zstd/dictBuilder/dictBuilder.c
2016-01-29 16:48:10 +01:00

979 lines
34 KiB
C

/*
dictBuilder - dictionary builder for LZ algorithms
Copyright (C) Yann Collet 2016
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You can contact the author at :
- zstd source repository : https://github.com/Cyan4973/zstd
*/
/* **************************************
* Compiler Options
****************************************/
/* Disable some Visual warning messages */
#ifdef _MSC_VER
# define _CRT_SECURE_NO_WARNINGS /* fopen */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
#endif
/* Unix Large Files support (>4GB) */
#define _FILE_OFFSET_BITS 64
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
# define _LARGEFILE_SOURCE
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
# define _LARGEFILE64_SOURCE
#endif
/*-*************************************
* Includes
***************************************/
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <sys/types.h> /* stat64 */
#include <sys/stat.h> /* stat64 */
#include <time.h> /* clock */
#include "mem.h" /* read */
#include "error_private.h"
#include "divsufsort.h"
#include "dictBuilder.h"
#include "zstd_compress.c"
#include "huff0_static.h"
/* *************************************
* Compiler specifics
***************************************/
#if !defined(S_ISREG)
# define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
#endif
#ifdef _MSC_VER
#define snprintf sprintf_s
#endif
/*-*************************************
* Constants
***************************************/
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define DICTLISTSIZE 10000
#define MEMMULT 11
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(3 GB) * MEMMULT;
#define NOISELENGTH 32
#define PRIME1 2654435761U
#define PRIME2 2246822519U
#define MINRATIO 4
static const U32 g_compressionLevel_default = 5;
/*-*************************************
* Console display
***************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static unsigned g_displayLevel = 0; /* 0 : no display; 1: errors; 2: default; 4: full information */
void DiB_setNotificationLevel(unsigned l) { g_displayLevel=l; }
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if (DiB_GetMilliSpan(g_time) > refreshRate) \
{ g_time = clock(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stdout); } }
static const unsigned refreshRate = 300;
static clock_t g_time = 0;
void DiB_printHex(U32 dlevel, const void* ptr, size_t length)
{
const BYTE* const b = (const BYTE*)ptr;
size_t u;
for (u=0; u<length; u++)
{
BYTE c = b[u];
if (c<32 || c>126) c = '.'; /* non-printable char */
DISPLAYLEVEL(dlevel, "%c", c);
}
}
/*-*************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) if (DEBUG) DISPLAY(__VA_ARGS__);
#define EXM_THROW(error, ...) \
{ \
DEBUGOUTPUT("Error defined at %s, line %i : \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", error); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, "\n"); \
exit(error); \
}
/* ********************************************************
* Helper functions
**********************************************************/
unsigned DiB_versionNumber (void) { return DiB_VERSION_NUMBER; }
static unsigned DiB_GetMilliSpan(clock_t nPrevious)
{
clock_t nCurrent = clock();
unsigned nSpan = (unsigned)(((nCurrent - nPrevious) * 1000) / CLOCKS_PER_SEC);
return nSpan;
}
/* ********************************************************
* File related operations
**********************************************************/
static unsigned long long DiB_getFileSize(const char* infilename)
{
int r;
#if defined(_MSC_VER)
struct _stat64 statbuf;
r = _stat64(infilename, &statbuf);
#else
struct stat statbuf;
r = stat(infilename, &statbuf);
#endif
if (r || !S_ISREG(statbuf.st_mode)) return 0; /* No good... */
return (unsigned long long)statbuf.st_size;
}
static unsigned long long DiB_getTotalFileSize(const char** fileNamesTable, unsigned nbFiles)
{
unsigned long long total = 0;
unsigned n;
for (n=0; n<nbFiles; n++)
total += DiB_getFileSize(fileNamesTable[n]);
return total;
}
static void DiB_loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char** fileNamesTable, unsigned nbFiles)
{
char* buff = (char*)buffer;
size_t pos = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
size_t readSize;
unsigned long long fileSize = DiB_getFileSize(fileNamesTable[n]);
FILE* f = fopen(fileNamesTable[n], "rb");
if (f==NULL) EXM_THROW(10, "impossible to open file %s", fileNamesTable[n]);
DISPLAYLEVEL(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize > bufferSize-pos) fileSize = 0; /* stop there, not enough memory to load all files */
readSize = fread(buff+pos, 1, (size_t)fileSize, f);
if (readSize != (size_t)fileSize) EXM_THROW(11, "could not read %s", fileNamesTable[n]);
pos += readSize;
fileSizes[n] = (size_t)fileSize;
fclose(f);
}
}
/*-********************************************************
* Dictionary training functions
**********************************************************/
static size_t DiB_read_ARCH(const void* p) { size_t r; memcpy(&r, p, sizeof(r)); return r; }
static unsigned DiB_NbCommonBytes (register size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanForward64( &r, (U64)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r=0;
_BitScanForward( &r, (U32)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanReverse64( &r, val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r = 0;
_BitScanReverse( &r, (unsigned long)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
/*! DiB_count() :
Count the nb of common bytes between 2 pointers.
