12490 lines
469 KiB
Diff
12490 lines
469 KiB
Diff
diff --git a/include/linux/zstd.h b/include/linux/zstd.h
|
|
new file mode 100644
|
|
index 0000000..249575e
|
|
--- /dev/null
|
|
+++ b/include/linux/zstd.h
|
|
@@ -0,0 +1,1157 @@
|
|
+/*
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+#ifndef ZSTD_H
|
|
+#define ZSTD_H
|
|
+
|
|
+/* ====== Dependency ======*/
|
|
+#include <linux/types.h> /* size_t */
|
|
+
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Introduction
|
|
+ *
|
|
+ * zstd, short for Zstandard, is a fast lossless compression algorithm,
|
|
+ * targeting real-time compression scenarios at zlib-level and better
|
|
+ * compression ratios. The zstd compression library provides in-memory
|
|
+ * compression and decompression functions. The library supports compression
|
|
+ * levels from 1 up to ZSTD_maxCLevel() which is 22. Levels >= 20, labeled
|
|
+ * ultra, should be used with caution, as they require more memory.
|
|
+ * Compression can be done in:
|
|
+ * - a single step, reusing a context (described as Explicit memory management)
|
|
+ * - unbounded multiple steps (described as Streaming compression)
|
|
+ * The compression ratio achievable on small data can be highly improved using
|
|
+ * compression with a dictionary in:
|
|
+ * - a single step (described as Simple dictionary API)
|
|
+ * - a single step, reusing a dictionary (described as Fast dictionary API)
|
|
+ ******************************************************************************/
|
|
+
|
|
+/*====== Helper functions ======*/
|
|
+
|
|
+/**
|
|
+ * enum ZSTD_ErrorCode - zstd error codes
|
|
+ *
|
|
+ * Functions that return size_t can be checked for errors using ZSTD_isError()
|
|
+ * and the ZSTD_ErrorCode can be extracted using ZSTD_getErrorCode().
|
|
+ */
|
|
+typedef enum {
|
|
+ ZSTD_error_no_error,
|
|
+ ZSTD_error_GENERIC,
|
|
+ ZSTD_error_prefix_unknown,
|
|
+ ZSTD_error_version_unsupported,
|
|
+ ZSTD_error_parameter_unknown,
|
|
+ ZSTD_error_frameParameter_unsupported,
|
|
+ ZSTD_error_frameParameter_unsupportedBy32bits,
|
|
+ ZSTD_error_frameParameter_windowTooLarge,
|
|
+ ZSTD_error_compressionParameter_unsupported,
|
|
+ ZSTD_error_init_missing,
|
|
+ ZSTD_error_memory_allocation,
|
|
+ ZSTD_error_stage_wrong,
|
|
+ ZSTD_error_dstSize_tooSmall,
|
|
+ ZSTD_error_srcSize_wrong,
|
|
+ ZSTD_error_corruption_detected,
|
|
+ ZSTD_error_checksum_wrong,
|
|
+ ZSTD_error_tableLog_tooLarge,
|
|
+ ZSTD_error_maxSymbolValue_tooLarge,
|
|
+ ZSTD_error_maxSymbolValue_tooSmall,
|
|
+ ZSTD_error_dictionary_corrupted,
|
|
+ ZSTD_error_dictionary_wrong,
|
|
+ ZSTD_error_dictionaryCreation_failed,
|
|
+ ZSTD_error_maxCode
|
|
+} ZSTD_ErrorCode;
|
|
+
|
|
+/**
|
|
+ * ZSTD_maxCLevel() - maximum compression level available
|
|
+ *
|
|
+ * Return: Maximum compression level available.
|
|
+ */
|
|
+int ZSTD_maxCLevel(void);
|
|
+/**
|
|
+ * ZSTD_compressBound() - maximum compressed size in worst case scenario
|
|
+ * @srcSize: The size of the data to compress.
|
|
+ *
|
|
+ * Return: The maximum compressed size in the worst case scenario.
|
|
+ */
|
|
+size_t ZSTD_compressBound(size_t srcSize);
|
|
+/**
|
|
+ * ZSTD_isError() - tells if a size_t function result is an error code
|
|
+ * @code: The function result to check for error.
|
|
+ *
|
|
+ * Return: Non-zero iff the code is an error.
|
|
+ */
|
|
+static __attribute__((unused)) unsigned int ZSTD_isError(size_t code)
|
|
+{
|
|
+ return code > (size_t)-ZSTD_error_maxCode;
|
|
+}
|
|
+/**
|
|
+ * ZSTD_getErrorCode() - translates an error function result to a ZSTD_ErrorCode
|
|
+ * @functionResult: The result of a function for which ZSTD_isError() is true.
|
|
+ *
|
|
+ * Return: The ZSTD_ErrorCode corresponding to the functionResult or 0
|
|
+ * if the functionResult isn't an error.
|
|
+ */
|
|
+static __attribute__((unused)) ZSTD_ErrorCode ZSTD_getErrorCode(
|
|
+ size_t functionResult)
|
|
+{
|
|
+ if (!ZSTD_isError(functionResult))
|
|
+ return (ZSTD_ErrorCode)0;
|
|
+ return (ZSTD_ErrorCode)(0 - functionResult);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * enum ZSTD_strategy - zstd compression search strategy
|
|
+ *
|
|
+ * From faster to stronger.
|
|
+ */
|
|
+typedef enum {
|
|
+ ZSTD_fast,
|
|
+ ZSTD_dfast,
|
|
+ ZSTD_greedy,
|
|
+ ZSTD_lazy,
|
|
+ ZSTD_lazy2,
|
|
+ ZSTD_btlazy2,
|
|
+ ZSTD_btopt,
|
|
+ ZSTD_btopt2
|
|
+} ZSTD_strategy;
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_compressionParameters - zstd compression parameters
|
|
+ * @windowLog: Log of the largest match distance. Larger means more
|
|
+ * compression, and more memory needed during decompression.
|
|
+ * @chainLog: Fully searched segment. Larger means more compression, slower,
|
|
+ * and more memory (useless for fast).
|
|
+ * @hashLog: Dispatch table. Larger means more compression,
|
|
+ * slower, and more memory.
|
|
+ * @searchLog: Number of searches. Larger means more compression and slower.
|
|
+ * @searchLength: Match length searched. Larger means faster decompression,
|
|
+ * sometimes less compression.
|
|
+ * @targetLength: Acceptable match size for optimal parser (only). Larger means
|
|
+ * more compression, and slower.
|
|
+ * @strategy: The zstd compression strategy.
|
|
+ */
|
|
+typedef struct {
|
|
+ unsigned int windowLog;
|
|
+ unsigned int chainLog;
|
|
+ unsigned int hashLog;
|
|
+ unsigned int searchLog;
|
|
+ unsigned int searchLength;
|
|
+ unsigned int targetLength;
|
|
+ ZSTD_strategy strategy;
|
|
+} ZSTD_compressionParameters;
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_frameParameters - zstd frame parameters
|
|
+ * @contentSizeFlag: Controls whether content size will be present in the frame
|
|
+ * header (when known).
|
|
+ * @checksumFlag: Controls whether a 32-bit checksum is generated at the end
|
|
+ * of the frame for error detection.
|
|
+ * @noDictIDFlag: Controls whether dictID will be saved into the frame header
|
|
+ * when using dictionary compression.
|
|
+ *
|
|
+ * The default value is all fields set to 0.
|
|
+ */
|
|
+typedef struct {
|
|
+ unsigned int contentSizeFlag;
|
|
+ unsigned int checksumFlag;
|
|
+ unsigned int noDictIDFlag;
|
|
+} ZSTD_frameParameters;
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_parameters - zstd parameters
|
|
+ * @cParams: The compression parameters.
|
|
+ * @fParams: The frame parameters.
|
|
+ */
|
|
+typedef struct {
|
|
+ ZSTD_compressionParameters cParams;
|
|
+ ZSTD_frameParameters fParams;
|
|
+} ZSTD_parameters;
|
|
+
|
|
+/**
|
|
+ * ZSTD_getCParams() - returns ZSTD_compressionParameters for selected level
|
|
+ * @compressionLevel: The compression level from 1 to ZSTD_maxCLevel().
|
|
+ * @estimatedSrcSize: The estimated source size to compress or 0 if unknown.
|
|
+ * @dictSize: The dictionary size or 0 if a dictionary isn't being used.
|
|
+ *
|
|
+ * Return: The selected ZSTD_compressionParameters.
|
|
+ */
|
|
+ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel,
|
|
+ unsigned long long estimatedSrcSize, size_t dictSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_getParams() - returns ZSTD_parameters for selected level
|
|
+ * @compressionLevel: The compression level from 1 to ZSTD_maxCLevel().
|
|
+ * @estimatedSrcSize: The estimated source size to compress or 0 if unknown.
|
|
+ * @dictSize: The dictionary size or 0 if a dictionary isn't being used.
|
|
+ *
|
|
+ * The same as ZSTD_getCParams() except also selects the default frame
|
|
+ * parameters (all zero).
|
|
+ *
|
|
+ * Return: The selected ZSTD_parameters.
|
|
+ */
|
|
+ZSTD_parameters ZSTD_getParams(int compressionLevel,
|
|
+ unsigned long long estimatedSrcSize, size_t dictSize);
|
|
+
|
|
+/*-*************************************
|
|
+ * Explicit memory management
|
|
+ **************************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_CCtxWorkspaceBound() - amount of memory needed to initialize a ZSTD_CCtx
|
|
+ * @cParams: The compression parameters to be used for compression.
|
|
+ *
|
|
+ * If multiple compression parameters might be used, the caller must call
|
|
+ * ZSTD_CCtxWorkspaceBound() for each set of parameters and use the maximum
|
|
+ * size.
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initCCtx().
|
|
+ */
|
|
+size_t ZSTD_CCtxWorkspaceBound(ZSTD_compressionParameters cParams);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_CCtx - the zstd compression context
|
|
+ *
|
|
+ * When compressing many times it is recommended to allocate a context just once
|
|
+ * and reuse it for each successive compression operation.
|
|
+ */
|
|
+typedef struct ZSTD_CCtx_s ZSTD_CCtx;
|
|
+/**
|
|
+ * ZSTD_initCCtx() - initialize a zstd compression context
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace. Use ZSTD_CCtxWorkspaceBound() to
|
|
+ * determine how large the workspace must be.
|
|
+ *
|
|
+ * Return: A compression context emplaced into workspace.
|
|
+ */
|
|
+ZSTD_CCtx *ZSTD_initCCtx(void *workspace, size_t workspaceSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_compressCCtx() - compress src into dst
|
|
+ * @ctx: The context. Must have been initialized with a workspace at
|
|
+ * least as large as ZSTD_CCtxWorkspaceBound(params.cParams).
|
|
+ * @dst: The buffer to compress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. May be any size, but
|
|
+ * ZSTD_compressBound(srcSize) is guaranteed to be large enough.
|
|
+ * @src: The data to compress.
|
|
+ * @srcSize: The size of the data to compress.
|
|
+ * @params: The parameters to use for compression. See ZSTD_getParams().
|
|
+ *
|
|
+ * Return: The compressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_compressCCtx(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize, ZSTD_parameters params);
|
|
+
|
|
+/**
|
|
+ * ZSTD_DCtxWorkspaceBound() - amount of memory needed to initialize a ZSTD_DCtx
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initDCtx().
|
|
+ */
|
|
+size_t ZSTD_DCtxWorkspaceBound(void);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_DCtx - the zstd decompression context
|
|
+ *
|
|
+ * When decompressing many times it is recommended to allocate a context just
|
|
+ * once and reuse it for each successive decompression operation.
|
|
+ */
|
|
+typedef struct ZSTD_DCtx_s ZSTD_DCtx;
|
|
+/**
|
|
+ * ZSTD_initDCtx() - initialize a zstd decompression context
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace. Use ZSTD_DCtxWorkspaceBound() to
|
|
+ * determine how large the workspace must be.
|
|
+ *
|
|
+ * Return: A decompression context emplaced into workspace.
|
|
+ */
|
|
+ZSTD_DCtx *ZSTD_initDCtx(void *workspace, size_t workspaceSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_decompressDCtx() - decompress zstd compressed src into dst
|
|
+ * @ctx: The decompression context.
|
|
+ * @dst: The buffer to decompress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. Must be at least as large
|
|
+ * as the decompressed size. If the caller cannot upper bound the
|
|
+ * decompressed size, then it's better to use the streaming API.
|
|
+ * @src: The zstd compressed data to decompress. Multiple concatenated
|
|
+ * frames and skippable frames are allowed.
|
|
+ * @srcSize: The exact size of the data to decompress.
|
|
+ *
|
|
+ * Return: The decompressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_decompressDCtx(ZSTD_DCtx *ctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+
|
|
+/*-************************
|
|
+ * Simple dictionary API
|
|
+ **************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_compress_usingDict() - compress src into dst using a dictionary
|
|
+ * @ctx: The context. Must have been initialized with a workspace at
|
|
+ * least as large as ZSTD_CCtxWorkspaceBound(params.cParams).
|
|
+ * @dst: The buffer to compress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. May be any size, but
|
|
+ * ZSTD_compressBound(srcSize) is guaranteed to be large enough.
|
|
+ * @src: The data to compress.
|
|
+ * @srcSize: The size of the data to compress.
|
|
+ * @dict: The dictionary to use for compression.
|
|
+ * @dictSize: The size of the dictionary.
|
|
+ * @params: The parameters to use for compression. See ZSTD_getParams().
|
|
+ *
|
|
+ * Compression using a predefined dictionary. The same dictionary must be used
|
|
+ * during decompression.
|
|
+ *
|
|
+ * Return: The compressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_compress_usingDict(ZSTD_CCtx *ctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize, const void *dict, size_t dictSize,
|
|
+ ZSTD_parameters params);
|
|
+
|
|
+/**
|
|
+ * ZSTD_decompress_usingDict() - decompress src into dst using a dictionary
|
|
+ * @ctx: The decompression context.
|
|
+ * @dst: The buffer to decompress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. Must be at least as large
|
|
+ * as the decompressed size. If the caller cannot upper bound the
|
|
+ * decompressed size, then it's better to use the streaming API.
|
|
+ * @src: The zstd compressed data to decompress. Multiple concatenated
|
|
+ * frames and skippable frames are allowed.
|
|
+ * @srcSize: The exact size of the data to decompress.
|
|
+ * @dict: The dictionary to use for decompression. The same dictionary
|
|
+ * must've been used to compress the data.
|
|
+ * @dictSize: The size of the dictionary.
|
|
+ *
|
|
+ * Return: The decompressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_decompress_usingDict(ZSTD_DCtx *ctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize, const void *dict, size_t dictSize);
|
|
+
|
|
+/*-**************************
|
|
+ * Fast dictionary API
|
|
+ ***************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_CDictWorkspaceBound() - memory needed to initialize a ZSTD_CDict
|
|
+ * @cParams: The compression parameters to be used for compression.
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initCDict().
|
|
+ */
|
|
+size_t ZSTD_CDictWorkspaceBound(ZSTD_compressionParameters cParams);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_CDict - a digested dictionary to be used for compression
|
|
+ */
|
|
+typedef struct ZSTD_CDict_s ZSTD_CDict;
|
|
+
|
|
+/**
|
|
+ * ZSTD_initCDict() - initialize a digested dictionary for compression
|
|
+ * @dictBuffer: The dictionary to digest. The buffer is referenced by the
|
|
+ * ZSTD_CDict so it must outlive the returned ZSTD_CDict.
|
|
+ * @dictSize: The size of the dictionary.
|
|
+ * @params: The parameters to use for compression. See ZSTD_getParams().
|
|
+ * @workspace: The workspace. It must outlive the returned ZSTD_CDict.
|
|
+ * @workspaceSize: The workspace size. Must be at least
|
|
+ * ZSTD_CDictWorkspaceBound(params.cParams).
|
|
+ *
|
|
+ * When compressing multiple messages / blocks with the same dictionary it is
|
|
+ * recommended to load it just once. The ZSTD_CDict merely references the
|
|
+ * dictBuffer, so it must outlive the returned ZSTD_CDict.
|
|
+ *
|
|
+ * Return: The digested dictionary emplaced into workspace.
|
|
+ */
|
|
+ZSTD_CDict *ZSTD_initCDict(const void *dictBuffer, size_t dictSize,
|
|
+ ZSTD_parameters params, void *workspace, size_t workspaceSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_compress_usingCDict() - compress src into dst using a ZSTD_CDict
|
|
+ * @ctx: The context. Must have been initialized with a workspace at
|
|
+ * least as large as ZSTD_CCtxWorkspaceBound(cParams) where
|
|
+ * cParams are the compression parameters used to initialize the
|
|
+ * cdict.
|
|
+ * @dst: The buffer to compress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. May be any size, but
|
|
+ * ZSTD_compressBound(srcSize) is guaranteed to be large enough.
|
|
+ * @src: The data to compress.
|
|
+ * @srcSize: The size of the data to compress.
|
|
+ * @cdict: The digested dictionary to use for compression.
|
|
+ * @params: The parameters to use for compression. See ZSTD_getParams().
|
|
+ *
|
|
+ * Compression using a digested dictionary. The same dictionary must be used
|
|
+ * during decompression.
|
|
+ *
|
|
+ * Return: The compressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_compress_usingCDict(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize, const ZSTD_CDict *cdict);
|
|
+
|
|
+
|
|
+/**
|
|
+ * ZSTD_DDictWorkspaceBound() - memory needed to initialize a ZSTD_DDict
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initDDict().
|
|
+ */
|
|
+size_t ZSTD_DDictWorkspaceBound(void);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_DDict - a digested dictionary to be used for decompression
|
|
+ */
|
|
+typedef struct ZSTD_DDict_s ZSTD_DDict;
|
|
+
|
|
+/**
|
|
+ * ZSTD_initDDict() - initialize a digested dictionary for decompression
|
|
+ * @dictBuffer: The dictionary to digest. The buffer is referenced by the
|
|
+ * ZSTD_DDict so it must outlive the returned ZSTD_DDict.
|
|
+ * @dictSize: The size of the dictionary.
|
|
+ * @workspace: The workspace. It must outlive the returned ZSTD_DDict.
|
|
+ * @workspaceSize: The workspace size. Must be at least
|
|
+ * ZSTD_DDictWorkspaceBound().
|
|
+ *
|
|
+ * When decompressing multiple messages / blocks with the same dictionary it is
|
|
+ * recommended to load it just once. The ZSTD_DDict merely references the
|
|
+ * dictBuffer, so it must outlive the returned ZSTD_DDict.
|
|
+ *
|
|
+ * Return: The digested dictionary emplaced into workspace.
|
|
+ */
|
|
+ZSTD_DDict *ZSTD_initDDict(const void *dictBuffer, size_t dictSize,
|
|
+ void *workspace, size_t workspaceSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_decompress_usingDDict() - decompress src into dst using a ZSTD_DDict
|
|
+ * @ctx: The decompression context.
|
|
+ * @dst: The buffer to decompress src into.
|
|
+ * @dstCapacity: The size of the destination buffer. Must be at least as large
|
|
+ * as the decompressed size. If the caller cannot upper bound the
|
|
+ * decompressed size, then it's better to use the streaming API.
|
|
+ * @src: The zstd compressed data to decompress. Multiple concatenated
|
|
+ * frames and skippable frames are allowed.
|
|
+ * @srcSize: The exact size of the data to decompress.
|
|
+ * @ddict: The digested dictionary to use for decompression. The same
|
|
+ * dictionary must've been used to compress the data.
|
|
+ *
|
|
+ * Return: The decompressed size or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_decompress_usingDDict(ZSTD_DCtx *dctx, void *dst,
|
|
+ size_t dstCapacity, const void *src, size_t srcSize,
|
|
+ const ZSTD_DDict *ddict);
|
|
+
|
|
+
|
|
+/*-**************************
|
|
+ * Streaming
|
|
+ ***************************/
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_inBuffer - input buffer for streaming
|
|
+ * @src: Start of the input buffer.
|
|
+ * @size: Size of the input buffer.
|
|
+ * @pos: Position where reading stopped. Will be updated.
|
|
+ * Necessarily 0 <= pos <= size.
|
|
+ */
|
|
+typedef struct ZSTD_inBuffer_s {
|
|
+ const void *src;
|
|
+ size_t size;
|
|
+ size_t pos;
|
|
+} ZSTD_inBuffer;
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_outBuffer - output buffer for streaming
|
|
+ * @dst: Start of the output buffer.
|
|
+ * @size: Size of the output buffer.
|
|
+ * @pos: Position where writing stopped. Will be updated.
|
|
+ * Necessarily 0 <= pos <= size.
|
|
+ */
|
|
+typedef struct ZSTD_outBuffer_s {
|
|
+ void *dst;
|
|
+ size_t size;
|
|
+ size_t pos;
|
|
+} ZSTD_outBuffer;
|
|
+
|
|
+
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Streaming compression - HowTo
|
|
+ *
|
|
+ * A ZSTD_CStream object is required to track streaming operation.
|
|
+ * Use ZSTD_initCStream() to initialize a ZSTD_CStream object.
|
|
+ * ZSTD_CStream objects can be reused multiple times on consecutive compression
|
|
+ * operations. It is recommended to re-use ZSTD_CStream in situations where many
|
|
+ * streaming operations will be achieved consecutively. Use one separate
|
|
+ * ZSTD_CStream per thread for parallel execution.
|
|
+ *
|
|
+ * Use ZSTD_compressStream() repetitively to consume input stream.
|
|
+ * The function will automatically update both `pos` fields.
|
|
+ * Note that it may not consume the entire input, in which case `pos < size`,
|
|
+ * and it's up to the caller to present again remaining data.
|
|
+ * It returns a hint for the preferred number of bytes to use as an input for
|
|
+ * the next function call.
|
|
+ *
|
|
+ * At any moment, it's possible to flush whatever data remains within internal
|
|
+ * buffer, using ZSTD_flushStream(). `output->pos` will be updated. There might
|
|
+ * still be some content left within the internal buffer if `output->size` is
|
|
+ * too small. It returns the number of bytes left in the internal buffer and
|
|
+ * must be called until it returns 0.
|
|
+ *
|
|
+ * ZSTD_endStream() instructs to finish a frame. It will perform a flush and
|
|
+ * write frame epilogue. The epilogue is required for decoders to consider a
|
|
+ * frame completed. Similar to ZSTD_flushStream(), it may not be able to flush
|
|
+ * the full content if `output->size` is too small. In which case, call again
|
|
+ * ZSTD_endStream() to complete the flush. It returns the number of bytes left
|
|
+ * in the internal buffer and must be called until it returns 0.
|
|
+ ******************************************************************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_CStreamWorkspaceBound() - memory needed to initialize a ZSTD_CStream
|
|
+ * @cParams: The compression parameters to be used for compression.
