the compression job */
{
int const last = feof(srcFile);
int const error = createCompressionJob(ctx, readSize, last);
if (error != 0) {
signalErrorToThreads(ctx);
return error;
}
}
if (feof(srcFile)) {
DEBUG(3, "THE STREAM OF DATA ENDED %u\n", ctx->nextJobID);
break;
}
}
/* success -- created all jobs */
return 0;
}
static fcResources createFileCompressionResources(const char* const srcFilename, const char* const dstFilenameOrNull)
{
fcResources fcr;
unsigned const stdinUsed = !strcmp(srcFilename, stdinmark);
FILE* const srcFile = stdinUsed ? stdin : fopen(srcFilename, "rb");
const char* const outFilenameIntermediate = (stdinUsed && !dstFilenameOrNull) ? stdoutmark : dstFilenameOrNull;
const char* outFilename = outFilenameIntermediate;
char fileAndSuffix[MAX_PATH];
size_t const numJobs = MAX_NUM_JOBS;
memset(&fcr, 0, sizeof(fcr));
if (!outFilenameIntermediate) {
if (snprintf(fileAndSuffix, MAX_PATH, "%s.zst", srcFilename) + 1 > MAX_PATH) {
DISPLAY("Error: output filename is too long\n");
return fcr;
}
outFilename = fileAndSuffix;
}
{
unsigned const stdoutUsed = !strcmp(outFilename, stdoutmark);
FILE* const dstFile = stdoutUsed ? stdout : fopen(outFilename, "wb");
fcr.otArg = malloc(sizeof(outputThreadArg));
if (!fcr.otArg) {
DISPLAY("Error: could not allocate space for output thread argument\n");
return fcr;
}
fcr.otArg->dstFile = dstFile;
}
/* checking for errors */
if (!fcr.otArg->dstFile || !srcFile) {
DISPLAY("Error: some file(s) could not be opened\n");
return fcr;
}
/* creating context */
fcr.ctx = createCCtx(numJobs);
fcr.otArg->ctx = fcr.ctx;
fcr.srcFile = srcFile;
return fcr;
}
static int freeFileCompressionResources(fcResources* fcr)
{
int ret = 0;
waitUntilAllJobsCompleted(fcr->ctx);
pthread_mutex_lock(&fcr->ctx->stats_mutex.pMutex);
if (g_displayStats) printStats(fcr->ctx->stats);
pthread_mutex_unlock(&fcr->ctx->stats_mutex.pMutex);
ret |= (fcr->srcFile != NULL) ? fclose(fcr->srcFile) : 0;
ret |= (fcr->ctx != NULL) ? freeCCtx(fcr->ctx) : 0;
if (fcr->otArg) {
ret |= (fcr->otArg->dstFile != stdout) ? fclose(fcr->otArg->dstFile) : 0;
free(fcr->otArg);
/* no need to freeCCtx() on otArg->ctx because it should be the same context */
}
return ret;
}
static int compressFilename(const char* const srcFilename, const char* const dstFilenameOrNull)
{
int ret = 0;
UTIL_getTime(&g_startTime);
g_streamedSize = 0;
fcResources fcr = createFileCompressionResources(srcFilename, dstFilenameOrNull);
ret |= performCompression(fcr.ctx, fcr.srcFile, fcr.otArg);
ret |= freeFileCompressionResources(&fcr);
return ret;
}
static int compressFilenames(const char** filenameTable, unsigned numFiles, unsigned forceStdout)
{
int ret = 0;
unsigned fileNum;
for (fileNum=0; fileNum<numFiles; fileNum++) {
const char* filename = filenameTable[fileNum];
if (!forceStdout) {
ret |= compressFilename(filename, NULL);
}
else {
ret |= compressFilename(filename, stdoutmark);
}
}
return ret;
}
/*! readU32FromChar() :
@return : unsigned integer value read from input in `char` format
allows and interprets K, KB, KiB, M, MB and MiB suffix.
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : function result can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
if ((**stringPtr=='K') || (**stringPtr=='M')) {
result <<= 10;
if (**stringPtr=='M') result <<= 10;
(*stringPtr)++ ;
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static void help()
{
PRINT("Usage:\n");
PRINT(" ./multi [options] [file(s)]\n");
PRINT("\n");
PRINT("Options:\n");
PRINT(" -oFILE : specify the output file name\n");
PRINT(" -v : display debug information\n");
PRINT(" -i# : provide initial compression level\n");
PRINT(" -s : display information stats\n");
PRINT(" -h : display help/information\n");
PRINT(" -f : force the compression level to stay constant\n");
}
/* return 0 if successful, else return error */
int main(int argCount, const char* argv[])
{
const char* outFilename = NULL;
const char** filenameTable = (const char**)malloc(argCount*sizeof(const char*));
unsigned filenameIdx = 0;
filenameTable[0] = stdinmark;
unsigned forceStdout = 0;
int ret = 0;
int argNum;
UTIL_initTimer(&g_ticksPerSecond);
if (filenameTable == NULL) {
DISPLAY("Error: could not allocate sapce for filename table.\n");
return 1;
}
for (argNum=1; argNum<argCount; argNum++) {
const char* argument = argv[argNum];
/* output filename designated with "-o" */
if (argument[0]=='-' && strlen(argument) > 1) {
switch (argument[1]) {
case 'o':
argument += 2;
outFilename = argument;
break;
case 'v':
g_displayLevel++;
break;
case 'i':
argument += 2;
g_compressionLevel = readU32FromChar(&argument);
DEBUG(3, "g_compressionLevel: %u\n", g_compressionLevel);
break;
case 's':
g_displayStats = 1;
break;
case 'h':
help();
goto _main_exit;
case 'p':
g_useProgressBar = 1;
break;
case 'c':
forceStdout = 1;
outFilename = stdoutmark;
break;
case 'f':
g_forceCompressionLevel = 1;
break;
default:
DISPLAY("Error: invalid argument provided\n");
ret = 1;
goto _main_exit;
}
continue;
}
/* regular files to be compressed */
filenameTable[filenameIdx++] = argument;
}
/* error checking with number of files */
if (filenameIdx > 1 && (outFilename != NULL && strcmp(outFilename, stdoutmark))) {
DISPLAY("Error: multiple input files provided, cannot use specified output file\n");
ret = 1;
goto _main_exit;
}
/* compress files */
if (filenameIdx <= 1) {
ret |= compressFilename(filenameTable[0], outFilename);
}
else {
ret |= compressFilenames(filenameTable, filenameIdx, forceStdout);
}
_main_exit:
free(filenameTable);
return ret;
}