Note : this function presumes end of buffer followed by noisy guard band.
*/
static size_t DiB_count(const void* pIn, const void* pMatch)
{
const char* const pStart = (const char*)pIn;
for (;;) {
size_t diff = DiB_read_ARCH(pMatch) ^ DiB_read_ARCH(pIn);
if (!diff) { pIn = (const char*)pIn+sizeof(size_t); pMatch = (const char*)pMatch+sizeof(size_t); continue; }
pIn = (const char*)pIn+DiB_NbCommonBytes(diff);
return (size_t)((const char*)pIn - pStart);
}
}
typedef struct {
U32 pos;
U32 length;
U32 savings;
} dictItem;
void DiB_initDictItem(dictItem* d)
{
d->pos = 1;
d->length = 0;
d->savings = (U32)(-1);
}
#define LLIMIT 64 /* heuristic determined experimentally */
#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
static dictItem DiB_analyzePos(
BYTE* doneMarks,
const saidx_t* suffix, U32 start,
const void* buffer, U32 minRatio)
{
U32 lengthList[LLIMIT] = {0};
U32 cumulLength[LLIMIT] = {0};
U32 savings[LLIMIT] = {0};
const BYTE* b = (const BYTE*)buffer;
size_t length;
size_t maxLength = LLIMIT;
size_t pos = suffix[start];
U32 end = start;
dictItem solution;
/* init */
memset(&solution, 0, sizeof(solution));
doneMarks[pos] = 1;
/* trivial repetition cases */
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
/* skip and mark segment */
U16 u16 = MEM_read16(b+pos+4);
U32 u, e = 6;
while (MEM_read16(b+pos+e) == u16) e+=2 ;
if (b[pos+e] == b[pos+e-1]) e++;
for (u=1; u<e; u++)
doneMarks[pos+u] = 1;
return solution;
}
/* look forward */
do {
end++;
length = DiB_count(b + pos, b + suffix[end]);
} while (length >=MINMATCHLENGTH);
/* look backward */
do {
length = DiB_count(b + pos, b + *(suffix+start-1));
if (length >=MINMATCHLENGTH) start--;
} while(length >= MINMATCHLENGTH);
/* exit if not found a minimum nb of repetitions */
if (end-start < minRatio) {
U32 idx;
for(idx=start; idx<end; idx++)
doneMarks[suffix[idx]] = 1;
return solution;
}
{
int i;
U32 searchLength;
U32 refinedStart = start;
U32 refinedEnd = end;
DISPLAYLEVEL(4, "\n");
DISPLAYLEVEL(4, "found %3u matches of length >= %u at pos %7u ", (U32)(end-start), MINMATCHLENGTH, (U32)pos);
DISPLAYLEVEL(4, "\n");
for (searchLength = MINMATCHLENGTH ; ; searchLength++) {
BYTE currentChar = 0;
U32 currentCount = 0;
U32 currentID = refinedStart;
U32 id;
U32 selectedCount = 0;
U32 selectedID = currentID;
for (id =refinedStart; id < refinedEnd; id++) {
if (b[ suffix[id] + searchLength] != currentChar) {
if (currentCount > selectedCount) {
selectedCount = currentCount;
selectedID = currentID;
}
currentID = id;
currentChar = b[ suffix[id] + searchLength];
currentCount = 0;
}
currentCount ++;
}
if (currentCount > selectedCount) { /* for last */
selectedCount = currentCount;
selectedID = currentID;
}
if (selectedCount < minRatio)
break;
refinedStart = selectedID;
refinedEnd = refinedStart + selectedCount;
}
/* evaluate gain based on new ref */
start = refinedStart;
pos = suffix[refinedStart];
end = start;
memset(lengthList, 0, sizeof(lengthList));
/* look forward */
do {
end++;
length = DiB_count(b + pos, b + suffix[end]);
if (length >= LLIMIT) length = LLIMIT-1;
lengthList[length]++;
} while (length >=MINMATCHLENGTH);
/* look backward */
do {
length = DiB_count(b + pos, b + suffix[start-1]);
if (length >= LLIMIT) length = LLIMIT-1;
lengthList[length]++;
if (length >=MINMATCHLENGTH) start--;