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initCStream() and ZSTD_initCStream_usingCDict().
|
|
+ */
|
|
+size_t ZSTD_CStreamWorkspaceBound(ZSTD_compressionParameters cParams);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_CStream - the zstd streaming compression context
|
|
+ */
|
|
+typedef struct ZSTD_CStream_s ZSTD_CStream;
|
|
+
|
|
+/*===== ZSTD_CStream management functions =====*/
|
|
+/**
|
|
+ * ZSTD_initCStream() - initialize a zstd streaming compression context
|
|
+ * @params: The zstd compression parameters.
|
|
+ * @pledgedSrcSize: If params.fParams.contentSizeFlag == 1 then the caller must
|
|
+ * pass the source size (zero means empty source). Otherwise,
|
|
+ * the caller may optionally pass the source size, or zero if
|
|
+ * unknown.
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace.
|
|
+ * Use ZSTD_CStreamWorkspaceBound(params.cParams) to determine
|
|
+ * how large the workspace must be.
|
|
+ *
|
|
+ * Return: The zstd streaming compression context.
|
|
+ */
|
|
+ZSTD_CStream *ZSTD_initCStream(ZSTD_parameters params,
|
|
+ unsigned long long pledgedSrcSize, void *workspace,
|
|
+ size_t workspaceSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_initCStream_usingCDict() - initialize a streaming compression context
|
|
+ * @cdict: The digested dictionary to use for compression.
|
|
+ * @pledgedSrcSize: Optionally the source size, or zero if unknown.
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace. Call ZSTD_CStreamWorkspaceBound()
|
|
+ * with the cParams used to initialize the cdict to determine
|
|
+ * how large the workspace must be.
|
|
+ *
|
|
+ * Return: The zstd streaming compression context.
|
|
+ */
|
|
+ZSTD_CStream *ZSTD_initCStream_usingCDict(const ZSTD_CDict *cdict,
|
|
+ unsigned long long pledgedSrcSize, void *workspace,
|
|
+ size_t workspaceSize);
|
|
+
|
|
+/*===== Streaming compression functions =====*/
|
|
+/**
|
|
+ * ZSTD_resetCStream() - reset the context using parameters from creation
|
|
+ * @zcs: The zstd streaming compression context to reset.
|
|
+ * @pledgedSrcSize: Optionally the source size, or zero if unknown.
|
|
+ *
|
|
+ * Resets the context using the parameters from creation. Skips dictionary
|
|
+ * loading, since it can be reused. If `pledgedSrcSize` is non-zero the frame
|
|
+ * content size is always written into the frame header.
|
|
+ *
|
|
+ * Return: Zero or an error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_resetCStream(ZSTD_CStream *zcs, unsigned long long pledgedSrcSize);
|
|
+/**
|
|
+ * ZSTD_compressStream() - streaming compress some of input into output
|
|
+ * @zcs: The zstd streaming compression context.
|
|
+ * @output: Destination buffer. `output->pos` is updated to indicate how much
|
|
+ * compressed data was written.
|
|
+ * @input: Source buffer. `input->pos` is updated to indicate how much data was
|
|
+ * read. Note that it may not consume the entire input, in which case
|
|
+ * `input->pos < input->size`, and it's up to the caller to present
|
|
+ * remaining data again.
|
|
+ *
|
|
+ * The `input` and `output` buffers may be any size. Guaranteed to make some
|
|
+ * forward progress if `input` and `output` are not empty.
|
|
+ *
|
|
+ * Return: A hint for the number of bytes to use as the input for the next
|
|
+ * function call or an error, which can be checked using
|
|
+ * ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_compressStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output,
|
|
+ ZSTD_inBuffer *input);
|
|
+/**
|
|
+ * ZSTD_flushStream() - flush internal buffers into output
|
|
+ * @zcs: The zstd streaming compression context.
|
|
+ * @output: Destination buffer. `output->pos` is updated to indicate how much
|
|
+ * compressed data was written.
|
|
+ *
|
|
+ * ZSTD_flushStream() must be called until it returns 0, meaning all the data
|
|
+ * has been flushed. Since ZSTD_flushStream() causes a block to be ended,
|
|
+ * calling it too often will degrade the compression ratio.
|
|
+ *
|
|
+ * Return: The number of bytes still present within internal buffers or an
|
|
+ * error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_flushStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output);
|
|
+/**
|
|
+ * ZSTD_endStream() - flush internal buffers into output and end the frame
|
|
+ * @zcs: The zstd streaming compression context.
|
|
+ * @output: Destination buffer. `output->pos` is updated to indicate how much
|
|
+ * compressed data was written.
|
|
+ *
|
|
+ * ZSTD_endStream() must be called until it returns 0, meaning all the data has
|
|
+ * been flushed and the frame epilogue has been written.
|
|
+ *
|
|
+ * Return: The number of bytes still present within internal buffers or an
|
|
+ * error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_endStream(ZSTD_CStream *zcs, ZSTD_outBuffer *output);
|
|
+
|
|
+/**
|
|
+ * ZSTD_CStreamInSize() - recommended size for the input buffer
|
|
+ *
|
|
+ * Return: The recommended size for the input buffer.
|
|
+ */
|
|
+size_t ZSTD_CStreamInSize(void);
|
|
+/**
|
|
+ * ZSTD_CStreamOutSize() - recommended size for the output buffer
|
|
+ *
|
|
+ * When the output buffer is at least this large, it is guaranteed to be large
|
|
+ * enough to flush at least one complete compressed block.
|
|
+ *
|
|
+ * Return: The recommended size for the output buffer.
|
|
+ */
|
|
+size_t ZSTD_CStreamOutSize(void);
|
|
+
|
|
+
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Streaming decompression - HowTo
|
|
+ *
|
|
+ * A ZSTD_DStream object is required to track streaming operations.
|
|
+ * Use ZSTD_initDStream() to initialize a ZSTD_DStream object.
|
|
+ * ZSTD_DStream objects can be re-used multiple times.
|
|
+ *
|
|
+ * Use ZSTD_decompressStream() repetitively to consume your input.
|
|
+ * The function will update both `pos` fields.
|
|
+ * If `input->pos < input->size`, some input has not been consumed.
|
|
+ * It's up to the caller to present again remaining data.
|
|
+ * If `output->pos < output->size`, decoder has flushed everything it could.
|
|
+ * Returns 0 iff a frame is completely decoded and fully flushed.
|
|
+ * Otherwise it returns a suggested next input size that will never load more
|
|
+ * than the current frame.
|
|
+ ******************************************************************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_DStreamWorkspaceBound() - memory needed to initialize a ZSTD_DStream
|
|
+ * @maxWindowSize: The maximum window size allowed for compressed frames.
|
|
+ *
|
|
+ * Return: A lower bound on the size of the workspace that is passed to
|
|
+ * ZSTD_initDStream() and ZSTD_initDStream_usingDDict().
|
|
+ */
|
|
+size_t ZSTD_DStreamWorkspaceBound(size_t maxWindowSize);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_DStream - the zstd streaming decompression context
|
|
+ */
|
|
+typedef struct ZSTD_DStream_s ZSTD_DStream;
|
|
+/*===== ZSTD_DStream management functions =====*/
|
|
+/**
|
|
+ * ZSTD_initDStream() - initialize a zstd streaming decompression context
|
|
+ * @maxWindowSize: The maximum window size allowed for compressed frames.
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace.
|
|
+ * Use ZSTD_DStreamWorkspaceBound(maxWindowSize) to determine
|
|
+ * how large the workspace must be.
|
|
+ *
|
|
+ * Return: The zstd streaming decompression context.
|
|
+ */
|
|
+ZSTD_DStream *ZSTD_initDStream(size_t maxWindowSize, void *workspace,
|
|
+ size_t workspaceSize);
|
|
+/**
|
|
+ * ZSTD_initDStream_usingDDict() - initialize streaming decompression context
|
|
+ * @maxWindowSize: The maximum window size allowed for compressed frames.
|
|
+ * @ddict: The digested dictionary to use for decompression.
|
|
+ * @workspace: The workspace to emplace the context into. It must outlive
|
|
+ * the returned context.
|
|
+ * @workspaceSize: The size of workspace.
|
|
+ * Use ZSTD_DStreamWorkspaceBound(maxWindowSize) to determine
|
|
+ * how large the workspace must be.
|
|
+ *
|
|
+ * Return: The zstd streaming decompression context.
|
|
+ */
|
|
+ZSTD_DStream *ZSTD_initDStream_usingDDict(size_t maxWindowSize,
|
|
+ const ZSTD_DDict *ddict, void *workspace, size_t workspaceSize);
|
|
+
|
|
+/*===== Streaming decompression functions =====*/
|
|
+/**
|
|
+ * ZSTD_resetDStream() - reset the context using parameters from creation
|
|
+ * @zds: The zstd streaming decompression context to reset.
|
|
+ *
|
|
+ * Resets the context using the parameters from creation. Skips dictionary
|
|
+ * loading, since it can be reused.
|
|
+ *
|
|
+ * Return: Zero or an error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_resetDStream(ZSTD_DStream *zds);
|
|
+/**
|
|
+ * ZSTD_decompressStream() - streaming decompress some of input into output
|
|
+ * @zds: The zstd streaming decompression context.
|
|
+ * @output: Destination buffer. `output.pos` is updated to indicate how much
|
|
+ * decompressed data was written.
|
|
+ * @input: Source buffer. `input.pos` is updated to indicate how much data was
|
|
+ * read. Note that it may not consume the entire input, in which case
|
|
+ * `input.pos < input.size`, and it's up to the caller to present
|
|
+ * remaining data again.
|
|
+ *
|
|
+ * The `input` and `output` buffers may be any size. Guaranteed to make some
|
|
+ * forward progress if `input` and `output` are not empty.
|
|
+ * ZSTD_decompressStream() will not consume the last byte of the frame until
|
|
+ * the entire frame is flushed.
|
|
+ *
|
|
+ * Return: Returns 0 iff a frame is completely decoded and fully flushed.
|
|
+ * Otherwise returns a hint for the number of bytes to use as the input
|
|
+ * for the next function call or an error, which can be checked using
|
|
+ * ZSTD_isError(). The size hint will never load more than the frame.
|
|
+ */
|
|
+size_t ZSTD_decompressStream(ZSTD_DStream *zds, ZSTD_outBuffer *output,
|
|
+ ZSTD_inBuffer *input);
|
|
+
|
|
+/**
|
|
+ * ZSTD_DStreamInSize() - recommended size for the input buffer
|
|
+ *
|
|
+ * Return: The recommended size for the input buffer.
|
|
+ */
|
|
+size_t ZSTD_DStreamInSize(void);
|
|
+/**
|
|
+ * ZSTD_DStreamOutSize() - recommended size for the output buffer
|
|
+ *
|
|
+ * When the output buffer is at least this large, it is guaranteed to be large
|
|
+ * enough to flush at least one complete decompressed block.
|
|
+ *
|
|
+ * Return: The recommended size for the output buffer.
|
|
+ */
|
|
+size_t ZSTD_DStreamOutSize(void);
|
|
+
|
|
+
|
|
+/* --- Constants ---*/
|
|
+#define ZSTD_MAGICNUMBER 0xFD2FB528 /* >= v0.8.0 */
|
|
+#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50U
|
|
+
|
|
+#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1)
|
|
+#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2)
|
|
+
|
|
+#define ZSTD_WINDOWLOG_MAX_32 27
|
|
+#define ZSTD_WINDOWLOG_MAX_64 27
|
|
+#define ZSTD_WINDOWLOG_MAX \
|
|
+ ((unsigned int)(sizeof(size_t) == 4 \
|
|
+ ? ZSTD_WINDOWLOG_MAX_32 \
|
|
+ : ZSTD_WINDOWLOG_MAX_64))
|
|
+#define ZSTD_WINDOWLOG_MIN 10
|
|
+#define ZSTD_HASHLOG_MAX ZSTD_WINDOWLOG_MAX
|
|
+#define ZSTD_HASHLOG_MIN 6
|
|
+#define ZSTD_CHAINLOG_MAX (ZSTD_WINDOWLOG_MAX+1)
|
|
+#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN
|
|
+#define ZSTD_HASHLOG3_MAX 17
|
|
+#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1)
|
|
+#define ZSTD_SEARCHLOG_MIN 1
|
|
+/* only for ZSTD_fast, other strategies are limited to 6 */
|
|
+#define ZSTD_SEARCHLENGTH_MAX 7
|
|
+/* only for ZSTD_btopt, other strategies are limited to 4 */
|
|
+#define ZSTD_SEARCHLENGTH_MIN 3
|
|
+#define ZSTD_TARGETLENGTH_MIN 4
|
|
+#define ZSTD_TARGETLENGTH_MAX 999
|
|
+
|
|
+/* for static allocation */
|
|
+#define ZSTD_FRAMEHEADERSIZE_MAX 18
|
|
+#define ZSTD_FRAMEHEADERSIZE_MIN 6
|
|
+static const size_t ZSTD_frameHeaderSize_prefix = 5;
|
|
+static const size_t ZSTD_frameHeaderSize_min = ZSTD_FRAMEHEADERSIZE_MIN;
|
|
+static const size_t ZSTD_frameHeaderSize_max = ZSTD_FRAMEHEADERSIZE_MAX;
|
|
+/* magic number + skippable frame length */
|
|
+static const size_t ZSTD_skippableHeaderSize = 8;
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+ * Compressed size functions
|
|
+ **************************************/
|
|
+
|
|
+/**
|
|
+ * ZSTD_findFrameCompressedSize() - returns the size of a compressed frame
|
|
+ * @src: Source buffer. It should point to the start of a zstd encoded frame
|
|
+ * or a skippable frame.
|
|
+ * @srcSize: The size of the source buffer. It must be at least as large as the
|
|
+ * size of the frame.
|
|
+ *
|
|
+ * Return: The compressed size of the frame pointed to by `src` or an error,
|
|
+ * which can be check with ZSTD_isError().
|
|
+ * Suitable to pass to ZSTD_decompress() or similar functions.
|
|
+ */
|
|
+size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize);
|
|
+
|
|
+/*-*************************************
|
|
+ * Decompressed size functions
|
|
+ **************************************/
|
|
+/**
|
|
+ * ZSTD_getFrameContentSize() - returns the content size in a zstd frame header
|
|
+ * @src: It should point to the start of a zstd encoded frame.
|
|
+ * @srcSize: The size of the source buffer. It must be at least as large as the
|
|
+ * frame header. `ZSTD_frameHeaderSize_max` is always large enough.
|
|
+ *
|
|
+ * Return: The frame content size stored in the frame header if known.
|
|
+ * `ZSTD_CONTENTSIZE_UNKNOWN` if the content size isn't stored in the
|
|
+ * frame header. `ZSTD_CONTENTSIZE_ERROR` on invalid input.
|
|
+ */
|
|
+unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_findDecompressedSize() - returns decompressed size of a series of frames
|
|
+ * @src: It should point to the start of a series of zstd encoded and/or
|
|
+ * skippable frames.
|
|
+ * @srcSize: The exact size of the series of frames.
|
|
+ *
|
|
+ * If any zstd encoded frame in the series doesn't have the frame content size
|
|
+ * set, `ZSTD_CONTENTSIZE_UNKNOWN` is returned. But frame content size is always
|
|
+ * set when using ZSTD_compress(). The decompressed size can be very large.
|
|
+ * If the source is untrusted, the decompressed size could be wrong or
|
|
+ * intentionally modified. Always ensure the result fits within the
|
|
+ * application's authorized limits. ZSTD_findDecompressedSize() handles multiple
|
|
+ * frames, and so it must traverse the input to read each frame header. This is
|
|
+ * efficient as most of the data is skipped, however it does mean that all frame
|
|
+ * data must be present and valid.
|
|
+ *
|
|
+ * Return: Decompressed size of all the data contained in the frames if known.
|
|
+ * `ZSTD_CONTENTSIZE_UNKNOWN` if the decompressed size is unknown.
|
|
+ * `ZSTD_CONTENTSIZE_ERROR` if an error occurred.
|
|
+ */
|
|
+unsigned long long ZSTD_findDecompressedSize(const void *src, size_t srcSize);
|
|
+
|
|
+/*-*************************************
|
|
+ * Advanced compression functions
|
|
+ **************************************/
|
|
+/**
|
|
+ * ZSTD_checkCParams() - ensure parameter values remain within authorized range
|
|
+ * @cParams: The zstd compression parameters.
|
|
+ *
|
|
+ * Return: Zero or an error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams);
|
|
+
|
|
+/**
|
|
+ * ZSTD_adjustCParams() - optimize parameters for a given srcSize and dictSize
|
|
+ * @srcSize: Optionally the estimated source size, or zero if unknown.
|
|
+ * @dictSize: Optionally the estimated dictionary size, or zero if unknown.
|
|
+ *
|
|
+ * Return: The optimized parameters.
|
|
+ */
|
|
+ZSTD_compressionParameters ZSTD_adjustCParams(
|
|
+ ZSTD_compressionParameters cParams, unsigned long long srcSize,
|
|
+ size_t dictSize);
|
|
+
|
|
+/*--- Advanced decompression functions ---*/
|
|
+
|
|
+/**
|
|
+ * ZSTD_isFrame() - returns true iff the buffer starts with a valid frame
|
|
+ * @buffer: The source buffer to check.
|
|
+ * @size: The size of the source buffer, must be at least 4 bytes.
|
|
+ *
|
|
+ * Return: True iff the buffer starts with a zstd or skippable frame identifier.
