769 lines
26 KiB
C
769 lines
26 KiB
C
/*-*************************************
|
|
* Dependencies
|
|
***************************************/
|
|
#include <stdio.h> /* fprintf */
|
|
#include <stdlib.h> /* malloc, free, qsort */
|
|
#include <string.h> /* memset */
|
|
#include <time.h> /* clock */
|
|
#include "mem.h" /* read */
|
|
#include "pool.h"
|
|
#include "threading.h"
|
|
#include "fastCover.h"
|
|
#include "zstd_internal.h" /* includes zstd.h */
|
|
#include "zdict.h"
|
|
|
|
|
|
/*-*************************************
|
|
* Constants
|
|
***************************************/
|
|
#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((U32)-1) : ((U32)1 GB))
|
|
#define FASTCOVER_MAX_F 32
|
|
#define DEFAULT_SPLITPOINT 1.0
|
|
|
|
/*-*************************************
|
|
* Console display
|
|
***************************************/
|
|
static int g_displayLevel = 2;
|
|
#define DISPLAY(...) \
|
|
{ \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fflush(stderr); \
|
|
}
|
|
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
|
|
if (displayLevel >= l) { \
|
|
DISPLAY(__VA_ARGS__); \
|
|
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
|
|
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
|
|
|
|
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
|
|
if (displayLevel >= l) { \
|
|
if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \
|
|
g_time = clock(); \
|
|
DISPLAY(__VA_ARGS__); \
|
|
} \
|
|
}
|
|
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
|
|
static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
|
|
static clock_t g_time = 0;
|
|
|
|
|
|
/*-*************************************
|
|
* Hash Functions
|
|
***************************************/
|
|
static const U64 prime6bytes = 227718039650203ULL;
|
|
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
|
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
|
|
|
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
|
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
|
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
|
|
|
|
|
/**
|
|
* Hash the d-byte value pointed to by p and mod 2^f
|
|
*/
|
|
static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 h, unsigned d) {
|
|
if (d == 6) {
|
|
return ZSTD_hash6Ptr(p, h) & ((1 << h) - 1);
|
|
}
|
|
return ZSTD_hash8Ptr(p, h) & ((1 << h) - 1);
|
|
}
|
|
|
|
|
|
/*-*************************************
|
|
* Context
|
|
***************************************/
|
|
typedef struct {
|
|
const BYTE *samples;
|
|
size_t *offsets;
|
|
const size_t *samplesSizes;
|
|
size_t nbSamples;
|
|
size_t nbTrainSamples;
|
|
size_t nbTestSamples;
|
|
size_t nbDmers;
|
|
U32 *freqs;
|
|
U16 *segmentFreqs;
|
|
unsigned d;
|
|
} FASTCOVER_ctx_t;
|
|
|
|
|
|
/*-*************************************
|
|
* Helper functions
|
|
***************************************/
|
|
/**
|
|
* Returns the sum of the sample sizes.
|
|
*/
|
|
static size_t FASTCOVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
|
|
size_t sum = 0;
|
|
unsigned i;
|
|
for (i = 0; i < nbSamples; ++i) {
|
|
sum += samplesSizes[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*-*************************************
|
|
* fast functions
|
|
***************************************/
|
|
/**
|
|
* A segment is a range in the source as well as the score of the segment.
|
|
*/
|
|
typedef struct {
|
|
U32 begin;
|
|
U32 end;
|
|
U32 score;
|
|
} FASTCOVER_segment_t;
|
|
|
|
|
|
/**
|
|
* Selects the best segment in an epoch.
|
|
* Segments of are scored according to the function:
|
|
*
|
|
* Let F(d) be the frequency of all dmers with hash value d.
|
|
* Let S_i be hash value of the dmer at position i of segment S which has length k.
|
|
*
|
|
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
|
|
*
|
|
* Once the dmer with hash value d is in the dictionay we set F(d) = F(d)/2.