} while(length >= MINMATCHLENGTH);
/* largest useful length */
memset(cumulLength, 0, sizeof(cumulLength));
cumulLength[maxLength-1] = lengthList[maxLength-1];
for (i=(int)(maxLength-2); i>=0; i--)
cumulLength[i] = cumulLength[i+1] + lengthList[i];
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
maxLength = i;
/* reduce maxLength in case of final into repetitive data */
{
U32 l = (U32)maxLength;
BYTE c = b[pos + maxLength-1];
while (b[pos+l-2]==c) l--;
maxLength = l;
}
if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
/* calculate savings */
savings[5] = 0;
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
savings[i] = savings[i-1] + (lengthList[i] * (i-3));
DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f) \n",
(U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength);
solution.pos = (U32)pos;
solution.length = (U32)maxLength;
solution.savings = savings[maxLength];
/* mark positions done */
{
U32 id;
U32 testedPos;
for (id=start; id<end; id++) {
U32 p, pEnd;
testedPos = suffix[id];
if (testedPos == pos)
length = solution.length;
else {
length = DiB_count(b+pos, b+testedPos);
if (length > solution.length) length = solution.length;
}
pEnd = (U32)(testedPos + length);
for (p=testedPos; p<pEnd; p++)
doneMarks[p] = 1;
} } }
return solution;
}
/*! DiB_checkMerge
check if dictItem can be merged, do it if possible
@return : id of destination elt, 0 if not merged
*/
static U32 DiB_checkMerge(dictItem* table, dictItem elt, U32 eltNbToSkip)
{
const U32 tableSize = table->pos;
const U32 max = elt.pos + (elt.length-1);
/* tail overlap */
U32 u; for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos > elt.pos) && (table[u].pos < max)) { /* overlap */
/* append */
U32 addedLength = table[u].pos - elt.pos;
table[u].length += addedLength;
table[u].pos = elt.pos;
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
table[u].savings += elt.length / 8; /* rough approx */
elt = table[u];
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
} }
/* front overlap */
for (u=1; u<tableSize; u++) {
if (u==eltNbToSkip) continue;
if ((table[u].pos + table[u].length > elt.pos) && (table[u].pos < elt.pos)) { /* overlap */
/* append */
int addedLength = (elt.pos + elt.length) - (table[u].pos + table[u].length);
table[u].savings += elt.length / 8; /* rough approx */
if (addedLength > 0) { /* otherwise, already included */
table[u].length += addedLength;
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
}
elt = table[u];
while ((u>1) && (table[u-1].savings < elt.savings))
table[u] = table[u-1], u--;
table[u] = elt;
return u;
} }
return 0;
}
static void DiB_removeDictItem(dictItem* table, U32 id)
{
/* convention : first element is nb of elts */
U32 max = table->pos;
U32 u;
if (!id) return; /* protection, should never happen */
for (u=id; u<max-1; u++)
table[u] = table[u+1];
table->pos--;
}
static void DiB_insertDictItem(dictItem* table, U32 maxSize, dictItem elt)
{
/* merge if possible */
U32 mergeId = DiB_checkMerge(table, elt, 0);
if (mergeId) {
U32 newMerge = 1;
while (newMerge) {
newMerge = DiB_checkMerge(table, table[mergeId], mergeId);
if (newMerge) DiB_removeDictItem(table, mergeId);
mergeId = newMerge;
}
return;
}
/* insert */
{
U32 current;
U32 nextElt = table->pos;
if (nextElt >= maxSize) nextElt = maxSize-1;
current = nextElt-1;