|
|
+ */
|
|
+unsigned int ZSTD_isFrame(const void *buffer, size_t size);
|
|
+
|
|
+/**
|
|
+ * ZSTD_getDictID_fromDict() - returns the dictionary id stored in a dictionary
|
|
+ * @dict: The dictionary buffer.
|
|
+ * @dictSize: The size of the dictionary buffer.
|
|
+ *
|
|
+ * Return: The dictionary id stored within the dictionary or 0 if the
|
|
+ * dictionary is not a zstd dictionary. If it returns 0 the
|
|
+ * dictionary can still be loaded as a content-only dictionary.
|
|
+ */
|
|
+unsigned int ZSTD_getDictID_fromDict(const void *dict, size_t dictSize);
|
|
+
|
|
+/**
|
|
+ * ZSTD_getDictID_fromDDict() - returns the dictionary id stored in a ZSTD_DDict
|
|
+ * @ddict: The ddict to find the id of.
|
|
+ *
|
|
+ * Return: The dictionary id stored within `ddict` or 0 if the dictionary is not
|
|
+ * a zstd dictionary. If it returns 0 `ddict` will be loaded as a
|
|
+ * content-only dictionary.
|
|
+ */
|
|
+unsigned int ZSTD_getDictID_fromDDict(const ZSTD_DDict *ddict);
|
|
+
|
|
+/**
|
|
+ * ZSTD_getDictID_fromFrame() - returns the dictionary id stored in a zstd frame
|
|
+ * @src: Source buffer. It must be a zstd encoded frame.
|
|
+ * @srcSize: The size of the source buffer. It must be at least as large as the
|
|
+ * frame header. `ZSTD_frameHeaderSize_max` is always large enough.
|
|
+ *
|
|
+ * Return: The dictionary id required to decompress the frame stored within
|
|
+ * `src` or 0 if the dictionary id could not be decoded. It can return
|
|
+ * 0 if the frame does not require a dictionary, the dictionary id
|
|
+ * wasn't stored in the frame, `src` is not a zstd frame, or `srcSize`
|
|
+ * is too small.
|
|
+ */
|
|
+unsigned int ZSTD_getDictID_fromFrame(const void *src, size_t srcSize);
|
|
+
|
|
+/**
|
|
+ * struct ZSTD_frameParams - zstd frame parameters stored in the frame header
|
|
+ * @frameContentSize: The frame content size, or 0 if not present.
|
|
+ * @windowSize: The window size, or 0 if the frame is a skippable frame.
|
|
+ * @dictID: The dictionary id, or 0 if not present.
|
|
+ * @checksumFlag: Whether a checksum was used.
|
|
+ */
|
|
+typedef struct {
|
|
+ unsigned long long frameContentSize;
|
|
+ unsigned int windowSize;
|
|
+ unsigned int dictID;
|
|
+ unsigned int checksumFlag;
|
|
+} ZSTD_frameParams;
|
|
+
|
|
+/**
|
|
+ * ZSTD_getFrameParams() - extracts parameters from a zstd or skippable frame
|
|
+ * @fparamsPtr: On success the frame parameters are written here.
|
|
+ * @src: The source buffer. It must point to a zstd or skippable frame.
|
|
+ * @srcSize: The size of the source buffer. `ZSTD_frameHeaderSize_max` is
|
|
+ * always large enough to succeed.
|
|
+ *
|
|
+ * Return: 0 on success. If more data is required it returns how many bytes
|
|
+ * must be provided to make forward progress. Otherwise it returns
|
|
+ * an error, which can be checked using ZSTD_isError().
|
|
+ */
|
|
+size_t ZSTD_getFrameParams(ZSTD_frameParams *fparamsPtr, const void *src,
|
|
+ size_t srcSize);
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Buffer-less and synchronous inner streaming functions
|
|
+ *
|
|
+ * This is an advanced API, giving full control over buffer management, for
|
|
+ * users which need direct control over memory.
|
|
+ * But it's also a complex one, with many restrictions (documented below).
|
|
+ * Prefer using normal streaming API for an easier experience
|
|
+ ******************************************************************************/
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Buffer-less streaming compression (synchronous mode)
|
|
+ *
|
|
+ * A ZSTD_CCtx object is required to track streaming operations.
|
|
+ * Use ZSTD_initCCtx() to initialize a context.
|
|
+ * ZSTD_CCtx object can be re-used multiple times within successive compression
|
|
+ * operations.
|
|
+ *
|
|
+ * Start by initializing a context.
|
|
+ * Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary
|
|
+ * compression,
|
|
+ * or ZSTD_compressBegin_advanced(), for finer parameter control.
|
|
+ * It's also possible to duplicate a reference context which has already been
|
|
+ * initialized, using ZSTD_copyCCtx()
|
|
+ *
|
|
+ * Then, consume your input using ZSTD_compressContinue().
|
|
+ * There are some important considerations to keep in mind when using this
|
|
+ * advanced function :
|
|
+ * - ZSTD_compressContinue() has no internal buffer. It uses externally provided
|
|
+ * buffer only.
|
|
+ * - Interface is synchronous : input is consumed entirely and produce 1+
|
|
+ * (or more) compressed blocks.
|
|
+ * - Caller must ensure there is enough space in `dst` to store compressed data
|
|
+ * under worst case scenario. Worst case evaluation is provided by
|
|
+ * ZSTD_compressBound().
|
|
+ * ZSTD_compressContinue() doesn't guarantee recover after a failed
|
|
+ * compression.
|
|
+ * - ZSTD_compressContinue() presumes prior input ***is still accessible and
|
|
+ * unmodified*** (up to maximum distance size, see WindowLog).
|
|
+ * It remembers all previous contiguous blocks, plus one separated memory
|
|
+ * segment (which can itself consists of multiple contiguous blocks)
|
|
+ * - ZSTD_compressContinue() detects that prior input has been overwritten when
|
|
+ * `src` buffer overlaps. In which case, it will "discard" the relevant memory
|
|
+ * section from its history.
|
|
+ *
|
|
+ * Finish a frame with ZSTD_compressEnd(), which will write the last block(s)
|
|
+ * and optional checksum. It's possible to use srcSize==0, in which case, it
|
|
+ * will write a final empty block to end the frame. Without last block mark,
|
|
+ * frames will be considered unfinished (corrupted) by decoders.
|
|
+ *
|
|
+ * `ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress some new
|
|
+ * frame.
|
|
+ ******************************************************************************/
|
|
+
|
|
+/*===== Buffer-less streaming compression functions =====*/
|
|
+size_t ZSTD_compressBegin(ZSTD_CCtx *cctx, int compressionLevel);
|
|
+size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx *cctx, const void *dict,
|
|
+ size_t dictSize, int compressionLevel);
|
|
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx *cctx, const void *dict,
|
|
+ size_t dictSize, ZSTD_parameters params,
|
|
+ unsigned long long pledgedSrcSize);
|
|
+size_t ZSTD_copyCCtx(ZSTD_CCtx *cctx, const ZSTD_CCtx *preparedCCtx,
|
|
+ unsigned long long pledgedSrcSize);
|
|
+size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx *cctx, const ZSTD_CDict *cdict,
|
|
+ unsigned long long pledgedSrcSize);
|
|
+size_t ZSTD_compressContinue(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+size_t ZSTD_compressEnd(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+
|
|
+
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Buffer-less streaming decompression (synchronous mode)
|
|
+ *
|
|
+ * A ZSTD_DCtx object is required to track streaming operations.
|
|
+ * Use ZSTD_initDCtx() to initialize a context.
|
|
+ * A ZSTD_DCtx object can be re-used multiple times.
|
|
+ *
|
|
+ * First typical operation is to retrieve frame parameters, using
|
|
+ * ZSTD_getFrameParams(). It fills a ZSTD_frameParams structure which provide
|
|
+ * important information to correctly decode the frame, such as the minimum
|
|
+ * rolling buffer size to allocate to decompress data (`windowSize`), and the
|
|
+ * dictionary ID used.
|
|
+ * Note: content size is optional, it may not be present. 0 means unknown.
|
|
+ * Note that these values could be wrong, either because of data malformation,
|
|
+ * or because an attacker is spoofing deliberate false information. As a
|
|
+ * consequence, check that values remain within valid application range,
|
|
+ * especially `windowSize`, before allocation. Each application can set its own
|
|
+ * limit, depending on local restrictions. For extended interoperability, it is
|
|
+ * recommended to support at least 8 MB.
|
|
+ * Frame parameters are extracted from the beginning of the compressed frame.
|
|
+ * Data fragment must be large enough to ensure successful decoding, typically
|
|
+ * `ZSTD_frameHeaderSize_max` bytes.
|
|
+ * Result: 0: successful decoding, the `ZSTD_frameParams` structure is filled.
|
|
+ * >0: `srcSize` is too small, provide at least this many bytes.
|
|
+ * errorCode, which can be tested using ZSTD_isError().
|
|
+ *
|
|
+ * Start decompression, with ZSTD_decompressBegin() or
|
|
+ * ZSTD_decompressBegin_usingDict(). Alternatively, you can copy a prepared
|
|
+ * context, using ZSTD_copyDCtx().
|
|
+ *
|
|
+ * Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue()
|
|
+ * alternatively.
|
|
+ * ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize'
|
|
+ * to ZSTD_decompressContinue().
|
|
+ * ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will
|
|
+ * fail.
|
|
+ *
|
|
+ * The result of ZSTD_decompressContinue() is the number of bytes regenerated
|
|
+ * within 'dst' (necessarily <= dstCapacity). It can be zero, which is not an
|
|
+ * error; it just means ZSTD_decompressContinue() has decoded some metadata
|
|
+ * item. It can also be an error code, which can be tested with ZSTD_isError().
|
|
+ *
|
|
+ * ZSTD_decompressContinue() needs previous data blocks during decompression, up
|
|
+ * to `windowSize`. They should preferably be located contiguously, prior to
|
|
+ * current block. Alternatively, a round buffer of sufficient size is also
|
|
+ * possible. Sufficient size is determined by frame parameters.
|
|
+ * ZSTD_decompressContinue() is very sensitive to contiguity, if 2 blocks don't
|
|
+ * follow each other, make sure that either the compressor breaks contiguity at
|
|
+ * the same place, or that previous contiguous segment is large enough to
|
|
+ * properly handle maximum back-reference.
|
|
+ *
|
|
+ * A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
|
|
+ * Context can then be reset to start a new decompression.
|
|
+ *
|
|
+ * Note: it's possible to know if next input to present is a header or a block,
|
|
+ * using ZSTD_nextInputType(). This information is not required to properly
|
|
+ * decode a frame.
|
|
+ *
|
|
+ * == Special case: skippable frames ==
|
|
+ *
|
|
+ * Skippable frames allow integration of user-defined data into a flow of
|
|
+ * concatenated frames. Skippable frames will be ignored (skipped) by a
|
|
+ * decompressor. The format of skippable frames is as follows:
|
|
+ * a) Skippable frame ID - 4 Bytes, Little endian format, any value from
|
|
+ * 0x184D2A50 to 0x184D2A5F
|
|
+ * b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits
|
|
+ * c) Frame Content - any content (User Data) of length equal to Frame Size
|
|
+ * For skippable frames ZSTD_decompressContinue() always returns 0.
|
|
+ * For skippable frames ZSTD_getFrameParams() returns fparamsPtr->windowLog==0
|
|
+ * what means that a frame is skippable.
|
|
+ * Note: If fparamsPtr->frameContentSize==0, it is ambiguous: the frame might
|
|
+ * actually be a zstd encoded frame with no content. For purposes of
|
|
+ * decompression, it is valid in both cases to skip the frame using
|
|
+ * ZSTD_findFrameCompressedSize() to find its size in bytes.
|
|
+ * It also returns frame size as fparamsPtr->frameContentSize.
|
|
+ ******************************************************************************/
|
|
+
|
|
+/*===== Buffer-less streaming decompression functions =====*/
|
|
+size_t ZSTD_decompressBegin(ZSTD_DCtx *dctx);
|
|
+size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx *dctx, const void *dict,
|
|
+ size_t dictSize);
|
|
+void ZSTD_copyDCtx(ZSTD_DCtx *dctx, const ZSTD_DCtx *preparedDCtx);
|
|
+size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx *dctx);
|
|
+size_t ZSTD_decompressContinue(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+typedef enum {
|
|
+ ZSTDnit_frameHeader,
|
|
+ ZSTDnit_blockHeader,
|
|
+ ZSTDnit_block,
|
|
+ ZSTDnit_lastBlock,
|
|
+ ZSTDnit_checksum,
|
|
+ ZSTDnit_skippableFrame
|
|
+} ZSTD_nextInputType_e;
|
|
+ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx *dctx);
|
|
+
|
|
+/*-*****************************************************************************
|
|
+ * Block functions
|
|
+ *
|
|
+ * Block functions produce and decode raw zstd blocks, without frame metadata.
|
|
+ * Frame metadata cost is typically ~18 bytes, which can be non-negligible for
|
|
+ * very small blocks (< 100 bytes). User will have to take in charge required
|
|
+ * information to regenerate data, such as compressed and content sizes.
|
|
+ *
|
|
+ * A few rules to respect:
|
|
+ * - Compressing and decompressing require a context structure
|
|
+ * + Use ZSTD_initCCtx() and ZSTD_initDCtx()
|
|
+ * - It is necessary to init context before starting
|
|
+ * + compression : ZSTD_compressBegin()
|
|
+ * + decompression : ZSTD_decompressBegin()
|
|
+ * + variants _usingDict() are also allowed
|
|
+ * + copyCCtx() and copyDCtx() work too
|
|
+ * - Block size is limited, it must be <= ZSTD_getBlockSizeMax()
|
|
+ * + If you need to compress more, cut data into multiple blocks
|
|
+ * + Consider using the regular ZSTD_compress() instead, as frame metadata
|
|
+ * costs become negligible when source size is large.
|
|
+ * - When a block is considered not compressible enough, ZSTD_compressBlock()
|
|
+ * result will be zero. In which case, nothing is produced into `dst`.
|
|
+ * + User must test for such outcome and deal directly with uncompressed data
|
|
+ * + ZSTD_decompressBlock() doesn't accept uncompressed data as input!!!
|
|
+ * + In case of multiple successive blocks, decoder must be informed of
|
|
+ * uncompressed block existence to follow proper history. Use
|
|
+ * ZSTD_insertBlock() in such a case.
|
|
+ ******************************************************************************/
|
|
+
|
|
+/* Define for static allocation */
|
|
+#define ZSTD_BLOCKSIZE_ABSOLUTEMAX (128 * 1024)
|
|
+/*===== Raw zstd block functions =====*/
|
|
+size_t ZSTD_getBlockSizeMax(ZSTD_CCtx *cctx);
|
|
+size_t ZSTD_compressBlock(ZSTD_CCtx *cctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+size_t ZSTD_decompressBlock(ZSTD_DCtx *dctx, void *dst, size_t dstCapacity,
|
|
+ const void *src, size_t srcSize);
|
|
+size_t ZSTD_insertBlock(ZSTD_DCtx *dctx, const void *blockStart,
|
|
+ size_t blockSize);
|
|
+
|
|
+#endif /* ZSTD_H */
|
|
diff --git a/lib/Kconfig b/lib/Kconfig
|
|
index b6009d7..f00ddab 100644
|
|
--- a/lib/Kconfig
|
|
+++ b/lib/Kconfig
|
|
@@ -241,6 +241,14 @@ config LZ4HC_COMPRESS
|
|
config LZ4_DECOMPRESS
|
|
tristate
|
|
|
|
+config ZSTD_COMPRESS
|
|
+ select XXHASH
|
|
+ tristate
|
|
+
|
|
+config ZSTD_DECOMPRESS
|
|
+ select XXHASH
|
|
+ tristate
|
|
+
|
|
source "lib/xz/Kconfig"
|
|
|
|
#
|
|
diff --git a/lib/Makefile b/lib/Makefile
|
|
index e16f94a..0cfd529 100644
|
|
--- a/lib/Makefile
|
|
+++ b/lib/Makefile
|
|
@@ -115,6 +115,8 @@ obj-$(CONFIG_LZO_DECOMPRESS) += lzo/
|
|
obj-$(CONFIG_LZ4_COMPRESS) += lz4/
|
|
obj-$(CONFIG_LZ4HC_COMPRESS) += lz4/
|
|
obj-$(CONFIG_LZ4_DECOMPRESS) += lz4/
|
|
+obj-$(CONFIG_ZSTD_COMPRESS) += zstd/
|
|
+obj-$(CONFIG_ZSTD_DECOMPRESS) += zstd/
|
|
obj-$(CONFIG_XZ_DEC) += xz/
|
|
obj-$(CONFIG_RAID6_PQ) += raid6/
|
|
|
|
diff --git a/lib/zstd/Makefile b/lib/zstd/Makefile
|
|
new file mode 100644
|
|
index 0000000..aa5eb4d
|
|
--- /dev/null
|
|
+++ b/lib/zstd/Makefile
|
|
@@ -0,0 +1,9 @@
|
|
+obj-$(CONFIG_ZSTD_COMPRESS) += zstd_compress.o
|
|
+obj-$(CONFIG_ZSTD_DECOMPRESS) += zstd_decompress.o
|
|
+
|
|
+ccflags-y += -O3
|
|
+
|
|
+zstd_compress-y := entropy_common.o fse_decompress.o zstd_common.o \
|
|
+ fse_compress.o huf_compress.o compress.o
|
|
+zstd_decompress-y := entropy_common.o fse_decompress.o zstd_common.o \
|
|
+ huf_decompress.o decompress.o
|
|
diff --git a/lib/zstd/bitstream.h b/lib/zstd/bitstream.h
|
|
new file mode 100644
|
|
index 0000000..2f6e76c
|
|
--- /dev/null
|
|
+++ b/lib/zstd/bitstream.h
|
|
@@ -0,0 +1,382 @@
|
|
+/*
|
|
+ * bitstream
|
|
+ * Part of FSE library
|
|
+ * header file (to include)
|
|
+ * Copyright (C) 2013-2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+#ifndef BITSTREAM_H_MODULE
|
|
+#define BITSTREAM_H_MODULE
|
|
+
|
|
+/*
|
|
+* This API consists of small unitary functions, which must be inlined for best performance.
|
|
+* Since link-time-optimization is not available for all compilers,
|
|
+* these functions are defined into a .h to be included.
|
|
+*/
|
|
+
|
|
+/*-****************************************
|
|
+* Dependencies
|
|
+******************************************/
|
|
+#include "mem.h" /* unaligned access routines */
|
|
+#include "error_private.h" /* error codes and messages */
|
|
+
|
|
+
|
|
+/*=========================================
|
|
+* Target specific
|
|
+=========================================*/
|
|
+#define STREAM_ACCUMULATOR_MIN_32 25
|
|
+#define STREAM_ACCUMULATOR_MIN_64 57
|
|
+#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
|
|
+
|
|
+/*-******************************************
|
|
+* bitStream encoding API (write forward)
|
|
+********************************************/
|
|
+/* bitStream can mix input from multiple sources.
|
|
+* A critical property of these streams is that they encode and decode in **reverse** direction.
|
|
+* So the first bit sequence you add will be the last to be read, like a LIFO stack.
|
|
+*/
|
|
+typedef struct
|
|
+{
|
|
+ size_t bitContainer;
|
|
+ int bitPos;
|
|
+ char* startPtr;
|
|
+ char* ptr;
|
|
+ char* endPtr;
|
|
+} BIT_CStream_t;
|
|
+
|
|
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
|
|
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
|
|
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
|
|
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
|
|
+
|
|
+/* Start with initCStream, providing the size of buffer to write into.
|
|
+* bitStream will never write outside of this buffer.
|
|
+* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
|
|
+*
|
|
+* bits are first added to a local register.
|
|
+* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
|
|
+* Writing data into memory is an explicit operation, performed by the flushBits function.
|
|
+* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
|
|
+* After a flushBits, a maximum of 7 bits might still be stored into local register.
|
|
+*
|
|
+* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
|
|
+*
|
|
+* Last operation is to close the bitStream.
|
|
+* The function returns the final size of CStream in bytes.