|
|
*/
|
|
static FASTCOVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
|
|
U32 *freqs, U32 begin,U32 end,
|
|
ZDICT_fastCover_params_t parameters) {
|
|
/* Constants */
|
|
const U32 k = parameters.k;
|
|
const U32 d = parameters.d;
|
|
const U32 dmersInK = k - d + 1;
|
|
/* Try each segment (activeSegment) and save the best (bestSegment) */
|
|
FASTCOVER_segment_t bestSegment = {0, 0, 0};
|
|
FASTCOVER_segment_t activeSegment;
|
|
/* Reset the activeDmers in the segment */
|
|
/* The activeSegment starts at the beginning of the epoch. */
|
|
activeSegment.begin = begin;
|
|
activeSegment.end = begin;
|
|
activeSegment.score = 0;
|
|
{
|
|
/* Slide the activeSegment through the whole epoch.
|
|
* Save the best segment in bestSegment.
|
|
*/
|
|
while (activeSegment.end < end) {
|
|
/* Get hash value of current dmer */
|
|
const size_t index = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, parameters.f, ctx->d);
|
|
/* Add frequency of this index to score if this is the first occurence of index in active segment */
|
|
if (ctx->segmentFreqs[index] == 0) {
|
|
activeSegment.score += freqs[index];
|
|
}
|
|
ctx->segmentFreqs[index] += 1;
|
|
/* Increment end of segment */
|
|
activeSegment.end += 1;
|
|
/* If the window is now too large, drop the first position */
|
|
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
|
|
/* Get hash value of the dmer to be eliminated from active segment */
|
|
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, parameters.f, ctx->d);
|
|
ctx->segmentFreqs[delIndex] -= 1;
|
|
/* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */
|
|
if (ctx->segmentFreqs[delIndex] == 0) {
|
|
activeSegment.score -= freqs[delIndex];
|
|
}
|
|
/* Increment start of segment */
|
|
activeSegment.begin += 1;
|
|
}
|
|
/* If this segment is the best so far save it */
|
|
if (activeSegment.score > bestSegment.score) {
|
|
bestSegment = activeSegment;
|
|
}
|
|
}
|
|
/* Zero out rest of segmentFreqs array */
|
|
while (activeSegment.begin < end) {
|
|
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, parameters.f, ctx->d);
|
|
ctx->segmentFreqs[delIndex] -= 1;
|
|
activeSegment.begin += 1;
|
|
}
|
|
}
|
|
{
|
|
/* Trim off the zero frequency head and tail from the segment. */
|
|
U32 newBegin = bestSegment.end;
|
|
U32 newEnd = bestSegment.begin;
|
|
U32 pos;
|
|
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
|
|
const size_t index = FASTCOVER_hashPtrToIndex(ctx->samples + pos, parameters.f, ctx->d);
|
|
U32 freq = freqs[index];
|
|
if (freq != 0) {
|
|
newBegin = MIN(newBegin, pos);
|
|
newEnd = pos + 1;
|
|
}
|
|
}
|
|
bestSegment.begin = newBegin;
|
|
bestSegment.end = newEnd;
|
|
}
|
|
{
|
|
/* Half the frequency of hash value of each dmer covered by the chosen segment. */
|
|
U32 pos;
|
|
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
|
|
const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, parameters.f, ctx->d);
|
|
freqs[i] = 0;
|
|
}
|
|
}
|
|
return bestSegment;
|
|
}
|
|
|
|
/**
|
|
* Check the validity of the parameters.
|
|
* Returns non-zero if the parameters are valid and 0 otherwise.
|
|
*/
|
|
static int FASTCOVER_checkParameters(ZDICT_fastCover_params_t parameters,
|
|
size_t maxDictSize) {
|
|
/* k, d, and f are required parameters */
|
|
if (parameters.d == 0 || parameters.k == 0 || parameters.f == 0) {
|
|
return 0;
|
|
}
|
|
/* d has to be 6 or 8 */
|
|
if (parameters.d != 6 && parameters.d != 8) {
|
|
return 0;
|
|
}
|
|
/* 0 < f <= FASTCOVER_MAX_F */
|
|
if (parameters.f > FASTCOVER_MAX_F) {
|
|
return 0;
|
|
}
|
|
/* k <= maxDictSize */
|
|
if (parameters.k > maxDictSize) {
|
|
return 0;
|
|
}
|
|
/* d <= k */
|
|
if (parameters.d > parameters.k) {
|
|
return 0;
|
|
}
|
|
/* 0 < splitPoint <= 1 */
|
|
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Clean up a context initialized with `FASTCOVER_ctx_init()`.