while (table[current].savings < elt.savings) {
table[current+1] = table[current];
current--;
}
table[current+1] = elt;
table->pos = nextElt+1;
}
}
static U32 DiB_dictSize(const dictItem* dictList)
{
U32 u, dictSize = 0;
for (u=1; u<dictList[0].pos; u++)
dictSize += dictList[u].length;
return dictSize;
}
static void DiB_trainBuffer(dictItem* dictList, U32 dictListSize,
const void* const buffer, const size_t bufferSize, /* buffer must end with noisy guard band */
const char* displayName,
const size_t* fileSizes, unsigned nbFiles, unsigned maxDictSize,
U32 shiftRatio)
{
saidx_t* const suffix0 = (saidx_t*)malloc((bufferSize+2)*sizeof(*suffix0));
saidx_t* const suffix = suffix0+1;
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
U32 minRatio = nbFiles >> shiftRatio;
saint_t errorCode;
/* init */
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos)
EXM_THROW(1, "not enough memory for DiB_trainBuffer");
if (minRatio < MINRATIO) minRatio = MINRATIO;
memset(doneMarks, 0, bufferSize+16);
/* sort */
DISPLAYLEVEL(2, "sorting %s ...\n", displayName);
errorCode = divsufsort((const sauchar_t*)buffer, suffix, (saidx_t)bufferSize);
if (errorCode != 0) EXM_THROW(2, "sort failed");
suffix[bufferSize] = (saidx_t)bufferSize; /* leads into noise */
suffix0[0] = (saidx_t)bufferSize; /* leads into noise */
{
/* build reverse suffix sort */
size_t pos;
for (pos=0; pos < bufferSize; pos++)
reverseSuffix[suffix[pos]] = (U32)pos;
/* build file pos */
filePos[0] = 0;
for (pos=1; pos<nbFiles; pos++)
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
}
DISPLAYLEVEL(2, "finding patterns ... \n");
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
{
U32 cursor; for (cursor=0; cursor < bufferSize; ) {
dictItem solution;
if (doneMarks[cursor]) { cursor++; continue; }
solution = DiB_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio);
if (solution.length==0) { cursor++; continue; }
DiB_insertDictItem(dictList, dictListSize, solution);
cursor += solution.length;
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
} }
/* limit dictionary size */
{
U32 max = dictList->pos; /* convention : nb of useful elts within dictList */
U32 currentSize = 0;
U32 n; for (n=1; n<max; n++) {
currentSize += dictList[n].length;
if (currentSize > maxDictSize) break;
}
dictList->pos = n;
}
free(suffix0);
free(reverseSuffix);
free(doneMarks);
free(filePos);
}
static size_t DiB_findMaxMem(unsigned long long requiredMem)
{
size_t step = 8 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 23) + 1) << 23);
requiredMem += 2 * step;
if (requiredMem > maxMemory) requiredMem = maxMemory;
while (!testmem) {
requiredMem -= step;
testmem = malloc((size_t)requiredMem);
}
free(testmem);
return (size_t)(requiredMem - step);
}
static void DiB_fillNoise(void* buffer, size_t length)
{
unsigned acc = PRIME1;
size_t p=0;;
for (p=0; p<length; p++) {
acc *= PRIME2;
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
}
}
typedef struct
{
ZSTD_CCtx* ref;
ZSTD_CCtx* zc;
void* workPlace; /* must be BLOCKSIZE allocated */
} EStats_ress_t;
static void DiB_countEStats(EStats_ress_t esr,
U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount,
const void* src, size_t srcSize)
{
const BYTE* bytePtr;
const U32* u32Ptr;
if (srcSize > BLOCKSIZE) srcSize = BLOCKSIZE; /* protection vs large samples */