|
|
+* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
|
|
+*/
|
|
+
|
|
+
|
|
+/*-********************************************
|
|
+* bitStream decoding API (read backward)
|
|
+**********************************************/
|
|
+typedef struct
|
|
+{
|
|
+ size_t bitContainer;
|
|
+ unsigned bitsConsumed;
|
|
+ const char* ptr;
|
|
+ const char* start;
|
|
+} BIT_DStream_t;
|
|
+
|
|
+typedef enum { BIT_DStream_unfinished = 0,
|
|
+ BIT_DStream_endOfBuffer = 1,
|
|
+ BIT_DStream_completed = 2,
|
|
+ BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
|
|
+ /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
|
|
+
|
|
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
|
|
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
|
|
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
|
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
|
+
|
|
+
|
|
+/* Start by invoking BIT_initDStream().
|
|
+* A chunk of the bitStream is then stored into a local register.
|
|
+* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
|
+* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
|
+* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
|
|
+* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
|
|
+* Otherwise, it can be less than that, so proceed accordingly.
|
|
+* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
|
|
+*/
|
|
+
|
|
+
|
|
+/*-****************************************
|
|
+* unsafe API
|
|
+******************************************/
|
|
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
|
|
+/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
|
|
+
|
|
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
|
|
+/* unsafe version; does not check buffer overflow */
|
|
+
|
|
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
|
+/* faster, but works only if nbBits >= 1 */
|
|
+
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* Internal functions
|
|
+****************************************************************/
|
|
+MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
|
+{
|
|
+ return 31 - __builtin_clz(val);
|
|
+}
|
|
+
|
|
+/*===== Local Constants =====*/
|
|
+static const unsigned BIT_mask[] = { 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF }; /* up to 26 bits */
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* bitStream encoding
|
|
+****************************************************************/
|
|
+/*! BIT_initCStream() :
|
|
+ * `dstCapacity` must be > sizeof(void*)
|
|
+ * @return : 0 if success,
|
|
+ otherwise an error code (can be tested using ERR_isError() ) */
|
|
+MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* startPtr, size_t dstCapacity)
|
|
+{
|
|
+ bitC->bitContainer = 0;
|
|
+ bitC->bitPos = 0;
|
|
+ bitC->startPtr = (char*)startPtr;
|
|
+ bitC->ptr = bitC->startPtr;
|
|
+ bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->ptr);
|
|
+ if (dstCapacity <= sizeof(bitC->ptr)) return ERROR(dstSize_tooSmall);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*! BIT_addBits() :
|
|
+ can add up to 26 bits into `bitC`.
|
|
+ Does not check for register overflow ! */
|
|
+MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
|
|
+{
|
|
+ bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos;
|
|
+ bitC->bitPos += nbBits;
|
|
+}
|
|
+
|
|
+/*! BIT_addBitsFast() :
|
|
+ * works only if `value` is _clean_, meaning all high bits above nbBits are 0 */
|
|
+MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits)
|
|
+{
|
|
+ bitC->bitContainer |= value << bitC->bitPos;
|
|
+ bitC->bitPos += nbBits;
|
|
+}
|
|
+
|
|
+/*! BIT_flushBitsFast() :
|
|
+ * unsafe version; does not check buffer overflow */
|
|
+MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
|
|
+{
|
|
+ size_t const nbBytes = bitC->bitPos >> 3;
|
|
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
|
|
+ bitC->ptr += nbBytes;
|
|
+ bitC->bitPos &= 7;
|
|
+ bitC->bitContainer >>= nbBytes*8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
|
|
+}
|
|
+
|
|
+/*! BIT_flushBits() :
|
|
+ * safe version; check for buffer overflow, and prevents it.
|
|
+ * note : does not signal buffer overflow. This will be revealed later on using BIT_closeCStream() */
|
|
+MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
|
|
+{
|
|
+ size_t const nbBytes = bitC->bitPos >> 3;
|
|
+ MEM_writeLEST(bitC->ptr, bitC->bitContainer);
|
|
+ bitC->ptr += nbBytes;
|
|
+ if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
|
|
+ bitC->bitPos &= 7;
|
|
+ bitC->bitContainer >>= nbBytes*8; /* if bitPos >= sizeof(bitContainer)*8 --> undefined behavior */
|
|
+}
|
|
+
|
|
+/*! BIT_closeCStream() :
|
|
+ * @return : size of CStream, in bytes,
|
|
+ or 0 if it could not fit into dstBuffer */
|
|
+MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
|
|
+{
|
|
+ BIT_addBitsFast(bitC, 1, 1); /* endMark */
|
|
+ BIT_flushBits(bitC);
|
|
+
|
|
+ if (bitC->ptr >= bitC->endPtr) return 0; /* doesn't fit within authorized budget : cancel */
|
|
+
|
|
+ return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
|
|
+}
|
|
+
|
|
+
|
|
+/*-********************************************************
|
|
+* bitStream decoding
|
|
+**********************************************************/
|
|
+/*! BIT_initDStream() :
|
|
+* Initialize a BIT_DStream_t.
|
|
+* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
|
|
+* `srcSize` must be the *exact* size of the bitStream, in bytes.
|
|
+* @return : size of stream (== srcSize) or an errorCode if a problem is detected
|
|
+*/
|
|
+MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
|
|
+{
|
|
+ if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
|
|
+
|
|
+ if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
|
|
+ bitD->start = (const char*)srcBuffer;
|
|
+ bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
|
|
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
|
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
|
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
|
|
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
|
|
+ } else {
|
|
+ bitD->start = (const char*)srcBuffer;
|
|
+ bitD->ptr = bitD->start;
|
|
+ bitD->bitContainer = *(const BYTE*)(bitD->start);
|
|
+ switch(srcSize)
|
|
+ {
|
|
+ case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
|
|
+ case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
|
|
+ case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
|
|
+ case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24;
|
|
+ case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16;
|
|
+ case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8;
|
|
+ default:;
|
|
+ }
|
|
+ { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
|
|
+ bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
|
|
+ if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
|
|
+ bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
|
|
+ }
|
|
+
|
|
+ return srcSize;
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start)
|
|
+{
|
|
+ return bitContainer >> start;
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits)
|
|
+{
|
|
+ return (bitContainer >> start) & BIT_mask[nbBits];
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
|
|
+{
|
|
+ return bitContainer & BIT_mask[nbBits];
|
|
+}
|
|
+
|
|
+/*! BIT_lookBits() :
|
|
+ * Provides next n bits from local register.
|
|
+ * local register is not modified.
|
|
+ * On 32-bits, maxNbBits==24.
|
|
+ * On 64-bits, maxNbBits==56.
|
|
+ * @return : value extracted
|
|
+ */
|
|
+ MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
|
|
+{
|
|
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
|
+ return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
|
|
+}
|
|
+
|
|
+/*! BIT_lookBitsFast() :
|
|
+* unsafe version; only works only if nbBits >= 1 */
|
|
+MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
|
|
+{
|
|
+ U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
|
+ return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
|
|
+}
|
|
+
|
|
+MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
|
+{
|
|
+ bitD->bitsConsumed += nbBits;
|
|
+}
|
|
+
|
|
+/*! BIT_readBits() :
|
|
+ * Read (consume) next n bits from local register and update.
|
|
+ * Pay attention to not read more than nbBits contained into local register.
|
|
+ * @return : extracted value.
|
|
+ */
|
|
+MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
|
+{
|
|
+ size_t const value = BIT_lookBits(bitD, nbBits);
|
|
+ BIT_skipBits(bitD, nbBits);
|
|
+ return value;
|
|
+}
|
|
+
|
|
+/*! BIT_readBitsFast() :
|
|
+* unsafe version; only works only if nbBits >= 1 */
|
|
+MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
|
|
+{
|
|
+ size_t const value = BIT_lookBitsFast(bitD, nbBits);
|
|
+ BIT_skipBits(bitD, nbBits);
|
|
+ return value;
|
|
+}
|
|
+
|
|
+/*! BIT_reloadDStream() :
|
|
+* Refill `bitD` from buffer previously set in BIT_initDStream() .
|
|
+* This function is safe, it guarantees it will not read beyond src buffer.
|
|
+* @return : status of `BIT_DStream_t` internal register.
|
|
+ if status == BIT_DStream_unfinished, internal register is filled with >= (sizeof(bitD->bitContainer)*8 - 7) bits */
|
|
+MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
|
+{
|
|
+ if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */
|
|
+ return BIT_DStream_overflow;
|
|
+
|
|
+ if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) {
|
|
+ bitD->ptr -= bitD->bitsConsumed >> 3;
|
|
+ bitD->bitsConsumed &= 7;
|
|
+ bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
|
+ return BIT_DStream_unfinished;
|
|
+ }
|
|
+ if (bitD->ptr == bitD->start) {
|
|
+ if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
|
|
+ return BIT_DStream_completed;
|
|
+ }
|
|
+ { U32 nbBytes = bitD->bitsConsumed >> 3;
|
|
+ BIT_DStream_status result = BIT_DStream_unfinished;
|
|
+ if (bitD->ptr - nbBytes < bitD->start) {
|
|
+ nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
|
|
+ result = BIT_DStream_endOfBuffer;
|
|
+ }
|
|
+ bitD->ptr -= nbBytes;
|
|
+ bitD->bitsConsumed -= nbBytes*8;
|
|
+ bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
|
|
+ return result;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*! BIT_endOfDStream() :
|
|
+* @return Tells if DStream has exactly reached its end (all bits consumed).
|
|
+*/
|
|
+MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
|
|
+{
|
|
+ return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
|
|
+}
|
|
+
|
|
+#endif /* BITSTREAM_H_MODULE */
|
|
diff --git a/lib/zstd/compress.c b/lib/zstd/compress.c
|
|
new file mode 100644
|
|
index 0000000..a078969
|
|
--- /dev/null
|
|
+++ b/lib/zstd/compress.c
|
|
@@ -0,0 +1,3304 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Dependencies
|
|
+***************************************/
|
|
+#include <linux/kernel.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/string.h> /* memset */
|
|
+#include "mem.h"
|
|
+#include "fse.h"
|
|
+#include "huf.h"
|
|
+#include "zstd_internal.h" /* includes zstd.h */
|
|
+
|
|
+/*-*************************************
|
|
+* Constants
|
|
+***************************************/
|
|
+static const U32 g_searchStrength = 8; /* control skip over incompressible data */
|
|
+#define HASH_READ_SIZE 8
|
|
+typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Helper functions
|
|
+***************************************/
|
|
+#define ZSTD_STATIC_ASSERT(c) { enum { ZSTD_static_assert = 1/(int)(!!(c)) }; }
|
|
+size_t ZSTD_compressBound(size_t srcSize) { return FSE_compressBound(srcSize) + 12; }
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Sequence storage
|
|
+***************************************/
|
|
+static void ZSTD_resetSeqStore(seqStore_t* ssPtr)
|
|
+{
|
|
+ ssPtr->lit = ssPtr->litStart;
|
|
+ ssPtr->sequences = ssPtr->sequencesStart;
|
|
+ ssPtr->longLengthID = 0;
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Context memory management
|
|
+***************************************/
|
|
+struct ZSTD_CCtx_s {
|
|
+ const BYTE* nextSrc; /* next block here to continue on curr prefix */
|
|
+ const BYTE* base; /* All regular indexes relative to this position */
|
|
+ const BYTE* dictBase; /* extDict indexes relative to this position */
|
|
+ U32 dictLimit; /* below that point, need extDict */
|
|
+ U32 lowLimit; /* below that point, no more data */
|
|
+ U32 nextToUpdate; /* index from which to continue dictionary update */
|
|
+ U32 nextToUpdate3; /* index from which to continue dictionary update */
|
|
+ U32 hashLog3; /* dispatch table : larger == faster, more memory */
|
|
+ U32 loadedDictEnd; /* index of end of dictionary */
|
|
+ U32 forceWindow; /* force back-references to respect limit of 1<<wLog, even for dictionary */
|
|
+ U32 forceRawDict; /* Force loading dictionary in "content-only" mode (no header analysis) */
|
|
+ ZSTD_compressionStage_e stage;
|
|
+ U32 rep[ZSTD_REP_NUM];
|
|
+ U32 repToConfirm[ZSTD_REP_NUM];
|
|
+ U32 dictID;
|
|
+ ZSTD_parameters params;
|
|
+ void* workSpace;
|
|
+ size_t workSpaceSize;
|
|
+ size_t blockSize;
|
|
+ U64 frameContentSize;
|
|
+ struct xxh64_state xxhState;
|
|
+ ZSTD_customMem customMem;
|
|
+
|
|
+ seqStore_t seqStore; /* sequences storage ptrs */
|
|
+ U32* hashTable;
|
|
+ U32* hashTable3;
|
|
+ U32* chainTable;
|
|
+ HUF_CElt* hufTable;
|
|
+ U32 flagStaticTables;
|
|
+ HUF_repeat flagStaticHufTable;
|
|
+ FSE_CTable offcodeCTable [FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
|
|
+ FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
|
|
+ FSE_CTable litlengthCTable [FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
|
|
+ unsigned tmpCounters[HUF_WORKSPACE_SIZE_U32];
|
|
+};
|
|
+
|
|
+size_t ZSTD_CCtxWorkspaceBound(ZSTD_compressionParameters cParams) {
|
|
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << cParams.windowLog);
|
|
+ U32 const divider = (cParams.searchLength==3) ? 3 : 4;
|
|
+ size_t const maxNbSeq = blockSize / divider;
|
|
+ size_t const tokenSpace = blockSize + 11*maxNbSeq;
|
|
+ size_t const chainSize = (cParams.strategy == ZSTD_fast) ? 0 : (1 << cParams.chainLog);
|
|
+ size_t const hSize = ((size_t)1) << cParams.hashLog;
|
|
+ U32 const hashLog3 = (cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, cParams.windowLog);
|
|
+ size_t const h3Size = ((size_t)1) << hashLog3;
|
|
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
|
|
+ size_t const optSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32) + (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
|
|
+ size_t const workspaceSize = tableSpace + (256*sizeof(U32)) /* huffTable */ + tokenSpace + (((cParams.strategy == ZSTD_btopt) || (cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
|
|
+
|
|
+ return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_CCtx)) + ZSTD_ALIGN(workspaceSize);
|
|
+}
|
|
+
|
|
+static ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
|
|
+{
|
|
+ ZSTD_CCtx* cctx;
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+ cctx = (ZSTD_CCtx*) ZSTD_malloc(sizeof(ZSTD_CCtx), customMem);
|
|
+ if (!cctx) return NULL;
|
|
+ memset(cctx, 0, sizeof(ZSTD_CCtx));
|
|
+ cctx->customMem = customMem;
|
|
+ return cctx;
|
|
+}
|
|
+
|
|
+ZSTD_CCtx* ZSTD_initCCtx(void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ ZSTD_CCtx* cctx = ZSTD_createCCtx_advanced(stackMem);
|
|
+ if (cctx) {
|
|
+ cctx->workSpace = ZSTD_stackAllocAll(cctx->customMem.opaque, &cctx->workSpaceSize);
|
|
+ }
|
|
+ return cctx;
|
|
+}
|
|
+
|
|
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
|
|
+{
|
|
+ if (cctx==NULL) return 0; /* support free on NULL */
|
|
+ ZSTD_free(cctx->workSpace, cctx->customMem);
|
|
+ ZSTD_free(cctx, cctx->customMem);
|
|
+ return 0; /* reserved as a potential error code in the future */
|
|
+}
|
|
+
|
|
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) /* hidden interface */
|
|
+{
|
|
+ return &(ctx->seqStore);
|
|
+}
|
|
+
|
|
+static ZSTD_parameters ZSTD_getParamsFromCCtx(const ZSTD_CCtx* cctx)
|
|
+{
|
|
+ return cctx->params;
|
|
+}
|
|
+
|
|
+
|
|
+/** ZSTD_checkParams() :
|
|
+ ensure param values remain within authorized range.
|
|
+ @return : 0, or an error code if one value is beyond authorized range */
|
|
+size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
|
|
+{
|
|
+# define CLAMPCHECK(val,min,max) { if ((val<min) | (val>max)) return ERROR(compressionParameter_unsupported); }
|
|
+ CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
|
|
+ CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
|
|
+ CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
|
|
+ CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
|
|
+ CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
|
|
+ CLAMPCHECK(cParams.targetLength, ZSTD_TARGETLENGTH_MIN, ZSTD_TARGETLENGTH_MAX);
|
|
+ if ((U32)(cParams.strategy) > (U32)ZSTD_btopt2) return ERROR(compressionParameter_unsupported);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/** ZSTD_cycleLog() :
|
|
+ * condition for correct operation : hashLog > 1 */
|
|
+static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
|
|
+{
|
|
+ U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
|
|
+ return hashLog - btScale;
|
|
+}
|
|
+
|
|
+/** ZSTD_adjustCParams() :
|
|
+ optimize `cPar` for a given input (`srcSize` and `dictSize`).
|
|
+ mostly downsizing to reduce memory consumption and initialization.
|
|
+ Both `srcSize` and `dictSize` are optional (use 0 if unknown),
|
|
+ but if both are 0, no optimization can be done.