|
|
*/
|
|
static void FASTCOVER_ctx_destroy(FASTCOVER_ctx_t *ctx) {
|
|
if (!ctx) {
|
|
return;
|
|
}
|
|
if (ctx->segmentFreqs) {
|
|
free(ctx->segmentFreqs);
|
|
ctx->segmentFreqs = NULL;
|
|
}
|
|
if (ctx->freqs) {
|
|
free(ctx->freqs);
|
|
ctx->freqs = NULL;
|
|
}
|
|
if (ctx->offsets) {
|
|
free(ctx->offsets);
|
|
ctx->offsets = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate for frequency of hash value of each dmer in ctx->samples
|
|
*/
|
|
static void FASTCOVER_computeFrequency(U32 *freqs, unsigned f, FASTCOVER_ctx_t *ctx){
|
|
/* inCurrSample keeps track of this hash value has already be seen in previous dmers in the same sample*/
|
|
BYTE* inCurrSample = (BYTE *)malloc((1 << f) * sizeof(BYTE));
|
|
size_t start; /* start of current dmer */
|
|
for (unsigned i = 0; i < ctx->nbTrainSamples; i++) {
|
|
memset(inCurrSample, 0, (1 << f) * sizeof(*inCurrSample)); /* Reset inCurrSample for each sample */
|
|
size_t currSampleStart = ctx->offsets[i];
|
|
size_t currSampleEnd = ctx->offsets[i+1];
|
|
start = currSampleStart;
|
|
while (start + ctx->d <= currSampleEnd) {
|
|
const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, ctx->d);
|
|
/* if no dmer with same hash value has been seen in current sample */
|
|
if (inCurrSample[dmerIndex] == 0) {
|
|
inCurrSample[dmerIndex]++;
|
|
freqs[dmerIndex]++;
|
|
}
|
|
start++;
|
|
}
|
|
}
|
|
free(inCurrSample);
|
|
}
|
|
|
|
/**
|
|
* Prepare a context for dictionary building.
|
|
* The context is only dependent on the parameter `d` and can used multiple
|
|
* times.
|
|
* Returns 1 on success or zero on error.
|
|
* The context must be destroyed with `FASTCOVER_ctx_destroy()`.
|
|
*/
|
|
static int FASTCOVER_ctx_init(FASTCOVER_ctx_t *ctx, const void *samplesBuffer,
|
|
const size_t *samplesSizes, unsigned nbSamples,
|
|
unsigned d, double splitPoint, unsigned f) {
|
|
const BYTE *const samples = (const BYTE *)samplesBuffer;
|
|
const size_t totalSamplesSize = FASTCOVER_sum(samplesSizes, nbSamples);
|
|
/* Split samples into testing and training sets */
|
|
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
|
|
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
|
|
const size_t trainingSamplesSize = splitPoint < 1.0 ? FASTCOVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
|
|
const size_t testSamplesSize = splitPoint < 1.0 ? FASTCOVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
|
|
/* Checks */
|
|
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
|
|
totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
|
|
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
|
|
(U32)(totalSamplesSize>>20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
|
|
return 0;
|
|
}
|
|
/* Check if there are at least 5 training samples */
|
|
if (nbTrainSamples < 5) {
|
|
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
|
|
return 0;
|
|
}
|
|
/* Check if there's testing sample */
|
|
if (nbTestSamples < 1) {
|
|
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
|
|
return 0;
|
|
}
|
|
/* Zero the context */
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
|
|
(U32)trainingSamplesSize);
|
|
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
|
|
(U32)testSamplesSize);
|
|
|
|
ctx->samples = samples;
|
|
ctx->samplesSizes = samplesSizes;
|
|
ctx->nbSamples = nbSamples;
|
|
ctx->nbTrainSamples = nbTrainSamples;
|
|
ctx->nbTestSamples = nbTestSamples;
|
|
ctx->nbDmers = trainingSamplesSize - d + 1;
|
|
ctx->d = d;
|
|
|
|
/* The offsets of each file */
|
|
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
|
|
if (!ctx->offsets) {
|
|
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
|
|
FASTCOVER_ctx_destroy(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Fill offsets from the samplesSizes */
|
|
{
|
|
U32 i;
|
|
ctx->offsets[0] = 0;
|
|
for (i = 1; i <= nbSamples; ++i) {
|
|
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
|
|
}
|
|
}
|
|
|
|
/* Initialize frequency array of size 2^f */
|
|
ctx->freqs = (U32 *)calloc((1 << f), sizeof(U32));
|
|
ctx->segmentFreqs = (U16 *)calloc((1 << f), sizeof(U16));
|
|
DISPLAYLEVEL(2, "Computing frequencies\n");
|
|
FASTCOVER_computeFrequency(ctx->freqs, f, ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Given the prepared context build the dictionary.