ZSTD_copyCCtx(esr.zc, esr.ref);
ZSTD_compressBlock(esr.zc, esr.workPlace, BLOCKSIZE, src, srcSize);
/* count stats */
for(bytePtr = esr.zc->seqStore.litStart; bytePtr < esr.zc->seqStore.lit; bytePtr++)
countLit[*bytePtr]++;
for(u32Ptr = esr.zc->seqStore.offsetStart; u32Ptr < esr.zc->seqStore.offset; u32Ptr++) {
BYTE offcode = (BYTE)ZSTD_highbit(*u32Ptr) + 1;
if (*u32Ptr==0) offcode=0;
offsetcodeCount[offcode]++;
}
for(bytePtr = esr.zc->seqStore.matchLengthStart; bytePtr < esr.zc->seqStore.matchLength; bytePtr++)
matchlengthCount[*bytePtr]++;
for(bytePtr = esr.zc->seqStore.litLengthStart; bytePtr < esr.zc->seqStore.litLength; bytePtr++)
litlengthCount[*bytePtr]++;
}
#define OFFCODE_MAX 18
static size_t DiB_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
unsigned compressionLevel,
const void* srcBuffer, size_t* fileSizes, unsigned nbFiles,
const void* dictBuffer, size_t dictBufferSize)
{
U32 countLit[256];
U32 offcodeCount[MaxOff+1];
HUF_CREATE_STATIC_CTABLE(hufTable, 255);
short offcodeNCount[MaxOff+1];
U32 matchLengthCount[MaxML+1];
short matchLengthNCount[MaxML+1];
U32 litlengthCount[MaxLL+1];
short litlengthNCount[MaxLL+1];
EStats_ress_t esr;
ZSTD_parameters params;
U32 u, huffLog = 12, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
size_t pos = 0, errorCode;
size_t eSize = 0;
/* init */
for (u=0; u<256; u++) countLit[u]=1; /* any character must be described */
for (u=0; u<=OFFCODE_MAX; u++) offcodeCount[u]=1;
for (u=0; u<=MaxML; u++) matchLengthCount[u]=1;
for (u=0; u<=MaxLL; u++) litlengthCount[u]=1;
esr.ref = ZSTD_createCCtx();
esr.zc = ZSTD_createCCtx();
esr.workPlace = malloc(BLOCKSIZE);
if (!esr.ref || !esr.zc || !esr.workPlace) EXM_THROW(30, "Not enough memory");
if (compressionLevel==0) compressionLevel=g_compressionLevel_default;
params = ZSTD_getParams(compressionLevel, dictBufferSize + 15 KB);
params.strategy = ZSTD_greedy;
ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params);
/* collect stats on all files */
for (u=0; u<nbFiles; u++) {
DiB_countEStats(esr,
countLit, offcodeCount, matchLengthCount, litlengthCount,
(const char*)srcBuffer + pos, fileSizes[u]);
pos += fileSizes[u];
}
/* analyze */
errorCode = HUF_buildCTable (hufTable, countLit, 255, huffLog);
if (HUF_isError(errorCode)) EXM_THROW(31, "HUF_buildCTable error");
huffLog = (U32)errorCode;
total=0; for (u=0; u<=OFFCODE_MAX; u++) total+=offcodeCount[u];
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, OFFCODE_MAX);
if (FSE_isError(errorCode)) EXM_THROW(32, "FSE_normalizeCount error with offcodeCount");
Offlog = (U32)errorCode;
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML);
if (FSE_isError(errorCode)) EXM_THROW(33, "FSE_normalizeCount error with matchLengthCount");
mlLog = (U32)errorCode;
total=0; for (u=0; u<=MaxLL; u++) total+=litlengthCount[u];
errorCode = FSE_normalizeCount(litlengthNCount, llLog, litlengthCount, total, MaxLL);
if (FSE_isError(errorCode)) EXM_THROW(34, "FSE_normalizeCount error with litlengthCount");
llLog = (U32)errorCode;
/* write result to buffer */
errorCode = HUF_writeCTable(dstBuffer, maxDstSize, hufTable, 255, huffLog);
if (HUF_isError(errorCode)) EXM_THROW(41, "HUF_writeCTable error");
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
if (FSE_isError(errorCode)) EXM_THROW(42, "FSE_writeNCount error with offcodeNCount");