|
|
+ Note : cPar is considered validated at this stage. Use ZSTD_checkParams() to ensure that. */
|
|
+ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
|
|
+{
|
|
+ if (srcSize+dictSize == 0) return cPar; /* no size information available : no adjustment */
|
|
+
|
|
+ /* resize params, to use less memory when necessary */
|
|
+ { U32 const minSrcSize = (srcSize==0) ? 500 : 0;
|
|
+ U64 const rSize = srcSize + dictSize + minSrcSize;
|
|
+ if (rSize < ((U64)1<<ZSTD_WINDOWLOG_MAX)) {
|
|
+ U32 const srcLog = MAX(ZSTD_HASHLOG_MIN, ZSTD_highbit32((U32)(rSize)-1) + 1);
|
|
+ if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
|
|
+ } }
|
|
+ if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog;
|
|
+ { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
|
|
+ if (cycleLog > cPar.windowLog) cPar.chainLog -= (cycleLog - cPar.windowLog);
|
|
+ }
|
|
+
|
|
+ if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */
|
|
+
|
|
+ return cPar;
|
|
+}
|
|
+
|
|
+
|
|
+static U32 ZSTD_equivalentParams(ZSTD_parameters param1, ZSTD_parameters param2)
|
|
+{
|
|
+ return (param1.cParams.hashLog == param2.cParams.hashLog)
|
|
+ & (param1.cParams.chainLog == param2.cParams.chainLog)
|
|
+ & (param1.cParams.strategy == param2.cParams.strategy)
|
|
+ & ((param1.cParams.searchLength==3) == (param2.cParams.searchLength==3));
|
|
+}
|
|
+
|
|
+/*! ZSTD_continueCCtx() :
|
|
+ reuse CCtx without reset (note : requires no dictionary) */
|
|
+static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_parameters params, U64 frameContentSize)
|
|
+{
|
|
+ U32 const end = (U32)(cctx->nextSrc - cctx->base);
|
|
+ cctx->params = params;
|
|
+ cctx->frameContentSize = frameContentSize;
|
|
+ cctx->lowLimit = end;
|
|
+ cctx->dictLimit = end;
|
|
+ cctx->nextToUpdate = end+1;
|
|
+ cctx->stage = ZSTDcs_init;
|
|
+ cctx->dictID = 0;
|
|
+ cctx->loadedDictEnd = 0;
|
|
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) cctx->rep[i] = repStartValue[i]; }
|
|
+ cctx->seqStore.litLengthSum = 0; /* force reset of btopt stats */
|
|
+ xxh64_reset(&cctx->xxhState, 0);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset, ZSTDcrp_fullReset } ZSTD_compResetPolicy_e;
|
|
+
|
|
+/*! ZSTD_resetCCtx_advanced() :
|
|
+ note : `params` must be validated */
|
|
+static size_t ZSTD_resetCCtx_advanced (ZSTD_CCtx* zc,
|
|
+ ZSTD_parameters params, U64 frameContentSize,
|
|
+ ZSTD_compResetPolicy_e const crp)
|
|
+{
|
|
+ if (crp == ZSTDcrp_continue)
|
|
+ if (ZSTD_equivalentParams(params, zc->params)) {
|
|
+ zc->flagStaticTables = 0;
|
|
+ zc->flagStaticHufTable = HUF_repeat_none;
|
|
+ return ZSTD_continueCCtx(zc, params, frameContentSize);
|
|
+ }
|
|
+
|
|
+ { size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, (size_t)1 << params.cParams.windowLog);
|
|
+ U32 const divider = (params.cParams.searchLength==3) ? 3 : 4;
|
|
+ size_t const maxNbSeq = blockSize / divider;
|
|
+ size_t const tokenSpace = blockSize + 11*maxNbSeq;
|
|
+ size_t const chainSize = (params.cParams.strategy == ZSTD_fast) ? 0 : (1 << params.cParams.chainLog);
|
|
+ size_t const hSize = ((size_t)1) << params.cParams.hashLog;
|
|
+ U32 const hashLog3 = (params.cParams.searchLength>3) ? 0 : MIN(ZSTD_HASHLOG3_MAX, params.cParams.windowLog);
|
|
+ size_t const h3Size = ((size_t)1) << hashLog3;
|
|
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
|
|
+ void* ptr;
|
|
+
|
|
+ /* Check if workSpace is large enough, alloc a new one if needed */
|
|
+ { size_t const optSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits))*sizeof(U32)
|
|
+ + (ZSTD_OPT_NUM+1)*(sizeof(ZSTD_match_t) + sizeof(ZSTD_optimal_t));
|
|
+ size_t const neededSpace = tableSpace + (256*sizeof(U32)) /* huffTable */ + tokenSpace
|
|
+ + (((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) ? optSpace : 0);
|
|
+ if (zc->workSpaceSize < neededSpace) {
|
|
+ ZSTD_free(zc->workSpace, zc->customMem);
|
|
+ zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
|
|
+ if (zc->workSpace == NULL) return ERROR(memory_allocation);
|
|
+ zc->workSpaceSize = neededSpace;
|
|
+ } }
|
|
+
|
|
+ if (crp!=ZSTDcrp_noMemset) memset(zc->workSpace, 0, tableSpace); /* reset tables only */
|
|
+ xxh64_reset(&zc->xxhState, 0);
|
|
+ zc->hashLog3 = hashLog3;
|
|
+ zc->hashTable = (U32*)(zc->workSpace);
|
|
+ zc->chainTable = zc->hashTable + hSize;
|
|
+ zc->hashTable3 = zc->chainTable + chainSize;
|
|
+ ptr = zc->hashTable3 + h3Size;
|
|
+ zc->hufTable = (HUF_CElt*)ptr;
|
|
+ zc->flagStaticTables = 0;
|
|
+ zc->flagStaticHufTable = HUF_repeat_none;
|
|
+ ptr = ((U32*)ptr) + 256; /* note : HUF_CElt* is incomplete type, size is simulated using U32 */
|
|
+
|
|
+ zc->nextToUpdate = 1;
|
|
+ zc->nextSrc = NULL;
|
|
+ zc->base = NULL;
|
|
+ zc->dictBase = NULL;
|
|
+ zc->dictLimit = 0;
|
|
+ zc->lowLimit = 0;
|
|
+ zc->params = params;
|
|
+ zc->blockSize = blockSize;
|
|
+ zc->frameContentSize = frameContentSize;
|
|
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->rep[i] = repStartValue[i]; }
|
|
+
|
|
+ if ((params.cParams.strategy == ZSTD_btopt) || (params.cParams.strategy == ZSTD_btopt2)) {
|
|
+ zc->seqStore.litFreq = (U32*)ptr;
|
|
+ zc->seqStore.litLengthFreq = zc->seqStore.litFreq + (1<<Litbits);
|
|
+ zc->seqStore.matchLengthFreq = zc->seqStore.litLengthFreq + (MaxLL+1);
|
|
+ zc->seqStore.offCodeFreq = zc->seqStore.matchLengthFreq + (MaxML+1);
|
|
+ ptr = zc->seqStore.offCodeFreq + (MaxOff+1);
|
|
+ zc->seqStore.matchTable = (ZSTD_match_t*)ptr;
|
|
+ ptr = zc->seqStore.matchTable + ZSTD_OPT_NUM+1;
|
|
+ zc->seqStore.priceTable = (ZSTD_optimal_t*)ptr;
|
|
+ ptr = zc->seqStore.priceTable + ZSTD_OPT_NUM+1;
|
|
+ zc->seqStore.litLengthSum = 0;
|
|
+ }
|
|
+ zc->seqStore.sequencesStart = (seqDef*)ptr;
|
|
+ ptr = zc->seqStore.sequencesStart + maxNbSeq;
|
|
+ zc->seqStore.llCode = (BYTE*) ptr;
|
|
+ zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
|
|
+ zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
|
|
+ zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
|
|
+
|
|
+ zc->stage = ZSTDcs_init;
|
|
+ zc->dictID = 0;
|
|
+ zc->loadedDictEnd = 0;
|
|
+
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/* ZSTD_invalidateRepCodes() :
|
|
+ * ensures next compression will not use repcodes from previous block.
|
|
+ * Note : only works with regular variant;
|
|
+ * do not use with extDict variant ! */
|
|
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
|
|
+ int i;
|
|
+ for (i=0; i<ZSTD_REP_NUM; i++) cctx->rep[i] = 0;
|
|
+}
|
|
+
|
|
+/*! ZSTD_copyCCtx() :
|
|
+* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
|
|
+* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
|
|
+* @return : 0, or an error code */
|
|
+size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+ if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong);
|
|
+
|
|
+
|
|
+ memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
|
|
+ { ZSTD_parameters params = srcCCtx->params;
|
|
+ params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
|
|
+ ZSTD_resetCCtx_advanced(dstCCtx, params, pledgedSrcSize, ZSTDcrp_noMemset);
|
|
+ }
|
|
+
|
|
+ /* copy tables */
|
|
+ { size_t const chainSize = (srcCCtx->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << srcCCtx->params.cParams.chainLog);
|
|
+ size_t const hSize = ((size_t)1) << srcCCtx->params.cParams.hashLog;
|
|
+ size_t const h3Size = (size_t)1 << srcCCtx->hashLog3;
|
|
+ size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
|
|
+ memcpy(dstCCtx->workSpace, srcCCtx->workSpace, tableSpace);
|
|
+ }
|
|
+
|
|
+ /* copy dictionary offsets */
|
|
+ dstCCtx->nextToUpdate = srcCCtx->nextToUpdate;
|
|
+ dstCCtx->nextToUpdate3= srcCCtx->nextToUpdate3;
|
|
+ dstCCtx->nextSrc = srcCCtx->nextSrc;
|
|
+ dstCCtx->base = srcCCtx->base;
|
|
+ dstCCtx->dictBase = srcCCtx->dictBase;
|
|
+ dstCCtx->dictLimit = srcCCtx->dictLimit;
|
|
+ dstCCtx->lowLimit = srcCCtx->lowLimit;
|
|
+ dstCCtx->loadedDictEnd= srcCCtx->loadedDictEnd;
|
|
+ dstCCtx->dictID = srcCCtx->dictID;
|
|
+
|
|
+ /* copy entropy tables */
|
|
+ dstCCtx->flagStaticTables = srcCCtx->flagStaticTables;
|
|
+ dstCCtx->flagStaticHufTable = srcCCtx->flagStaticHufTable;
|
|
+ if (srcCCtx->flagStaticTables) {
|
|
+ memcpy(dstCCtx->litlengthCTable, srcCCtx->litlengthCTable, sizeof(dstCCtx->litlengthCTable));
|
|
+ memcpy(dstCCtx->matchlengthCTable, srcCCtx->matchlengthCTable, sizeof(dstCCtx->matchlengthCTable));
|
|
+ memcpy(dstCCtx->offcodeCTable, srcCCtx->offcodeCTable, sizeof(dstCCtx->offcodeCTable));
|
|
+ }
|
|
+ if (srcCCtx->flagStaticHufTable) {
|
|
+ memcpy(dstCCtx->hufTable, srcCCtx->hufTable, 256*4);
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/*! ZSTD_reduceTable() :
|
|
+* reduce table indexes by `reducerValue` */
|
|
+static void ZSTD_reduceTable (U32* const table, U32 const size, U32 const reducerValue)
|
|
+{
|
|
+ U32 u;
|
|
+ for (u=0 ; u < size ; u++) {
|
|
+ if (table[u] < reducerValue) table[u] = 0;
|
|
+ else table[u] -= reducerValue;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*! ZSTD_reduceIndex() :
|
|
+* rescale all indexes to avoid future overflow (indexes are U32) */
|
|
+static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue)
|
|
+{
|
|
+ { U32 const hSize = 1 << zc->params.cParams.hashLog;
|
|
+ ZSTD_reduceTable(zc->hashTable, hSize, reducerValue); }
|
|
+
|
|
+ { U32 const chainSize = (zc->params.cParams.strategy == ZSTD_fast) ? 0 : (1 << zc->params.cParams.chainLog);
|
|
+ ZSTD_reduceTable(zc->chainTable, chainSize, reducerValue); }
|
|
+
|
|
+ { U32 const h3Size = (zc->hashLog3) ? 1 << zc->hashLog3 : 0;
|
|
+ ZSTD_reduceTable(zc->hashTable3, h3Size, reducerValue); }
|
|
+}
|
|
+
|
|
+
|
|
+/*-*******************************************************
|
|
+* Block entropic compression
|
|
+*********************************************************/
|
|
+
|
|
+/* See doc/zstd_compression_format.md for detailed format description */
|
|
+
|
|
+size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+ memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
|
|
+ MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
|
|
+ return ZSTD_blockHeaderSize+srcSize;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE* const)dst;
|
|
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
|
|
+
|
|
+ if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+
|
|
+ switch(flSize)
|
|
+ {
|
|
+ case 1: /* 2 - 1 - 5 */
|
|
+ ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
|
|
+ break;
|
|
+ case 2: /* 2 - 2 - 12 */
|
|
+ MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
|
|
+ break;
|
|
+ default: /*note : should not be necessary : flSize is within {1,2,3} */
|
|
+ case 3: /* 2 - 2 - 20 */
|
|
+ MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ memcpy(ostart + flSize, src, srcSize);
|
|
+ return srcSize + flSize;
|
|
+}
|
|
+
|
|
+static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE* const)dst;
|
|
+ U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
|
|
+
|
|
+ (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
|
|
+
|
|
+ switch(flSize)
|
|
+ {
|
|
+ case 1: /* 2 - 1 - 5 */
|
|
+ ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
|
|
+ break;
|
|
+ case 2: /* 2 - 2 - 12 */
|
|
+ MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
|
|
+ break;
|
|
+ default: /*note : should not be necessary : flSize is necessarily within {1,2,3} */
|
|
+ case 3: /* 2 - 2 - 20 */
|
|
+ MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ ostart[flSize] = *(const BYTE*)src;
|
|
+ return flSize+1;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
|
|
+
|
|
+static size_t ZSTD_compressLiterals (ZSTD_CCtx* zc,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t const minGain = ZSTD_minGain(srcSize);
|
|
+ size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ U32 singleStream = srcSize < 256;
|
|
+ symbolEncodingType_e hType = set_compressed;
|
|
+ size_t cLitSize;
|
|
+
|
|
+
|
|
+ /* small ? don't even attempt compression (speed opt) */
|
|
+# define LITERAL_NOENTROPY 63
|
|
+ { size_t const minLitSize = zc->flagStaticHufTable == HUF_repeat_valid ? 6 : LITERAL_NOENTROPY;
|
|
+ if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
|
+ }
|
|
+
|
|
+ if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall); /* not enough space for compression */
|
|
+ { HUF_repeat repeat = zc->flagStaticHufTable;
|
|
+ int const preferRepeat = zc->params.cParams.strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
|
|
+ if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
|
|
+ cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, zc->tmpCounters, sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat)
|
|
+ : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, zc->tmpCounters, sizeof(zc->tmpCounters), zc->hufTable, &repeat, preferRepeat);
|
|
+ if (repeat != HUF_repeat_none) { hType = set_repeat; } /* reused the existing table */
|
|
+ else { zc->flagStaticHufTable = HUF_repeat_check; } /* now have a table to reuse */
|
|
+ }
|
|
+
|
|
+ if ((cLitSize==0) | (cLitSize >= srcSize - minGain)) {
|
|
+ zc->flagStaticHufTable = HUF_repeat_none;
|
|
+ return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
|
|
+ }
|
|
+ if (cLitSize==1) {
|
|
+ zc->flagStaticHufTable = HUF_repeat_none;
|
|
+ return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
|
|
+ }
|
|
+
|
|
+ /* Build header */
|
|
+ switch(lhSize)
|
|
+ {
|
|
+ case 3: /* 2 - 2 - 10 - 10 */
|
|
+ { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
|
|
+ MEM_writeLE24(ostart, lhc);
|
|
+ break;
|
|
+ }
|
|
+ case 4: /* 2 - 2 - 14 - 14 */
|
|
+ { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
|
|
+ MEM_writeLE32(ostart, lhc);
|
|
+ break;
|
|
+ }
|
|
+ default: /* should not be necessary, lhSize is only {3,4,5} */
|
|
+ case 5: /* 2 - 2 - 18 - 18 */
|
|
+ { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
|
|
+ MEM_writeLE32(ostart, lhc);
|
|
+ ostart[4] = (BYTE)(cLitSize >> 10);
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+ return lhSize+cLitSize;
|
|
+}
|
|
+
|
|
+static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
|
|
+ 8, 9, 10, 11, 12, 13, 14, 15,
|
|
+ 16, 16, 17, 17, 18, 18, 19, 19,
|
|
+ 20, 20, 20, 20, 21, 21, 21, 21,
|
|
+ 22, 22, 22, 22, 22, 22, 22, 22,
|
|
+ 23, 23, 23, 23, 23, 23, 23, 23,
|
|
+ 24, 24, 24, 24, 24, 24, 24, 24,
|
|
+ 24, 24, 24, 24, 24, 24, 24, 24 };
|
|
+
|
|
+static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
+ 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
|
|
+ 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
|
|
+ 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
|
|
+ 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
|
|
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
|
|
+ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
|
|
+
|
|
+
|
|
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
|
|
+{
|
|
+ BYTE const LL_deltaCode = 19;
|
|
+ BYTE const ML_deltaCode = 36;
|
|
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
|
|
+ BYTE* const llCodeTable = seqStorePtr->llCode;
|
|
+ BYTE* const ofCodeTable = seqStorePtr->ofCode;
|
|
+ BYTE* const mlCodeTable = seqStorePtr->mlCode;
|
|
+ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
|
|
+ U32 u;
|
|
+ for (u=0; u<nbSeq; u++) {
|
|
+ U32 const llv = sequences[u].litLength;
|
|
+ U32 const mlv = sequences[u].matchLength;
|
|
+ llCodeTable[u] = (llv> 63) ? (BYTE)ZSTD_highbit32(llv) + LL_deltaCode : LL_Code[llv];
|
|
+ ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
|
|
+ mlCodeTable[u] = (mlv>127) ? (BYTE)ZSTD_highbit32(mlv) + ML_deltaCode : ML_Code[mlv];
|
|
+ }
|
|
+ if (seqStorePtr->longLengthID==1)
|
|
+ llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
|
|
+ if (seqStorePtr->longLengthID==2)
|
|
+ mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t ZSTD_compressSequences (ZSTD_CCtx* zc,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ size_t srcSize)
|
|
+{
|
|
+ const int longOffsets = zc->params.cParams.windowLog > STREAM_ACCUMULATOR_MIN;
|
|
+ const seqStore_t* seqStorePtr = &(zc->seqStore);
|
|
+ U32 count[MaxSeq+1];
|
|
+ S16 norm[MaxSeq+1];
|
|
+ FSE_CTable* CTable_LitLength = zc->litlengthCTable;
|
|
+ FSE_CTable* CTable_OffsetBits = zc->offcodeCTable;
|
|
+ FSE_CTable* CTable_MatchLength = zc->matchlengthCTable;
|
|
+ U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
|
|
+ const seqDef* const sequences = seqStorePtr->sequencesStart;
|
|
+ const BYTE* const ofCodeTable = seqStorePtr->ofCode;
|
|
+ const BYTE* const llCodeTable = seqStorePtr->llCode;
|
|
+ const BYTE* const mlCodeTable = seqStorePtr->mlCode;
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ BYTE* const oend = ostart + dstCapacity;
|
|
+ BYTE* op = ostart;
|
|
+ size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
|
|
+ BYTE* seqHead;
|
|
+ BYTE scratchBuffer[1<<MAX(MLFSELog,LLFSELog)];
|
|
+
|
|
+ /* Compress literals */
|
|
+ { const BYTE* const literals = seqStorePtr->litStart;
|
|
+ size_t const litSize = seqStorePtr->lit - literals;
|
|
+ size_t const cSize = ZSTD_compressLiterals(zc, op, dstCapacity, literals, litSize);
|
|
+ if (ZSTD_isError(cSize)) return cSize;
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ /* Sequences Header */
|
|
+ if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead */) return ERROR(dstSize_tooSmall);
|
|
+ if (nbSeq < 0x7F) *op++ = (BYTE)nbSeq;
|
|
+ else if (nbSeq < LONGNBSEQ) op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
|
|
+ else op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
|
|
+ if (nbSeq==0) goto _check_compressibility;
|
|
+
|
|
+ /* seqHead : flags for FSE encoding type */
|
|
+ seqHead = op++;
|
|
+
|
|
+#define MIN_SEQ_FOR_DYNAMIC_FSE 64
|
|
+#define MAX_SEQ_FOR_STATIC_FSE 1000
|
|
+
|
|
+ /* convert length/distances into codes */
|
|
+ ZSTD_seqToCodes(seqStorePtr);
|
|
+
|
|
+ /* CTable for Literal Lengths */
|
|
+ { U32 max = MaxLL;
|
|
+ size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, zc->tmpCounters);
|
|
+ if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
|
|
+ *op++ = llCodeTable[0];
|
|
+ FSE_buildCTable_rle(CTable_LitLength, (BYTE)max);
|
|
+ LLtype = set_rle;
|
|
+ } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
|
|
+ LLtype = set_repeat;
|
|
+ } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (LL_defaultNormLog-1)))) {
|
|
+ FSE_buildCTable_wksp(CTable_LitLength, LL_defaultNorm, MaxLL, LL_defaultNormLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ LLtype = set_basic;
|
|
+ } else {
|
|
+ size_t nbSeq_1 = nbSeq;
|
|
+ const U32 tableLog = FSE_optimalTableLog(LLFSELog, nbSeq, max);
|
|
+ if (count[llCodeTable[nbSeq-1]]>1) { count[llCodeTable[nbSeq-1]]--; nbSeq_1--; }
|
|
+ FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
|
|
+ { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
|
|
+ if (FSE_isError(NCountSize)) return NCountSize;
|
|
+ op += NCountSize; }
|
|
+ FSE_buildCTable_wksp(CTable_LitLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ LLtype = set_compressed;
|
|
+ } }
|
|
+
|
|
+ /* CTable for Offsets */
|
|
+ { U32 max = MaxOff;
|
|
+ size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, zc->tmpCounters);
|
|
+ if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
|
|
+ *op++ = ofCodeTable[0];
|
|
+ FSE_buildCTable_rle(CTable_OffsetBits, (BYTE)max);
|
|
+ Offtype = set_rle;
|
|
+ } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
|
|
+ Offtype = set_repeat;
|
|
+ } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (OF_defaultNormLog-1)))) {
|
|
+ FSE_buildCTable_wksp(CTable_OffsetBits, OF_defaultNorm, MaxOff, OF_defaultNormLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ Offtype = set_basic;
|
|
+ } else {
|
|
+ size_t nbSeq_1 = nbSeq;
|
|
+ const U32 tableLog = FSE_optimalTableLog(OffFSELog, nbSeq, max);
|
|
+ if (count[ofCodeTable[nbSeq-1]]>1) { count[ofCodeTable[nbSeq-1]]--; nbSeq_1--; }
|
|
+ FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
|
|
+ { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
|
|
+ if (FSE_isError(NCountSize)) return NCountSize;
|
|
+ op += NCountSize; }
|
|
+ FSE_buildCTable_wksp(CTable_OffsetBits, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ Offtype = set_compressed;
|
|
+ } }
|
|
+
|
|
+ /* CTable for MatchLengths */
|
|
+ { U32 max = MaxML;
|
|
+ size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, zc->tmpCounters);
|
|
+ if ((mostFrequent == nbSeq) && (nbSeq > 2)) {
|
|
+ *op++ = *mlCodeTable;
|
|
+ FSE_buildCTable_rle(CTable_MatchLength, (BYTE)max);
|
|
+ MLtype = set_rle;
|
|
+ } else if ((zc->flagStaticTables) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
|
|
+ MLtype = set_repeat;
|
|
+ } else if ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (ML_defaultNormLog-1)))) {
|
|
+ FSE_buildCTable_wksp(CTable_MatchLength, ML_defaultNorm, MaxML, ML_defaultNormLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ MLtype = set_basic;
|
|
+ } else {
|
|
+ size_t nbSeq_1 = nbSeq;
|
|
+ const U32 tableLog = FSE_optimalTableLog(MLFSELog, nbSeq, max);
|
|
+ if (count[mlCodeTable[nbSeq-1]]>1) { count[mlCodeTable[nbSeq-1]]--; nbSeq_1--; }
|
|
+ FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max);
|
|
+ { size_t const NCountSize = FSE_writeNCount(op, oend-op, norm, max, tableLog); /* overflow protected */
|
|
+ if (FSE_isError(NCountSize)) return NCountSize;
|
|
+ op += NCountSize; }
|
|
+ FSE_buildCTable_wksp(CTable_MatchLength, norm, max, tableLog, scratchBuffer, sizeof(scratchBuffer));
|
|
+ MLtype = set_compressed;
|
|
+ } }
|
|
+
|
|
+ *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
|
|
+ zc->flagStaticTables = 0;
|
|
+
|
|
+ /* Encoding Sequences */
|
|
+ { BIT_CStream_t blockStream;
|
|
+ FSE_CState_t stateMatchLength;
|
|
+ FSE_CState_t stateOffsetBits;
|
|
+ FSE_CState_t stateLitLength;
|
|
+
|
|
+ CHECK_E(BIT_initCStream(&blockStream, op, oend-op), dstSize_tooSmall); /* not enough space remaining */
|
|
+
|
|
+ /* first symbols */
|
|
+ FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
|
|
+ FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
|
|
+ FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
|
|
+ BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
|
|
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
|
|
+ BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
|
|
+ if (MEM_32bits()) BIT_flushBits(&blockStream);
|
|
+ if (longOffsets) {
|
|
+ U32 const ofBits = ofCodeTable[nbSeq-1];
|
|
+ int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
|
|
+ if (extraBits) {
|
|
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
|
|
+ BIT_flushBits(&blockStream);
|
|
+ }
|
|
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
|
|
+ ofBits - extraBits);
|
|
+ } else {
|
|
+ BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
|
|
+ }
|
|
+ BIT_flushBits(&blockStream);
|
|
+
|
|
+ { size_t n;
|
|
+ for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
|
|
+ BYTE const llCode = llCodeTable[n];
|
|
+ BYTE const ofCode = ofCodeTable[n];
|
|
+ BYTE const mlCode = mlCodeTable[n];
|
|
+ U32 const llBits = LL_bits[llCode];
|
|
+ U32 const ofBits = ofCode; /* 32b*/ /* 64b*/
|
|
+ U32 const mlBits = ML_bits[mlCode];
|
|
+ /* (7)*/ /* (7)*/
|
|
+ FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
|
|
+ FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
|
|
+ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
|
|
+ FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
|
|
+ if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
|
|
+ BIT_flushBits(&blockStream); /* (7)*/
|
|
+ BIT_addBits(&blockStream, sequences[n].litLength, llBits);
|
|
+ if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
|
|
+ BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
|
|
+ if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
|
|
+ if (longOffsets) {
|
|
+ int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
|
|
+ if (extraBits) {
|
|
+ BIT_addBits(&blockStream, sequences[n].offset, extraBits);
|
|
+ BIT_flushBits(&blockStream); /* (7)*/
|
|
+ }
|
|
+ BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
|
|
+ ofBits - extraBits); /* 31 */
|
|
+ } else {
|
|
+ BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
|
|
+ }
|
|
+ BIT_flushBits(&blockStream); /* (7)*/
|
|
+ } }
|
|
+
|
|
+ FSE_flushCState(&blockStream, &stateMatchLength);
|
|
+ FSE_flushCState(&blockStream, &stateOffsetBits);
|
|
+ FSE_flushCState(&blockStream, &stateLitLength);
|
|
+
|
|
+ { size_t const streamSize = BIT_closeCStream(&blockStream);
|
|
+ if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */
|
|
+ op += streamSize;
|
|
+ } }
|
|
+
|
|
+ /* check compressibility */
|
|
+_check_compressibility:
|
|
+ { size_t const minGain = ZSTD_minGain(srcSize);
|
|
+ size_t const maxCSize = srcSize - minGain;
|
|
+ if ((size_t)(op-ostart) >= maxCSize) {
|
|
+ zc->flagStaticHufTable = HUF_repeat_none;
|
|
+ return 0;
|
|
+ } }
|
|
+
|
|
+ /* confirm repcodes */
|
|
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) zc->rep[i] = zc->repToConfirm[i]; }
|
|
+
|
|
+ return op - ostart;
|
|
+}
|
|
+
|
|
+/*! ZSTD_storeSeq() :
|
|
+ Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
|
|
+ `offsetCode` : distance to match, or 0 == repCode.