|
|
*/
|
|
static size_t FASTCOVER_buildDictionary(const FASTCOVER_ctx_t *ctx, U32 *freqs,
|
|
void *dictBuffer,
|
|
size_t dictBufferCapacity,
|
|
ZDICT_fastCover_params_t parameters){
|
|
BYTE *const dict = (BYTE *)dictBuffer;
|
|
size_t tail = dictBufferCapacity;
|
|
/* Divide the data up into epochs of equal size.
|
|
* We will select at least one segment from each epoch.
|
|
*/
|
|
const U32 epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k));
|
|
const U32 epochSize = (U32)(ctx->nbDmers / epochs);
|
|
size_t epoch;
|
|
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", epochs,
|
|
epochSize);
|
|
/* Loop through the epochs until there are no more segments or the dictionary
|
|
* is full.
|
|
*/
|
|
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
|
|
const U32 epochBegin = (U32)(epoch * epochSize);
|
|
const U32 epochEnd = epochBegin + epochSize;
|
|
size_t segmentSize;
|
|
/* Select a segment */
|
|
FASTCOVER_segment_t segment = FASTCOVER_selectSegment(
|
|
ctx, freqs, epochBegin, epochEnd, parameters);
|
|
|
|
/* If the segment covers no dmers, then we are out of content */
|
|
if (segment.score == 0) {
|
|
break;
|
|
}
|
|
|
|
/* Trim the segment if necessary and if it is too small then we are done */
|
|
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
|
|
if (segmentSize < parameters.d) {
|
|
break;
|
|
}
|
|
|
|
/* We fill the dictionary from the back to allow the best segments to be
|
|
* referenced with the smallest offsets.
|
|
*/
|
|
tail -= segmentSize;
|
|
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
|
|
DISPLAYUPDATE(
|
|
2, "\r%u%% ",
|
|
(U32)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
|
|
}
|
|
DISPLAYLEVEL(2, "\r%79s\r", "");
|
|
return tail;
|
|
}
|
|
|
|
|
|
/**
|
|
* FASTCOVER_best_t is used for two purposes:
|
|
* 1. Synchronizing threads.
|
|
* 2. Saving the best parameters and dictionary.
|
|
*
|
|
* All of the methods except FASTCOVER_best_init() are thread safe if zstd is
|
|
* compiled with multithreaded support.
|
|
*/
|
|
typedef struct fast_best_s {
|
|
ZSTD_pthread_mutex_t mutex;
|
|
ZSTD_pthread_cond_t cond;
|
|
size_t liveJobs;
|
|
void *dict;
|
|
size_t dictSize;
|
|
ZDICT_fastCover_params_t parameters;
|
|
size_t compressedSize;
|
|
} FASTCOVER_best_t;
|
|
|
|
/**
|
|
* Initialize the `FASTCOVER_best_t`.