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, matchLengthNCount, MaxML, mlLog);
if (FSE_isError(errorCode)) EXM_THROW(43, "FSE_writeNCount error with matchLengthNCount");
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
errorCode = FSE_writeNCount(dstBuffer, maxDstSize, litlengthNCount, MaxLL, llLog);
if (FSE_isError(errorCode)) EXM_THROW(43, "FSE_writeNCount error with litlengthNCount");
dstBuffer = (char*)dstBuffer + errorCode;
maxDstSize -= errorCode;
eSize += errorCode;
/* clean */
ZSTD_freeCCtx(esr.ref);
ZSTD_freeCCtx(esr.zc);
free(esr.workPlace);
return eSize;
}
static void DiB_saveDict(const char* dictFileName,
const void* buff1, size_t buff1Size,
const void* buff2, size_t buff2Size)
{
FILE* f;
size_t n;
f = fopen(dictFileName, "wb");
if (f==NULL) EXM_THROW(3, "cannot open %s ", dictFileName);
n = fwrite(buff1, 1, buff1Size, f);
if (n!=buff1Size) EXM_THROW(4, "%s : write error", dictFileName)
n = fwrite(buff2, 1, buff2Size, f);
if (n!=buff2Size) EXM_THROW(4, "%s : write error", dictFileName)
n = (size_t)fclose(f);
if (n!=0) EXM_THROW(5, "%s : flush error", dictFileName)
}
#define DIB_FASTSEGMENTSIZE 64
/*! DiB_fastSampling (based on an idea by Giuseppe Ottaviano)
Fill @dictBuffer with stripes of size DIB_FASTSEGMENTSIZE from @samplesBuffer
up to @dictSize.
Filling starts from the end of @dictBuffer, down to maximum possible.
if @dictSize is not a multiply of DIB_FASTSEGMENTSIZE, some bytes at beginning of @dictBuffer won't be used.
@return : amount of data written into @dictBuffer
or an error Code (if @dictSize or @samplesSize too small)
*/
static size_t DiB_fastSampling(void* dictBuffer, size_t dictSize,
const void* samplesBuffer, size_t samplesSize)
{
char* dstPtr = (char*)dictBuffer + dictSize;
const char* srcPtr = (const char*)samplesBuffer;
size_t nbSegments = dictSize / DIB_FASTSEGMENTSIZE;
size_t segNb, interSize;
if (nbSegments <= 2) return ERROR(srcSize_wrong);
if (samplesSize < dictSize) return ERROR(srcSize_wrong);
/* first and last segments are part of dictionary, in case they contain interesting header/footer */
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr, DIB_FASTSEGMENTSIZE);
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr+samplesSize-DIB_FASTSEGMENTSIZE, DIB_FASTSEGMENTSIZE);
/* regularly copy a segment */
interSize = (samplesSize - nbSegments*DIB_FASTSEGMENTSIZE) / (nbSegments-1);
srcPtr += DIB_FASTSEGMENTSIZE;
for (segNb=2; segNb < nbSegments; segNb++) {
srcPtr += interSize;
dstPtr -= DIB_FASTSEGMENTSIZE;
memcpy(dstPtr, srcPtr, DIB_FASTSEGMENTSIZE);
srcPtr += DIB_FASTSEGMENTSIZE;
}
return nbSegments * DIB_FASTSEGMENTSIZE;
}
int DiB_trainDictionary(const char* dictFileName, unsigned maxDictSize,
unsigned shiftRatio, unsigned compressionLevel,
const char** fileNamesTable, unsigned nbFiles)
{
void* srcBuffer;
size_t benchedSize;
size_t* fileSizes = (size_t*)malloc(nbFiles * sizeof(size_t));
unsigned long long totalSizeToLoad = DiB_getTotalFileSize(fileNamesTable, nbFiles);
const U32 dictListSize = MAX( MAX(DICTLISTSIZE, nbFiles), maxDictSize/16);
dictItem* dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
char mfName[20] = {0};
const char* displayName = NULL;
/* init */
benchedSize = DiB_findMaxMem(totalSizeToLoad * MEMMULT) / MEMMULT;