|
|
+ `matchCode` : matchLength - MINMATCH
|
|
+*/
|
|
+MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t matchCode)
|
|
+{
|
|
+ /* copy Literals */
|
|
+ ZSTD_wildcopy(seqStorePtr->lit, literals, litLength);
|
|
+ seqStorePtr->lit += litLength;
|
|
+
|
|
+ /* literal Length */
|
|
+ if (litLength>0xFFFF) { seqStorePtr->longLengthID = 1; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); }
|
|
+ seqStorePtr->sequences[0].litLength = (U16)litLength;
|
|
+
|
|
+ /* match offset */
|
|
+ seqStorePtr->sequences[0].offset = offsetCode + 1;
|
|
+
|
|
+ /* match Length */
|
|
+ if (matchCode>0xFFFF) { seqStorePtr->longLengthID = 2; seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); }
|
|
+ seqStorePtr->sequences[0].matchLength = (U16)matchCode;
|
|
+
|
|
+ seqStorePtr->sequences++;
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Match length counter
|
|
+***************************************/
|
|
+static unsigned ZSTD_NbCommonBytes (register size_t val)
|
|
+{
|
|
+ if (MEM_isLittleEndian()) {
|
|
+ if (MEM_64bits()) {
|
|
+ return (__builtin_ctzll((U64)val) >> 3);
|
|
+ } else { /* 32 bits */
|
|
+ return (__builtin_ctz((U32)val) >> 3);
|
|
+ }
|
|
+ } else { /* Big Endian CPU */
|
|
+ if (MEM_64bits()) {
|
|
+ return (__builtin_clzll(val) >> 3);
|
|
+ } else { /* 32 bits */
|
|
+ return (__builtin_clz((U32)val) >> 3);
|
|
+ } }
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
|
|
+{
|
|
+ const BYTE* const pStart = pIn;
|
|
+ const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
|
|
+
|
|
+ while (pIn < pInLoopLimit) {
|
|
+ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
|
|
+ if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
|
|
+ pIn += ZSTD_NbCommonBytes(diff);
|
|
+ return (size_t)(pIn - pStart);
|
|
+ }
|
|
+ if (MEM_64bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
|
|
+ if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
|
|
+ if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
|
|
+ return (size_t)(pIn - pStart);
|
|
+}
|
|
+
|
|
+/** ZSTD_count_2segments() :
|
|
+* can count match length with `ip` & `match` in 2 different segments.
|
|
+* convention : on reaching mEnd, match count continue starting from iStart
|
|
+*/
|
|
+static size_t ZSTD_count_2segments(const BYTE* ip, const BYTE* match, const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
|
|
+{
|
|
+ const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
|
|
+ size_t const matchLength = ZSTD_count(ip, match, vEnd);
|
|
+ if (match + matchLength != mEnd) return matchLength;
|
|
+ return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Hashes
|
|
+***************************************/
|
|
+static const U32 prime3bytes = 506832829U;
|
|
+static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
|
|
+MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
|
|
+
|
|
+static const U32 prime4bytes = 2654435761U;
|
|
+static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
|
|
+static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
|
|
+
|
|
+static const U64 prime5bytes = 889523592379ULL;
|
|
+static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
|
|
+static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
|
|
+
|
|
+static const U64 prime6bytes = 227718039650203ULL;
|
|
+static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
|
|
+static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
|
|
+
|
|
+static const U64 prime7bytes = 58295818150454627ULL;
|
|
+static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
|
|
+static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
|
|
+
|
|
+static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
|
|
+static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
|
|
+static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
|
|
+
|
|
+static size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
|
|
+{
|
|
+ switch(mls)
|
|
+ {
|
|
+ //case 3: return ZSTD_hash3Ptr(p, hBits);
|
|
+ default:
|
|
+ case 4: return ZSTD_hash4Ptr(p, hBits);
|
|
+ case 5: return ZSTD_hash5Ptr(p, hBits);
|
|
+ case 6: return ZSTD_hash6Ptr(p, hBits);
|
|
+ case 7: return ZSTD_hash7Ptr(p, hBits);
|
|
+ case 8: return ZSTD_hash8Ptr(p, hBits);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Fast Scan
|
|
+***************************************/
|
|
+static void ZSTD_fillHashTable (ZSTD_CCtx* zc, const void* end, const U32 mls)
|
|
+{
|
|
+ U32* const hashTable = zc->hashTable;
|
|
+ U32 const hBits = zc->params.cParams.hashLog;
|
|
+ const BYTE* const base = zc->base;
|
|
+ const BYTE* ip = base + zc->nextToUpdate;
|
|
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
|
+ const size_t fastHashFillStep = 3;
|
|
+
|
|
+ while(ip <= iend) {
|
|
+ hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip - base);
|
|
+ ip += fastHashFillStep;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_fast_generic(ZSTD_CCtx* cctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 mls)
|
|
+{
|
|
+ U32* const hashTable = cctx->hashTable;
|
|
+ U32 const hBits = cctx->params.cParams.hashLog;
|
|
+ seqStore_t* seqStorePtr = &(cctx->seqStore);
|
|
+ const BYTE* const base = cctx->base;
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const U32 lowestIndex = cctx->dictLimit;
|
|
+ const BYTE* const lowest = base + lowestIndex;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
|
+ U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1];
|
|
+ U32 offsetSaved = 0;
|
|
+
|
|
+ /* init */
|
|
+ ip += (ip==lowest);
|
|
+ { U32 const maxRep = (U32)(ip-lowest);
|
|
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
|
|
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
|
|
+ }
|
|
+
|
|
+ /* Main Search Loop */
|
|
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
|
+ size_t mLength;
|
|
+ size_t const h = ZSTD_hashPtr(ip, hBits, mls);
|
|
+ U32 const curr = (U32)(ip-base);
|
|
+ U32 const matchIndex = hashTable[h];
|
|
+ const BYTE* match = base + matchIndex;
|
|
+ hashTable[h] = curr; /* update hash table */
|
|
+
|
|
+ if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
|
|
+ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
|
|
+ ip++;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
|
+ } else {
|
|
+ U32 offset;
|
|
+ if ( (matchIndex <= lowestIndex) || (MEM_read32(match) != MEM_read32(ip)) ) {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1;
|
|
+ continue;
|
|
+ }
|
|
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
|
+ offset = (U32)(ip-match);
|
|
+ while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
|
+ offset_2 = offset_1;
|
|
+ offset_1 = offset;
|
|
+
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
|
+ }
|
|
+
|
|
+ /* match found */
|
|
+ ip += mLength;
|
|
+ anchor = ip;
|
|
+
|
|
+ if (ip <= ilimit) {
|
|
+ /* Fill Table */
|
|
+ hashTable[ZSTD_hashPtr(base+curr+2, hBits, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
|
|
+ hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
|
|
+ /* check immediate repcode */
|
|
+ while ( (ip <= ilimit)
|
|
+ && ( (offset_2>0)
|
|
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
|
+ /* store sequence */
|
|
+ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
|
+ { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
|
|
+ hashTable[ZSTD_hashPtr(ip, hBits, mls)] = (U32)(ip-base);
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
|
|
+ ip += rLength;
|
|
+ anchor = ip;
|
|
+ continue; /* faster when present ... (?) */
|
|
+ } } }
|
|
+
|
|
+ /* save reps for next block */
|
|
+ cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
|
|
+ cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_fast(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ const U32 mls = ctx->params.cParams.searchLength;
|
|
+ switch(mls)
|
|
+ {
|
|
+ default: /* includes case 3 */
|
|
+ case 4 :
|
|
+ ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 4); return;
|
|
+ case 5 :
|
|
+ ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 5); return;
|
|
+ case 6 :
|
|
+ ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 6); return;
|
|
+ case 7 :
|
|
+ ZSTD_compressBlock_fast_generic(ctx, src, srcSize, 7); return;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_fast_extDict_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 mls)
|
|
+{
|
|
+ U32* hashTable = ctx->hashTable;
|
|
+ const U32 hBits = ctx->params.cParams.hashLog;
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const base = ctx->base;
|
|
+ const BYTE* const dictBase = ctx->dictBase;
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const U32 lowestIndex = ctx->lowLimit;
|
|
+ const BYTE* const dictStart = dictBase + lowestIndex;
|
|
+ const U32 dictLimit = ctx->dictLimit;
|
|
+ const BYTE* const lowPrefixPtr = base + dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1];
|
|
+
|
|
+ /* Search Loop */
|
|
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
|
+ const size_t h = ZSTD_hashPtr(ip, hBits, mls);
|
|
+ const U32 matchIndex = hashTable[h];
|
|
+ const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* match = matchBase + matchIndex;
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
|
|
+ const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* repMatch = repBase + repIndex;
|
|
+ size_t mLength;
|
|
+ hashTable[h] = curr; /* update hash table */
|
|
+
|
|
+ if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
|
|
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
|
+ const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ mLength = ZSTD_count_2segments(ip+1+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repMatchEnd, lowPrefixPtr) + EQUAL_READ32;
|
|
+ ip++;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
|
+ } else {
|
|
+ if ( (matchIndex < lowestIndex) ||
|
|
+ (MEM_read32(match) != MEM_read32(ip)) ) {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1;
|
|
+ continue;
|
|
+ }
|
|
+ { const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
|
|
+ const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
|
|
+ U32 offset;
|
|
+ mLength = ZSTD_count_2segments(ip+EQUAL_READ32, match+EQUAL_READ32, iend, matchEnd, lowPrefixPtr) + EQUAL_READ32;
|
|
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
|
+ offset = curr - matchIndex;
|
|
+ offset_2 = offset_1;
|
|
+ offset_1 = offset;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
|
+ } }
|
|
+
|
|
+ /* found a match : store it */
|
|
+ ip += mLength;
|
|
+ anchor = ip;
|
|
+
|
|
+ if (ip <= ilimit) {
|
|
+ /* Fill Table */
|
|
+ hashTable[ZSTD_hashPtr(base+curr+2, hBits, mls)] = curr+2;
|
|
+ hashTable[ZSTD_hashPtr(ip-2, hBits, mls)] = (U32)(ip-2-base);
|
|
+ /* check immediate repcode */
|
|
+ while (ip <= ilimit) {
|
|
+ U32 const curr2 = (U32)(ip-base);
|
|
+ U32 const repIndex2 = curr2 - offset_2;
|
|
+ const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
|
|
+ if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
|
|
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
|
+ const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
|
|
+ size_t repLength2 = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch2+EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
|
|
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
|
|
+ hashTable[ZSTD_hashPtr(ip, hBits, mls)] = curr2;
|
|
+ ip += repLength2;
|
|
+ anchor = ip;
|
|
+ continue;
|
|
+ }
|
|
+ break;
|
|
+ } } }
|
|
+
|
|
+ /* save reps for next block */
|
|
+ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_fast_extDict(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ U32 const mls = ctx->params.cParams.searchLength;
|
|
+ switch(mls)
|
|
+ {
|
|
+ default: /* includes case 3 */
|
|
+ case 4 :
|
|
+ ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 4); return;
|
|
+ case 5 :
|
|
+ ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 5); return;
|
|
+ case 6 :
|
|
+ ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 6); return;
|
|
+ case 7 :
|
|
+ ZSTD_compressBlock_fast_extDict_generic(ctx, src, srcSize, 7); return;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Double Fast
|
|
+***************************************/
|
|
+static void ZSTD_fillDoubleHashTable (ZSTD_CCtx* cctx, const void* end, const U32 mls)
|
|
+{
|
|
+ U32* const hashLarge = cctx->hashTable;
|
|
+ U32 const hBitsL = cctx->params.cParams.hashLog;
|
|
+ U32* const hashSmall = cctx->chainTable;
|
|
+ U32 const hBitsS = cctx->params.cParams.chainLog;
|
|
+ const BYTE* const base = cctx->base;
|
|
+ const BYTE* ip = base + cctx->nextToUpdate;
|
|
+ const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
|
|
+ const size_t fastHashFillStep = 3;
|
|
+
|
|
+ while(ip <= iend) {
|
|
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip - base);
|
|
+ hashLarge[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip - base);
|
|
+ ip += fastHashFillStep;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_doubleFast_generic(ZSTD_CCtx* cctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 mls)
|
|
+{
|
|
+ U32* const hashLong = cctx->hashTable;
|
|
+ const U32 hBitsL = cctx->params.cParams.hashLog;
|
|
+ U32* const hashSmall = cctx->chainTable;
|
|
+ const U32 hBitsS = cctx->params.cParams.chainLog;
|
|
+ seqStore_t* seqStorePtr = &(cctx->seqStore);
|
|
+ const BYTE* const base = cctx->base;
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const U32 lowestIndex = cctx->dictLimit;
|
|
+ const BYTE* const lowest = base + lowestIndex;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - HASH_READ_SIZE;
|
|
+ U32 offset_1=cctx->rep[0], offset_2=cctx->rep[1];
|
|
+ U32 offsetSaved = 0;
|
|
+
|
|
+ /* init */
|
|
+ ip += (ip==lowest);
|
|
+ { U32 const maxRep = (U32)(ip-lowest);
|
|
+ if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0;
|
|
+ if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0;
|
|
+ }
|
|
+
|
|
+ /* Main Search Loop */
|
|
+ while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
|
|
+ size_t mLength;
|
|
+ size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
|
|
+ size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
|
|
+ U32 const curr = (U32)(ip-base);
|
|
+ U32 const matchIndexL = hashLong[h2];
|
|
+ U32 const matchIndexS = hashSmall[h];
|
|
+ const BYTE* matchLong = base + matchIndexL;
|
|
+ const BYTE* match = base + matchIndexS;
|
|
+ hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
|
|
+
|
|
+ if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) { /* note : by construction, offset_1 <= curr */
|
|
+ mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
|
|
+ ip++;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
|
+ } else {
|
|
+ U32 offset;
|
|
+ if ( (matchIndexL > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip)) ) {
|
|
+ mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
|
|
+ offset = (U32)(ip-matchLong);
|
|
+ while (((ip>anchor) & (matchLong>lowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
|
+ } else if ( (matchIndexS > lowestIndex) && (MEM_read32(match) == MEM_read32(ip)) ) {
|
|
+ size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
|
+ U32 const matchIndex3 = hashLong[h3];
|
|
+ const BYTE* match3 = base + matchIndex3;
|
|
+ hashLong[h3] = curr + 1;
|
|
+ if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
|
|
+ mLength = ZSTD_count(ip+9, match3+8, iend) + 8;
|
|
+ ip++;
|
|
+ offset = (U32)(ip-match3);
|
|
+ while (((ip>anchor) & (match3>lowest)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
|
|
+ } else {
|
|
+ mLength = ZSTD_count(ip+4, match+4, iend) + 4;
|
|
+ offset = (U32)(ip-match);
|
|
+ while (((ip>anchor) & (match>lowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
|
+ }
|
|
+ } else {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1;
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ offset_2 = offset_1;
|
|
+ offset_1 = offset;
|
|
+
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
|
+ }
|
|
+
|
|
+ /* match found */
|
|
+ ip += mLength;
|
|
+ anchor = ip;
|
|
+
|
|
+ if (ip <= ilimit) {
|
|
+ /* Fill Table */
|
|
+ hashLong[ZSTD_hashPtr(base+curr+2, hBitsL, 8)] =
|
|
+ hashSmall[ZSTD_hashPtr(base+curr+2, hBitsS, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
|
|
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] =
|
|
+ hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
|
|
+
|
|
+ /* check immediate repcode */
|
|
+ while ( (ip <= ilimit)
|
|
+ && ( (offset_2>0)
|
|
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
|
+ /* store sequence */
|
|
+ size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
|
|
+ { U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; } /* swap offset_2 <=> offset_1 */
|
|
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
|
|
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, rLength-MINMATCH);
|
|
+ ip += rLength;
|
|
+ anchor = ip;
|
|
+ continue; /* faster when present ... (?) */
|
|
+ } } }
|
|
+
|
|
+ /* save reps for next block */
|
|
+ cctx->repToConfirm[0] = offset_1 ? offset_1 : offsetSaved;
|
|
+ cctx->repToConfirm[1] = offset_2 ? offset_2 : offsetSaved;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_doubleFast(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ const U32 mls = ctx->params.cParams.searchLength;
|
|
+ switch(mls)
|
|
+ {
|
|
+ default: /* includes case 3 */
|
|
+ case 4 :
|
|
+ ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 4); return;
|
|
+ case 5 :
|
|
+ ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 5); return;
|
|
+ case 6 :
|
|
+ ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 6); return;
|
|
+ case 7 :
|
|
+ ZSTD_compressBlock_doubleFast_generic(ctx, src, srcSize, 7); return;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_doubleFast_extDict_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 mls)
|
|
+{
|
|
+ U32* const hashLong = ctx->hashTable;
|
|
+ U32 const hBitsL = ctx->params.cParams.hashLog;
|
|
+ U32* const hashSmall = ctx->chainTable;
|
|
+ U32 const hBitsS = ctx->params.cParams.chainLog;
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const base = ctx->base;
|
|
+ const BYTE* const dictBase = ctx->dictBase;
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const U32 lowestIndex = ctx->lowLimit;
|
|
+ const BYTE* const dictStart = dictBase + lowestIndex;
|
|
+ const U32 dictLimit = ctx->dictLimit;
|
|
+ const BYTE* const lowPrefixPtr = base + dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ U32 offset_1=ctx->rep[0], offset_2=ctx->rep[1];
|
|
+
|
|
+ /* Search Loop */
|
|
+ while (ip < ilimit) { /* < instead of <=, because (ip+1) */
|
|
+ const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
|
|
+ const U32 matchIndex = hashSmall[hSmall];
|
|
+ const BYTE* matchBase = matchIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* match = matchBase + matchIndex;
|
|
+
|
|
+ const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