|
|
*/
|
|
static void FASTCOVER_best_init(FASTCOVER_best_t *best) {
|
|
if (best==NULL) return; /* compatible with init on NULL */
|
|
(void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
|
|
(void)ZSTD_pthread_cond_init(&best->cond, NULL);
|
|
best->liveJobs = 0;
|
|
best->dict = NULL;
|
|
best->dictSize = 0;
|
|
best->compressedSize = (size_t)-1;
|
|
memset(&best->parameters, 0, sizeof(best->parameters));
|
|
}
|
|
|
|
/**
|
|
* Wait until liveJobs == 0.
|
|
*/
|
|
static void FASTCOVER_best_wait(FASTCOVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
while (best->liveJobs != 0) {
|
|
ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
|
|
}
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
}
|
|
|
|
/**
|
|
* Call FASTCOVER_best_wait() and then destroy the FASTCOVER_best_t.
|
|
*/
|
|
static void FASTCOVER_best_destroy(FASTCOVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
FASTCOVER_best_wait(best);
|
|
if (best->dict) {
|
|
free(best->dict);
|
|
}
|
|
ZSTD_pthread_mutex_destroy(&best->mutex);
|
|
ZSTD_pthread_cond_destroy(&best->cond);
|
|
}
|
|
|
|
/**
|
|
* Called when a thread is about to be launched.
|
|
* Increments liveJobs.
|
|
*/
|
|
static void FASTCOVER_best_start(FASTCOVER_best_t *best) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
++best->liveJobs;
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
}
|
|
|
|
/**
|
|
* Called when a thread finishes executing, both on error or success.
|
|
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
|
|
* If this dictionary is the best so far save it and its parameters.
|
|
*/
|
|
static void FASTCOVER_best_finish(FASTCOVER_best_t *best, size_t compressedSize,
|
|
ZDICT_fastCover_params_t parameters, void *dict,
|
|
size_t dictSize) {
|
|
if (!best) {
|
|
return;
|
|
}
|
|
{
|
|
size_t liveJobs;
|
|
ZSTD_pthread_mutex_lock(&best->mutex);
|
|
--best->liveJobs;
|
|
liveJobs = best->liveJobs;
|
|
/* If the new dictionary is better */
|
|
if (compressedSize < best->compressedSize) {
|
|
/* Allocate space if necessary */
|
|
if (!best->dict || best->dictSize < dictSize) {
|
|
if (best->dict) {
|
|
free(best->dict);
|
|
}
|
|
best->dict = malloc(dictSize);
|
|
if (!best->dict) {
|
|
best->compressedSize = ERROR(GENERIC);
|
|
best->dictSize = 0;
|
|
return;
|
|
}
|
|
}
|
|
/* Save the dictionary, parameters, and size */
|
|
memcpy(best->dict, dict, dictSize);
|
|
best->dictSize = dictSize;
|
|
best->parameters = parameters;
|
|
best->compressedSize = compressedSize;
|
|
}
|
|
ZSTD_pthread_mutex_unlock(&best->mutex);
|
|
if (liveJobs == 0) {
|
|
ZSTD_pthread_cond_broadcast(&best->cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parameters for FASTCOVER_tryParameters().
|
|
*/
|
|
typedef struct FASTCOVER_tryParameters_data_s {
|
|
const FASTCOVER_ctx_t *ctx;
|
|
FASTCOVER_best_t *best;
|
|
size_t dictBufferCapacity;
|
|
ZDICT_fastCover_params_t parameters;
|
|
} FASTCOVER_tryParameters_data_t;
|
|
|
|
/**
|
|
* Tries a set of parameters and updates the FASTCOVER_best_t with the results.
|
|
* This function is thread safe if zstd is compiled with multithreaded support.
|
|
* It takes its parameters as an *OWNING* opaque pointer to support threading.