if ((unsigned long long)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
if (benchedSize < totalSizeToLoad)
DISPLAYLEVEL(1, "Not enough memory; training on %u MB only...\n", (unsigned)(benchedSize >> 20));
/* Memory allocation & restrictions */
srcBuffer = malloc(benchedSize+NOISELENGTH); /* + noise */
if ((!fileSizes) || (!srcBuffer) || (!dictList)) EXM_THROW(12, "not enough memory for DiB_trainFiles"); /* should not happen */
DiB_initDictItem(dictList);
/* Load input buffer */
DiB_loadFiles(srcBuffer, benchedSize, fileSizes, fileNamesTable, nbFiles);
DiB_fillNoise((char*)srcBuffer + benchedSize, NOISELENGTH); /* guard band, for end of buffer condition */
/* analyze sequences (non-fast mode) */
if (shiftRatio>0)
{
snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
if (nbFiles > 1) displayName = mfName;
else displayName = fileNamesTable[0];
DiB_trainBuffer(dictList, dictListSize,
srcBuffer, benchedSize,
displayName,
fileSizes, nbFiles, maxDictSize,
shiftRatio);
/* display best matches */
if (g_displayLevel>= 3) {
const U32 nb = 25;
U32 u;
U32 dictContentSize = DiB_dictSize(dictList);
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos, dictContentSize);
DISPLAYLEVEL(3, "list %u best segments \n", nb);
for (u=1; u<=nb; u++) {
U32 p = dictList[u].pos;
U32 l = dictList[u].length;
U32 d = MIN(40, l);
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
u, l, p, dictList[u].savings);
DiB_printHex(3, (char*)srcBuffer+p, d);
DISPLAYLEVEL(3, "| \n");
} } }
/* create dictionary */
{
void* dictContent;
U32 dictContentSize = DiB_dictSize(dictList);
void* dictHeader;
size_t dictHeaderSize, hSize, addedContentLength;
BYTE* ptr;
U32 u;
/* build dict */
#define EBSIZE (2 KB)
dictHeaderSize = EBSIZE;
dictHeader = malloc(dictHeaderSize);
dictContent = malloc(maxDictSize);
if (!dictHeader || !dictContent) EXM_THROW(2, "not enough memory");
/* build dict content */
ptr = (BYTE*)dictContent + maxDictSize;
for (u=1; u<dictList->pos; u++) {
U32 l = dictList[u].length;
ptr -= l;
memcpy(ptr, (char*)srcBuffer+dictList[u].pos, l);
}
/* fast mode dict content */
if (shiftRatio==0) { /* note could also be used to complete a dictionary, but not necessarily better */
addedContentLength = ptr-(BYTE*)dictContent;
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
DISPLAYLEVEL(2, "Adding %u KB from fast sampling \n", (U32)(addedContentLength>>10));
addedContentLength = DiB_fastSampling(dictContent, addedContentLength, srcBuffer, benchedSize);
if (!ERR_isError(addedContentLength))
ptr -= addedContentLength, dictContentSize += addedContentLength;
}
/* dictionary header */
MEM_writeLE32(dictHeader, ZSTD_DICT_MAGIC);
hSize = 4;
dictHeaderSize -= 4;
/* entropic tables */
DISPLAYLEVEL(2, "statistics ... \n");
hSize += DiB_analyzeEntropy((char*)dictHeader+4, dictHeaderSize,
compressionLevel,
srcBuffer, fileSizes, nbFiles,
ptr, dictContentSize);
/* save dict */
{
size_t dictSize = hSize + dictContentSize;
DISPLAYLEVEL(2, "Save dictionary of size %u into file %s \n", (U32)dictSize, dictFileName);
DiB_saveDict(dictFileName, dictHeader, hSize, ptr, dictContentSize);
//DiB_saveDict(dictFileName, NULL, 0, dictContent, dictContentSize); // content only
}
/* clean */
free(dictHeader);
free(dictContent);
}
/* clean up */
free(srcBuffer);
free(fileSizes);
free(dictList);
return 0;
}