|
|
+ const U32 matchLongIndex = hashLong[hLong];
|
|
+ const BYTE* matchLongBase = matchLongIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* matchLong = matchLongBase + matchLongIndex;
|
|
+
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
|
|
+ const BYTE* repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* repMatch = repBase + repIndex;
|
|
+ size_t mLength;
|
|
+ hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
|
|
+
|
|
+ if ( (((U32)((dictLimit-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > lowestIndex))
|
|
+ && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
|
|
+ const BYTE* repMatchEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, lowPrefixPtr) + 4;
|
|
+ ip++;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, 0, mLength-MINMATCH);
|
|
+ } else {
|
|
+ if ((matchLongIndex > lowestIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
|
|
+ const BYTE* matchEnd = matchLongIndex < dictLimit ? dictEnd : iend;
|
|
+ const BYTE* lowMatchPtr = matchLongIndex < dictLimit ? dictStart : lowPrefixPtr;
|
|
+ U32 offset;
|
|
+ mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, lowPrefixPtr) + 8;
|
|
+ offset = curr - matchLongIndex;
|
|
+ while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
|
|
+ offset_2 = offset_1;
|
|
+ offset_1 = offset;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
|
+
|
|
+ } else if ((matchIndex > lowestIndex) && (MEM_read32(match) == MEM_read32(ip))) {
|
|
+ size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
|
|
+ U32 const matchIndex3 = hashLong[h3];
|
|
+ const BYTE* const match3Base = matchIndex3 < dictLimit ? dictBase : base;
|
|
+ const BYTE* match3 = match3Base + matchIndex3;
|
|
+ U32 offset;
|
|
+ hashLong[h3] = curr + 1;
|
|
+ if ( (matchIndex3 > lowestIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
|
|
+ const BYTE* matchEnd = matchIndex3 < dictLimit ? dictEnd : iend;
|
|
+ const BYTE* lowMatchPtr = matchIndex3 < dictLimit ? dictStart : lowPrefixPtr;
|
|
+ mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, lowPrefixPtr) + 8;
|
|
+ ip++;
|
|
+ offset = curr+1 - matchIndex3;
|
|
+ while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
|
|
+ } else {
|
|
+ const BYTE* matchEnd = matchIndex < dictLimit ? dictEnd : iend;
|
|
+ const BYTE* lowMatchPtr = matchIndex < dictLimit ? dictStart : lowPrefixPtr;
|
|
+ mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, lowPrefixPtr) + 4;
|
|
+ offset = curr - matchIndex;
|
|
+ while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
|
|
+ }
|
|
+ offset_2 = offset_1;
|
|
+ offset_1 = offset;
|
|
+ ZSTD_storeSeq(seqStorePtr, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH);
|
|
+
|
|
+ } else {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1;
|
|
+ continue;
|
|
+ } }
|
|
+
|
|
+ /* found a match : store it */
|
|
+ ip += mLength;
|
|
+ anchor = ip;
|
|
+
|
|
+ if (ip <= ilimit) {
|
|
+ /* Fill Table */
|
|
+ hashSmall[ZSTD_hashPtr(base+curr+2, hBitsS, mls)] = curr+2;
|
|
+ hashLong[ZSTD_hashPtr(base+curr+2, hBitsL, 8)] = curr+2;
|
|
+ hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base);
|
|
+ hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
|
|
+ /* check immediate repcode */
|
|
+ while (ip <= ilimit) {
|
|
+ U32 const curr2 = (U32)(ip-base);
|
|
+ U32 const repIndex2 = curr2 - offset_2;
|
|
+ const BYTE* repMatch2 = repIndex2 < dictLimit ? dictBase + repIndex2 : base + repIndex2;
|
|
+ if ( (((U32)((dictLimit-1) - repIndex2) >= 3) & (repIndex2 > lowestIndex)) /* intentional overflow */
|
|
+ && (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
|
|
+ const BYTE* const repEnd2 = repIndex2 < dictLimit ? dictEnd : iend;
|
|
+ size_t const repLength2 = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch2+EQUAL_READ32, iend, repEnd2, lowPrefixPtr) + EQUAL_READ32;
|
|
+ U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, repLength2-MINMATCH);
|
|
+ hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = curr2;
|
|
+ hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = curr2;
|
|
+ ip += repLength2;
|
|
+ anchor = ip;
|
|
+ continue;
|
|
+ }
|
|
+ break;
|
|
+ } } }
|
|
+
|
|
+ /* save reps for next block */
|
|
+ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_doubleFast_extDict(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ U32 const mls = ctx->params.cParams.searchLength;
|
|
+ switch(mls)
|
|
+ {
|
|
+ default: /* includes case 3 */
|
|
+ case 4 :
|
|
+ ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 4); return;
|
|
+ case 5 :
|
|
+ ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 5); return;
|
|
+ case 6 :
|
|
+ ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 6); return;
|
|
+ case 7 :
|
|
+ ZSTD_compressBlock_doubleFast_extDict_generic(ctx, src, srcSize, 7); return;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Binary Tree search
|
|
+***************************************/
|
|
+/** ZSTD_insertBt1() : add one or multiple positions to tree.
|
|
+* ip : assumed <= iend-8 .
|
|
+* @return : nb of positions added */
|
|
+static U32 ZSTD_insertBt1(ZSTD_CCtx* zc, const BYTE* const ip, const U32 mls, const BYTE* const iend, U32 nbCompares,
|
|
+ U32 extDict)
|
|
+{
|
|
+ U32* const hashTable = zc->hashTable;
|
|
+ U32 const hashLog = zc->params.cParams.hashLog;
|
|
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
|
|
+ U32* const bt = zc->chainTable;
|
|
+ U32 const btLog = zc->params.cParams.chainLog - 1;
|
|
+ U32 const btMask = (1 << btLog) - 1;
|
|
+ U32 matchIndex = hashTable[h];
|
|
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
|
|
+ const BYTE* const base = zc->base;
|
|
+ const BYTE* const dictBase = zc->dictBase;
|
|
+ const U32 dictLimit = zc->dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const BYTE* match;
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 btLow = btMask >= curr ? 0 : curr - btMask;
|
|
+ U32* smallerPtr = bt + 2*(curr&btMask);
|
|
+ U32* largerPtr = smallerPtr + 1;
|
|
+ U32 dummy32; /* to be nullified at the end */
|
|
+ U32 const windowLow = zc->lowLimit;
|
|
+ U32 matchEndIdx = curr+8;
|
|
+ size_t bestLength = 8;
|
|
+
|
|
+ hashTable[h] = curr; /* Update Hash Table */
|
|
+
|
|
+ while (nbCompares-- && (matchIndex > windowLow)) {
|
|
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
|
|
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
|
|
+
|
|
+ if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
|
|
+ match = base + matchIndex;
|
|
+ if (match[matchLength] == ip[matchLength])
|
|
+ matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1;
|
|
+ } else {
|
|
+ match = dictBase + matchIndex;
|
|
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
|
|
+ if (matchIndex+matchLength >= dictLimit)
|
|
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
|
|
+ }
|
|
+
|
|
+ if (matchLength > bestLength) {
|
|
+ bestLength = matchLength;
|
|
+ if (matchLength > matchEndIdx - matchIndex)
|
|
+ matchEndIdx = matchIndex + (U32)matchLength;
|
|
+ }
|
|
+
|
|
+ if (ip+matchLength == iend) /* equal : no way to know if inf or sup */
|
|
+ break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt the tree */
|
|
+
|
|
+ if (match[matchLength] < ip[matchLength]) { /* necessarily within correct buffer */
|
|
+ /* match is smaller than curr */
|
|
+ *smallerPtr = matchIndex; /* update smaller idx */
|
|
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
|
|
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
|
|
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
|
|
+ } else {
|
|
+ /* match is larger than curr */
|
|
+ *largerPtr = matchIndex;
|
|
+ commonLengthLarger = matchLength;
|
|
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ largerPtr = nextPtr;
|
|
+ matchIndex = nextPtr[0];
|
|
+ } }
|
|
+
|
|
+ *smallerPtr = *largerPtr = 0;
|
|
+ if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */
|
|
+ if (matchEndIdx > curr + 8) return matchEndIdx - curr - 8;
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_insertBtAndFindBestMatch (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iend,
|
|
+ size_t* offsetPtr,
|
|
+ U32 nbCompares, const U32 mls,
|
|
+ U32 extDict)
|
|
+{
|
|
+ U32* const hashTable = zc->hashTable;
|
|
+ U32 const hashLog = zc->params.cParams.hashLog;
|
|
+ size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
|
|
+ U32* const bt = zc->chainTable;
|
|
+ U32 const btLog = zc->params.cParams.chainLog - 1;
|
|
+ U32 const btMask = (1 << btLog) - 1;
|
|
+ U32 matchIndex = hashTable[h];
|
|
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
|
|
+ const BYTE* const base = zc->base;
|
|
+ const BYTE* const dictBase = zc->dictBase;
|
|
+ const U32 dictLimit = zc->dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 btLow = btMask >= curr ? 0 : curr - btMask;
|
|
+ const U32 windowLow = zc->lowLimit;
|
|
+ U32* smallerPtr = bt + 2*(curr&btMask);
|
|
+ U32* largerPtr = bt + 2*(curr&btMask) + 1;
|
|
+ U32 matchEndIdx = curr+8;
|
|
+ U32 dummy32; /* to be nullified at the end */
|
|
+ size_t bestLength = 0;
|
|
+
|
|
+ hashTable[h] = curr; /* Update Hash Table */
|
|
+
|
|
+ while (nbCompares-- && (matchIndex > windowLow)) {
|
|
+ U32* const nextPtr = bt + 2*(matchIndex & btMask);
|
|
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
|
|
+ const BYTE* match;
|
|
+
|
|
+ if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
|
|
+ match = base + matchIndex;
|
|
+ if (match[matchLength] == ip[matchLength])
|
|
+ matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iend) +1;
|
|
+ } else {
|
|
+ match = dictBase + matchIndex;
|
|
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
|
|
+ if (matchIndex+matchLength >= dictLimit)
|
|
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
|
|
+ }
|
|
+
|
|
+ if (matchLength > bestLength) {
|
|
+ if (matchLength > matchEndIdx - matchIndex)
|
|
+ matchEndIdx = matchIndex + (U32)matchLength;
|
|
+ if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
|
|
+ bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + curr - matchIndex;
|
|
+ if (ip+matchLength == iend) /* equal : no way to know if inf or sup */
|
|
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
|
|
+ }
|
|
+
|
|
+ if (match[matchLength] < ip[matchLength]) {
|
|
+ /* match is smaller than curr */
|
|
+ *smallerPtr = matchIndex; /* update smaller idx */
|
|
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
|
|
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
|
|
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
|
|
+ } else {
|
|
+ /* match is larger than curr */
|
|
+ *largerPtr = matchIndex;
|
|
+ commonLengthLarger = matchLength;
|
|
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ largerPtr = nextPtr;
|
|
+ matchIndex = nextPtr[0];
|
|
+ } }
|
|
+
|
|
+ *smallerPtr = *largerPtr = 0;
|
|
+
|
|
+ zc->nextToUpdate = (matchEndIdx > curr + 8) ? matchEndIdx - 8 : curr+1;
|
|
+ return bestLength;
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_updateTree(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls)
|
|
+{
|
|
+ const BYTE* const base = zc->base;
|
|
+ const U32 target = (U32)(ip - base);
|
|
+ U32 idx = zc->nextToUpdate;
|
|
+
|
|
+ while(idx < target)
|
|
+ idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 0);
|
|
+}
|
|
+
|
|
+/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
|
|
+static size_t ZSTD_BtFindBestMatch (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 mls)
|
|
+{
|
|
+ if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
|
|
+ ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
|
|
+ return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 0);
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_BtFindBestMatch_selectMLS (
|
|
+ ZSTD_CCtx* zc, /* Index table will be updated */
|
|
+ const BYTE* ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ default : /* includes case 3 */
|
|
+ case 4 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
|
|
+ case 5 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_BtFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_updateTree_extDict(ZSTD_CCtx* zc, const BYTE* const ip, const BYTE* const iend, const U32 nbCompares, const U32 mls)
|
|
+{
|
|
+ const BYTE* const base = zc->base;
|
|
+ const U32 target = (U32)(ip - base);
|
|
+ U32 idx = zc->nextToUpdate;
|
|
+
|
|
+ while (idx < target) idx += ZSTD_insertBt1(zc, base+idx, mls, iend, nbCompares, 1);
|
|
+}
|
|
+
|
|
+
|
|
+/** Tree updater, providing best match */
|
|
+static size_t ZSTD_BtFindBestMatch_extDict (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 mls)
|
|
+{
|
|
+ if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
|
|
+ ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
|
|
+ return ZSTD_insertBtAndFindBestMatch(zc, ip, iLimit, offsetPtr, maxNbAttempts, mls, 1);
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_BtFindBestMatch_selectMLS_extDict (
|
|
+ ZSTD_CCtx* zc, /* Index table will be updated */
|
|
+ const BYTE* ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ default : /* includes case 3 */
|
|
+ case 4 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4);
|
|
+ case 5 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_BtFindBestMatch_extDict(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/* *********************************
|
|
+* Hash Chain
|
|
+***********************************/
|
|
+#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & mask]
|
|
+
|
|
+/* Update chains up to ip (excluded)
|
|
+ Assumption : always within prefix (i.e. not within extDict) */
|
|
+FORCE_INLINE
|
|
+U32 ZSTD_insertAndFindFirstIndex (ZSTD_CCtx* zc, const BYTE* ip, U32 mls)
|
|
+{
|
|
+ U32* const hashTable = zc->hashTable;
|
|
+ const U32 hashLog = zc->params.cParams.hashLog;
|
|
+ U32* const chainTable = zc->chainTable;
|
|
+ const U32 chainMask = (1 << zc->params.cParams.chainLog) - 1;
|
|
+ const BYTE* const base = zc->base;
|
|
+ const U32 target = (U32)(ip - base);
|
|
+ U32 idx = zc->nextToUpdate;
|
|
+
|
|
+ while(idx < target) { /* catch up */
|
|
+ size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
|
|
+ NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
|
|
+ hashTable[h] = idx;
|
|
+ idx++;
|
|
+ }
|
|
+
|
|
+ zc->nextToUpdate = target;
|
|
+ return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+FORCE_INLINE /* inlining is important to hardwire a hot branch (template emulation) */
|
|
+size_t ZSTD_HcFindBestMatch_generic (
|
|
+ ZSTD_CCtx* zc, /* Index table will be updated */
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 mls, const U32 extDict)
|
|
+{
|
|
+ U32* const chainTable = zc->chainTable;
|
|
+ const U32 chainSize = (1 << zc->params.cParams.chainLog);
|
|
+ const U32 chainMask = chainSize-1;
|
|
+ const BYTE* const base = zc->base;
|
|
+ const BYTE* const dictBase = zc->dictBase;
|
|
+ const U32 dictLimit = zc->dictLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const U32 lowLimit = zc->lowLimit;
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 minChain = curr > chainSize ? curr - chainSize : 0;
|
|
+ int nbAttempts=maxNbAttempts;
|
|
+ size_t ml=EQUAL_READ32-1;
|
|
+
|
|
+ /* HC4 match finder */
|
|
+ U32 matchIndex = ZSTD_insertAndFindFirstIndex (zc, ip, mls);
|
|
+
|
|
+ for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) {
|
|
+ const BYTE* match;
|
|
+ size_t currMl=0;
|
|
+ if ((!extDict) || matchIndex >= dictLimit) {
|
|
+ match = base + matchIndex;
|
|
+ if (match[ml] == ip[ml]) /* potentially better */
|
|
+ currMl = ZSTD_count(ip, match, iLimit);
|
|
+ } else {
|
|
+ match = dictBase + matchIndex;
|
|
+ if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
|
|
+ currMl = ZSTD_count_2segments(ip+EQUAL_READ32, match+EQUAL_READ32, iLimit, dictEnd, prefixStart) + EQUAL_READ32;
|
|
+ }
|
|
+
|
|
+ /* save best solution */
|
|
+ if (currMl > ml) { ml = currMl; *offsetPtr = curr - matchIndex + ZSTD_REP_MOVE; if (ip+currMl == iLimit) break; /* best possible, and avoid read overflow*/ }
|
|
+
|
|
+ if (matchIndex <= minChain) break;
|
|
+ matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
|
|
+ }
|
|
+
|
|
+ return ml;
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE size_t ZSTD_HcFindBestMatch_selectMLS (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ default : /* includes case 3 */
|
|
+ case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 0);
|
|
+ case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 0);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE size_t ZSTD_HcFindBestMatch_extDict_selectMLS (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* ip, const BYTE* const iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ default : /* includes case 3 */
|
|
+ case 4 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 4, 1);
|
|
+ case 5 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 5, 1);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_HcFindBestMatch_generic(zc, ip, iLimit, offsetPtr, maxNbAttempts, 6, 1);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/* *******************************
|
|
+* Common parser - lazy strategy
|
|
+*********************************/
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_lazy_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 searchMethod, const U32 depth)
|
|
+{
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ const BYTE* const base = ctx->base + ctx->dictLimit;
|
|
+
|
|
+ U32 const maxSearches = 1 << ctx->params.cParams.searchLog;
|
|
+ U32 const mls = ctx->params.cParams.searchLength;
|
|
+
|
|
+ typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ U32 maxNbAttempts, U32 matchLengthSearch);
|
|
+ searchMax_f const searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS;
|
|
+ U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1], savedOffset=0;
|
|
+
|
|
+ /* init */
|
|
+ ip += (ip==base);
|
|
+ ctx->nextToUpdate3 = ctx->nextToUpdate;
|
|
+ { U32 const maxRep = (U32)(ip-base);
|
|
+ if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
|
|
+ if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
|
|
+ }
|
|
+
|
|
+ /* Match Loop */
|
|
+ while (ip < ilimit) {
|
|
+ size_t matchLength=0;
|
|
+ size_t offset=0;
|
|
+ const BYTE* start=ip+1;
|
|
+
|
|
+ /* check repCode */
|
|
+ if ((offset_1>0) & (MEM_read32(ip+1) == MEM_read32(ip+1 - offset_1))) {
|
|
+ /* repcode : we take it */
|
|
+ matchLength = ZSTD_count(ip+1+EQUAL_READ32, ip+1+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
|
|
+ if (depth==0) goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ /* first search (depth 0) */
|
|
+ { size_t offsetFound = 99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
|
|
+ if (ml2 > matchLength)
|
|
+ matchLength = ml2, start = ip, offset=offsetFound;
|
|
+ }
|
|
+
|
|
+ if (matchLength < EQUAL_READ32) {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ /* let's try to find a better solution */