|
|
*/
|
|
static void FASTCOVER_tryParameters(void *opaque) {
|
|
/* Save parameters as local variables */
|
|
FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque;
|
|
const FASTCOVER_ctx_t *const ctx = data->ctx;
|
|
const ZDICT_fastCover_params_t parameters = data->parameters;
|
|
size_t dictBufferCapacity = data->dictBufferCapacity;
|
|
size_t totalCompressedSize = ERROR(GENERIC);
|
|
/* Allocate space for hash table, dict, and freqs */
|
|
BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
|
|
U32 *freqs = (U32*) malloc((1 << parameters.f) * sizeof(U32));
|
|
if (!dict || !freqs) {
|
|
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
|
|
goto _cleanup;
|
|
}
|
|
/* Copy the frequencies because we need to modify them */
|
|
memcpy(freqs, ctx->freqs, (1 << parameters.f) * sizeof(U32));
|
|
/* Build the dictionary */
|
|
{
|
|
const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict,
|
|
dictBufferCapacity, parameters);
|
|
|
|
dictBufferCapacity = ZDICT_finalizeDictionary(
|
|
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
|
|
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples,
|
|
parameters.zParams);
|
|
if (ZDICT_isError(dictBufferCapacity)) {
|
|
DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
|
|
goto _cleanup;
|
|
}
|
|
}
|
|
/* Check total compressed size */
|
|
{
|
|
/* Pointers */
|
|
ZSTD_CCtx *cctx;
|
|
ZSTD_CDict *cdict;
|
|
void *dst;
|
|
/* Local variables */
|
|
size_t dstCapacity;
|
|
size_t i;
|
|
/* Allocate dst with enough space to compress the maximum sized sample */
|
|
{
|
|
size_t maxSampleSize = 0;
|
|
i = parameters.splitPoint < 1.0 ? ctx->nbTrainSamples : 0;
|
|
for (; i < ctx->nbSamples; ++i) {
|
|
maxSampleSize = MAX(ctx->samplesSizes[i], maxSampleSize);
|
|
}
|
|
dstCapacity = ZSTD_compressBound(maxSampleSize);
|
|
dst = malloc(dstCapacity);
|
|
}
|
|
/* Create the cctx and cdict */
|
|
cctx = ZSTD_createCCtx();
|
|
cdict = ZSTD_createCDict(dict, dictBufferCapacity,
|
|
parameters.zParams.compressionLevel);
|
|
if (!dst || !cctx || !cdict) {
|
|
goto _compressCleanup;
|
|
}
|
|
/* Compress each sample and sum their sizes (or error) */
|
|
totalCompressedSize = dictBufferCapacity;
|
|
i = parameters.splitPoint < 1.0 ? ctx->nbTrainSamples : 0;
|
|
for (; i < ctx->nbSamples; ++i) {
|
|
const size_t size = ZSTD_compress_usingCDict(
|
|
cctx, dst, dstCapacity, ctx->samples + ctx->offsets[i],
|
|
ctx->samplesSizes[i], cdict);
|
|
if (ZSTD_isError(size)) {
|
|
totalCompressedSize = ERROR(GENERIC);
|
|
goto _compressCleanup;
|
|
}
|
|
totalCompressedSize += size;
|
|
}
|
|
_compressCleanup:
|
|
ZSTD_freeCCtx(cctx);
|
|
ZSTD_freeCDict(cdict);
|
|
if (dst) {
|
|
free(dst);
|
|
}
|
|
}
|
|
|
|
_cleanup:
|
|
FASTCOVER_best_finish(data->best, totalCompressedSize, parameters, dict,
|
|
dictBufferCapacity);
|
|
free(data);
|
|
if (dict) {
|
|
free(dict);
|
|
}
|
|
if (freqs) {
|
|
free(freqs);
|
|
}
|
|
}
|
|
|
|
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(
|
|
void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
|
|
const size_t *samplesSizes, unsigned nbSamples,
|
|
ZDICT_fastCover_params_t *parameters) {
|
|
/* constants */
|
|
const unsigned nbThreads = parameters->nbThreads;
|
|
const double splitPoint =
|
|
parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint;
|
|
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
|
|
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
|
|
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
|
|
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
|
|
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
|
|
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
|
|
const unsigned kIterations =
|
|
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
|
|
const unsigned f = parameters->f == 0 ? 23 : parameters->f;
|
|
|
|
/* Local variables */
|
|
const int displayLevel = parameters->zParams.notificationLevel;
|
|
unsigned iteration = 1;
|
|
unsigned d;
|
|
unsigned k;
|
|
FASTCOVER_best_t best;
|
|
POOL_ctx *pool = NULL;
|
|
|
|
/* Checks */
|
|
if (splitPoint <= 0 || splitPoint > 1) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
|
|
return ERROR(GENERIC);
|
|
}
|
|
if (kMinK < kMaxD || kMaxK < kMinK) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
|
|
return ERROR(GENERIC);
|
|
}
|
|
if (nbSamples == 0) {
|
|
DISPLAYLEVEL(1, "fast must have at least one input file\n");
|
|
return ERROR(GENERIC);
|
|
}
|
|
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
|
|
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
|
|
ZDICT_DICTSIZE_MIN);
|
|
return ERROR(dstSize_tooSmall);
|
|
}
|
|
if (nbThreads > 1) {
|
|
pool = POOL_create(nbThreads, 1);
|
|
if (!pool) {
|
|
return ERROR(memory_allocation);
|
|
}
|
|
}
|
|
/* Initialization */
|
|
FASTCOVER_best_init(&best);
|
|
/* Turn down global display level to clean up display at level 2 and below */
|
|
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
|
|
/* Loop through d first because each new value needs a new context */
|
|
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
|
|
kIterations);
|
|
for (d = kMinD; d <= kMaxD; d += 2) {
|
|
/* Initialize the context for this value of d */
|
|
FASTCOVER_ctx_t ctx;
|
|
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
|
|
if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f)) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
|
|
FASTCOVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return ERROR(GENERIC);
|
|
}
|
|
/* Loop through k reusing the same context */
|
|
for (k = kMinK; k <= kMaxK; k += kStepSize) {
|
|
/* Prepare the arguments */
|
|
FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
|
|
sizeof(FASTCOVER_tryParameters_data_t));
|
|
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
|
|
if (!data) {
|
|
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
|
|
FASTCOVER_best_destroy(&best);
|
|
FASTCOVER_ctx_destroy(&ctx);
|
|
POOL_free(pool);
|
|
return ERROR(GENERIC);
|
|
}
|
|
data->ctx = &ctx;
|
|
data->best = &best;
|
|
data->dictBufferCapacity = dictBufferCapacity;
|
|
data->parameters = *parameters;
|
|
data->parameters.k = k;
|
|
data->parameters.d = d;
|
|
data->parameters.f = f;
|
|
data->parameters.splitPoint = splitPoint;
|
|
data->parameters.steps = kSteps;
|
|
data->parameters.zParams.notificationLevel = g_displayLevel;
|
|
/* Check the parameters */
|
|
if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity)) {
|
|
DISPLAYLEVEL(1, "fastCover parameters incorrect\n");
|
|
free(data);
|
|
continue;
|
|
}
|
|
/* Call the function and pass ownership of data to it */
|
|
FASTCOVER_best_start(&best);
|
|
if (pool) {
|
|
POOL_add(pool, &FASTCOVER_tryParameters, data);
|
|
} else {
|
|
FASTCOVER_tryParameters(data);
|
|
}
|
|
/* Print status */
|
|
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
|
|
(U32)((iteration * 100) / kIterations));
|
|
++iteration;
|
|
}
|
|
FASTCOVER_best_wait(&best);
|
|
FASTCOVER_ctx_destroy(&ctx);
|
|
}
|
|
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
|
|
/* Fill the output buffer and parameters with output of the best parameters */
|
|
{
|
|
const size_t dictSize = best.dictSize;
|
|
if (ZSTD_isError(best.compressedSize)) {
|
|
const size_t compressedSize = best.compressedSize;
|
|
FASTCOVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return compressedSize;
|
|
}
|
|
*parameters = best.parameters;
|
|
memcpy(dictBuffer, best.dict, dictSize);
|
|
FASTCOVER_best_destroy(&best);
|
|
POOL_free(pool);
|
|
return dictSize;
|
|
}
|
|
|
|
}
|