|
|
+ if (depth>=1)
|
|
+ while (ip<ilimit) {
|
|
+ ip ++;
|
|
+ if ((offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
|
|
+ size_t const mlRep = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
|
|
+ int const gain2 = (int)(mlRep * 3);
|
|
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
|
|
+ if ((mlRep >= EQUAL_READ32) && (gain2 > gain1))
|
|
+ matchLength = mlRep, offset = 0, start = ip;
|
|
+ }
|
|
+ { size_t offset2=99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
|
|
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
|
|
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
|
|
+ if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
|
|
+ matchLength = ml2, offset = offset2, start = ip;
|
|
+ continue; /* search a better one */
|
|
+ } }
|
|
+
|
|
+ /* let's find an even better one */
|
|
+ if ((depth==2) && (ip<ilimit)) {
|
|
+ ip ++;
|
|
+ if ((offset) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
|
|
+ size_t const ml2 = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_1, iend) + EQUAL_READ32;
|
|
+ int const gain2 = (int)(ml2 * 4);
|
|
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
|
|
+ if ((ml2 >= EQUAL_READ32) && (gain2 > gain1))
|
|
+ matchLength = ml2, offset = 0, start = ip;
|
|
+ }
|
|
+ { size_t offset2=99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
|
|
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
|
|
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
|
|
+ if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
|
|
+ matchLength = ml2, offset = offset2, start = ip;
|
|
+ continue;
|
|
+ } } }
|
|
+ break; /* nothing found : store previous solution */
|
|
+ }
|
|
+
|
|
+ /* catch up */
|
|
+ if (offset) {
|
|
+ while ((start>anchor) && (start>base+offset-ZSTD_REP_MOVE) && (start[-1] == start[-1-offset+ZSTD_REP_MOVE])) /* only search for offset within prefix */
|
|
+ { start--; matchLength++; }
|
|
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
|
|
+ }
|
|
+
|
|
+ /* store sequence */
|
|
+_storeSequence:
|
|
+ { size_t const litLength = start - anchor;
|
|
+ ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
|
|
+ anchor = ip = start + matchLength;
|
|
+ }
|
|
+
|
|
+ /* check immediate repcode */
|
|
+ while ( (ip <= ilimit)
|
|
+ && ((offset_2>0)
|
|
+ & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
|
|
+ /* store sequence */
|
|
+ matchLength = ZSTD_count(ip+EQUAL_READ32, ip+EQUAL_READ32-offset_2, iend) + EQUAL_READ32;
|
|
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
|
|
+ ip += matchLength;
|
|
+ anchor = ip;
|
|
+ continue; /* faster when present ... (?) */
|
|
+ } }
|
|
+
|
|
+ /* Save reps for next block */
|
|
+ ctx->repToConfirm[0] = offset_1 ? offset_1 : savedOffset;
|
|
+ ctx->repToConfirm[1] = offset_2 ? offset_2 : savedOffset;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_compressBlock_btlazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 1, 2);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_lazy2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 2);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_lazy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 1);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_greedy(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_generic(ctx, src, srcSize, 0, 0);
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_lazy_extDict_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize,
|
|
+ const U32 searchMethod, const U32 depth)
|
|
+{
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ const BYTE* const base = ctx->base;
|
|
+ const U32 dictLimit = ctx->dictLimit;
|
|
+ const U32 lowestIndex = ctx->lowLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const BYTE* const dictBase = ctx->dictBase;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const dictStart = dictBase + ctx->lowLimit;
|
|
+
|
|
+ const U32 maxSearches = 1 << ctx->params.cParams.searchLog;
|
|
+ const U32 mls = ctx->params.cParams.searchLength;
|
|
+
|
|
+ typedef size_t (*searchMax_f)(ZSTD_CCtx* zc, const BYTE* ip, const BYTE* iLimit,
|
|
+ size_t* offsetPtr,
|
|
+ U32 maxNbAttempts, U32 matchLengthSearch);
|
|
+ searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_selectMLS_extDict : ZSTD_HcFindBestMatch_extDict_selectMLS;
|
|
+
|
|
+ U32 offset_1 = ctx->rep[0], offset_2 = ctx->rep[1];
|
|
+
|
|
+ /* init */
|
|
+ ctx->nextToUpdate3 = ctx->nextToUpdate;
|
|
+ ip += (ip == prefixStart);
|
|
+
|
|
+ /* Match Loop */
|
|
+ while (ip < ilimit) {
|
|
+ size_t matchLength=0;
|
|
+ size_t offset=0;
|
|
+ const BYTE* start=ip+1;
|
|
+ U32 curr = (U32)(ip-base);
|
|
+
|
|
+ /* check repCode */
|
|
+ { const U32 repIndex = (U32)(curr+1 - offset_1);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
|
|
+ if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
|
|
+ /* repcode detected we should take it */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ matchLength = ZSTD_count_2segments(ip+1+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
|
|
+ if (depth==0) goto _storeSequence;
|
|
+ } }
|
|
+
|
|
+ /* first search (depth 0) */
|
|
+ { size_t offsetFound = 99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offsetFound, maxSearches, mls);
|
|
+ if (ml2 > matchLength)
|
|
+ matchLength = ml2, start = ip, offset=offsetFound;
|
|
+ }
|
|
+
|
|
+ if (matchLength < EQUAL_READ32) {
|
|
+ ip += ((ip-anchor) >> g_searchStrength) + 1; /* jump faster over incompressible sections */
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ /* let's try to find a better solution */
|
|
+ if (depth>=1)
|
|
+ while (ip<ilimit) {
|
|
+ ip ++;
|
|
+ curr++;
|
|
+ /* check repCode */
|
|
+ if (offset) {
|
|
+ const U32 repIndex = (U32)(curr - offset_1);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
|
|
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
|
|
+ /* repcode detected */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ size_t const repLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
|
|
+ int const gain2 = (int)(repLength * 3);
|
|
+ int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1);
|
|
+ if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
|
|
+ matchLength = repLength, offset = 0, start = ip;
|
|
+ } }
|
|
+
|
|
+ /* search match, depth 1 */
|
|
+ { size_t offset2=99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
|
|
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
|
|
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4);
|
|
+ if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
|
|
+ matchLength = ml2, offset = offset2, start = ip;
|
|
+ continue; /* search a better one */
|
|
+ } }
|
|
+
|
|
+ /* let's find an even better one */
|
|
+ if ((depth==2) && (ip<ilimit)) {
|
|
+ ip ++;
|
|
+ curr++;
|
|
+ /* check repCode */
|
|
+ if (offset) {
|
|
+ const U32 repIndex = (U32)(curr - offset_1);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
|
|
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
|
|
+ /* repcode detected */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ size_t repLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
|
|
+ int gain2 = (int)(repLength * 4);
|
|
+ int gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1);
|
|
+ if ((repLength >= EQUAL_READ32) && (gain2 > gain1))
|
|
+ matchLength = repLength, offset = 0, start = ip;
|
|
+ } }
|
|
+
|
|
+ /* search match, depth 2 */
|
|
+ { size_t offset2=99999999;
|
|
+ size_t const ml2 = searchMax(ctx, ip, iend, &offset2, maxSearches, mls);
|
|
+ int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */
|
|
+ int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7);
|
|
+ if ((ml2 >= EQUAL_READ32) && (gain2 > gain1)) {
|
|
+ matchLength = ml2, offset = offset2, start = ip;
|
|
+ continue;
|
|
+ } } }
|
|
+ break; /* nothing found : store previous solution */
|
|
+ }
|
|
+
|
|
+ /* catch up */
|
|
+ if (offset) {
|
|
+ U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE));
|
|
+ const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
|
|
+ const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
|
|
+ while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
|
|
+ offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE);
|
|
+ }
|
|
+
|
|
+ /* store sequence */
|
|
+_storeSequence:
|
|
+ { size_t const litLength = start - anchor;
|
|
+ ZSTD_storeSeq(seqStorePtr, litLength, anchor, (U32)offset, matchLength-MINMATCH);
|
|
+ anchor = ip = start + matchLength;
|
|
+ }
|
|
+
|
|
+ /* check immediate repcode */
|
|
+ while (ip <= ilimit) {
|
|
+ const U32 repIndex = (U32)((ip-base) - offset_2);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */
|
|
+ if (MEM_read32(ip) == MEM_read32(repMatch)) {
|
|
+ /* repcode detected we should take it */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ matchLength = ZSTD_count_2segments(ip+EQUAL_READ32, repMatch+EQUAL_READ32, iend, repEnd, prefixStart) + EQUAL_READ32;
|
|
+ offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */
|
|
+ ZSTD_storeSeq(seqStorePtr, 0, anchor, 0, matchLength-MINMATCH);
|
|
+ ip += matchLength;
|
|
+ anchor = ip;
|
|
+ continue; /* faster when present ... (?) */
|
|
+ }
|
|
+ break;
|
|
+ } }
|
|
+
|
|
+ /* Save reps for next block */
|
|
+ ctx->repToConfirm[0] = offset_1; ctx->repToConfirm[1] = offset_2;
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+void ZSTD_compressBlock_greedy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 0);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_lazy_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 1);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_lazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 0, 2);
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_btlazy2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_compressBlock_lazy_extDict_generic(ctx, src, srcSize, 1, 2);
|
|
+}
|
|
+
|
|
+
|
|
+/* The optimal parser */
|
|
+#include "zstd_opt.h"
|
|
+
|
|
+static void ZSTD_compressBlock_btopt(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+#ifdef ZSTD_OPT_H_91842398743
|
|
+ ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 0);
|
|
+#else
|
|
+ (void)ctx; (void)src; (void)srcSize;
|
|
+ return;
|
|
+#endif
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_btopt2(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+#ifdef ZSTD_OPT_H_91842398743
|
|
+ ZSTD_compressBlock_opt_generic(ctx, src, srcSize, 1);
|
|
+#else
|
|
+ (void)ctx; (void)src; (void)srcSize;
|
|
+ return;
|
|
+#endif
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_btopt_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+#ifdef ZSTD_OPT_H_91842398743
|
|
+ ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 0);
|
|
+#else
|
|
+ (void)ctx; (void)src; (void)srcSize;
|
|
+ return;
|
|
+#endif
|
|
+}
|
|
+
|
|
+static void ZSTD_compressBlock_btopt2_extDict(ZSTD_CCtx* ctx, const void* src, size_t srcSize)
|
|
+{
|
|
+#ifdef ZSTD_OPT_H_91842398743
|
|
+ ZSTD_compressBlock_opt_extDict_generic(ctx, src, srcSize, 1);
|
|
+#else
|
|
+ (void)ctx; (void)src; (void)srcSize;
|
|
+ return;
|
|
+#endif
|
|
+}
|
|
+
|
|
+
|
|
+typedef void (*ZSTD_blockCompressor) (ZSTD_CCtx* ctx, const void* src, size_t srcSize);
|
|
+
|
|
+static ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
|
|
+{
|
|
+ static const ZSTD_blockCompressor blockCompressor[2][8] = {
|
|
+ { ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy, ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2, ZSTD_compressBlock_btopt, ZSTD_compressBlock_btopt2 },
|
|
+ { ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict, ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict, ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btopt2_extDict }
|
|
+ };
|
|
+
|
|
+ return blockCompressor[extDict][(U32)strat];
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->params.cParams.strategy, zc->lowLimit < zc->dictLimit);
|
|
+ const BYTE* const base = zc->base;
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const U32 curr = (U32)(istart-base);
|
|
+ if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) return 0; /* don't even attempt compression below a certain srcSize */
|
|
+ ZSTD_resetSeqStore(&(zc->seqStore));
|
|
+ if (curr > zc->nextToUpdate + 384)
|
|
+ zc->nextToUpdate = curr - MIN(192, (U32)(curr - zc->nextToUpdate - 384)); /* update tree not updated after finding very long rep matches */
|
|
+ blockCompressor(zc, src, srcSize);
|
|
+ return ZSTD_compressSequences(zc, dst, dstCapacity, srcSize);
|
|
+}
|
|
+
|
|
+
|
|
+/*! ZSTD_compress_generic() :
|
|
+* Compress a chunk of data into one or multiple blocks.
|
|
+* All blocks will be terminated, all input will be consumed.
|
|
+* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
|
|
+* Frame is supposed already started (header already produced)
|
|
+* @return : compressed size, or an error code
|
|
+*/
|
|
+static size_t ZSTD_compress_generic (ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ U32 lastFrameChunk)
|
|
+{
|
|
+ size_t blockSize = cctx->blockSize;
|
|
+ size_t remaining = srcSize;
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ BYTE* op = ostart;
|
|
+ U32 const maxDist = 1 << cctx->params.cParams.windowLog;
|
|
+
|
|
+ if (cctx->params.fParams.checksumFlag && srcSize)
|
|
+ xxh64_update(&cctx->xxhState, src, srcSize);
|
|
+
|
|
+ while (remaining) {
|
|
+ U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
|
|
+ size_t cSize;
|
|
+
|
|
+ if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE) return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */
|
|
+ if (remaining < blockSize) blockSize = remaining;
|
|
+
|
|
+ /* preemptive overflow correction */
|
|
+ if (cctx->lowLimit > (3U<<29)) {
|
|
+ U32 const cycleMask = (1 << ZSTD_cycleLog(cctx->params.cParams.hashLog, cctx->params.cParams.strategy)) - 1;
|
|
+ U32 const curr = (U32)(ip - cctx->base);
|
|
+ U32 const newCurr = (curr & cycleMask) + (1 << cctx->params.cParams.windowLog);
|
|
+ U32 const correction = curr - newCurr;
|
|
+ ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_64 <= 30);
|
|
+ ZSTD_reduceIndex(cctx, correction);
|
|
+ cctx->base += correction;
|
|
+ cctx->dictBase += correction;
|
|
+ cctx->lowLimit -= correction;
|
|
+ cctx->dictLimit -= correction;
|
|
+ if (cctx->nextToUpdate < correction) cctx->nextToUpdate = 0;
|
|
+ else cctx->nextToUpdate -= correction;
|
|
+ }
|
|
+
|
|
+ if ((U32)(ip+blockSize - cctx->base) > cctx->loadedDictEnd + maxDist) {
|
|
+ /* enforce maxDist */
|
|
+ U32 const newLowLimit = (U32)(ip+blockSize - cctx->base) - maxDist;
|
|
+ if (cctx->lowLimit < newLowLimit) cctx->lowLimit = newLowLimit;
|
|
+ if (cctx->dictLimit < cctx->lowLimit) cctx->dictLimit = cctx->lowLimit;
|
|
+ }
|
|
+
|
|
+ cSize = ZSTD_compressBlock_internal(cctx, op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, ip, blockSize);
|
|
+ if (ZSTD_isError(cSize)) return cSize;
|
|
+
|
|
+ if (cSize == 0) { /* block is not compressible */
|
|
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3);
|
|
+ if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+ MEM_writeLE32(op, cBlockHeader24); /* no pb, 4th byte will be overwritten */
|
|
+ memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
|
|
+ cSize = ZSTD_blockHeaderSize+blockSize;
|
|
+ } else {
|
|
+ U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
|
|
+ MEM_writeLE24(op, cBlockHeader24);
|
|
+ cSize += ZSTD_blockHeaderSize;
|
|
+ }
|
|
+
|
|
+ remaining -= blockSize;
|
|
+ dstCapacity -= cSize;
|
|
+ ip += blockSize;
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
|
|
+ ZSTD_parameters params, U64 pledgedSrcSize, U32 dictID)
|
|
+{ BYTE* const op = (BYTE*)dst;
|
|
+ U32 const dictIDSizeCode = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
|
|
+ U32 const checksumFlag = params.fParams.checksumFlag>0;
|
|
+ U32 const windowSize = 1U << params.cParams.windowLog;
|
|
+ U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
|
|
+ BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
|
|
+ U32 const fcsCode = params.fParams.contentSizeFlag ?
|
|
+ (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : /* 0-3 */
|
|
+ 0;
|
|
+ BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
|
|
+ size_t pos;
|
|
+
|
|
+ if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall);
|
|
+
|
|
+ MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
|
|
+ op[4] = frameHeaderDecriptionByte; pos=5;
|
|
+ if (!singleSegment) op[pos++] = windowLogByte;
|
|
+ switch(dictIDSizeCode)
|
|
+ {
|
|
+ default: /* impossible */
|
|
+ case 0 : break;
|
|
+ case 1 : op[pos] = (BYTE)(dictID); pos++; break;
|
|
+ case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
|
|
+ case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
|
|
+ }
|
|
+ switch(fcsCode)
|
|
+ {
|
|
+ default: /* impossible */
|
|
+ case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
|
|
+ case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
|
|
+ case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
|
|
+ case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
|
|
+ }
|
|
+ return pos;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ U32 frame, U32 lastFrameChunk)
|
|
+{
|
|
+ const BYTE* const ip = (const BYTE*) src;
|
|
+ size_t fhSize = 0;
|
|
+
|
|
+ if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */
|
|
+
|
|
+ if (frame && (cctx->stage==ZSTDcs_init)) {
|
|
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, cctx->frameContentSize, cctx->dictID);
|
|
+ if (ZSTD_isError(fhSize)) return fhSize;
|
|
+ dstCapacity -= fhSize;
|
|
+ dst = (char*)dst + fhSize;
|
|
+ cctx->stage = ZSTDcs_ongoing;
|
|
+ }
|
|
+
|
|
+ /* Check if blocks follow each other */
|
|
+ if (src != cctx->nextSrc) {
|
|
+ /* not contiguous */
|
|
+ ptrdiff_t const delta = cctx->nextSrc - ip;
|
|
+ cctx->lowLimit = cctx->dictLimit;
|
|
+ cctx->dictLimit = (U32)(cctx->nextSrc - cctx->base);
|
|
+ cctx->dictBase = cctx->base;
|
|
+ cctx->base -= delta;
|
|
+ cctx->nextToUpdate = cctx->dictLimit;
|
|
+ if (cctx->dictLimit - cctx->lowLimit < HASH_READ_SIZE) cctx->lowLimit = cctx->dictLimit; /* too small extDict */
|
|
+ }
|
|
+
|
|
+ /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
|
|
+ if ((ip+srcSize > cctx->dictBase + cctx->lowLimit) & (ip < cctx->dictBase + cctx->dictLimit)) {
|
|
+ ptrdiff_t const highInputIdx = (ip + srcSize) - cctx->dictBase;
|
|
+ U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)cctx->dictLimit) ? cctx->dictLimit : (U32)highInputIdx;
|
|
+ cctx->lowLimit = lowLimitMax;
|
|
+ }
|
|
+
|
|
+ cctx->nextSrc = ip + srcSize;
|
|
+
|
|
+ if (srcSize) {
|
|
+ size_t const cSize = frame ?
|
|
+ ZSTD_compress_generic (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
|
|
+ ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize);
|
|
+ if (ZSTD_isError(cSize)) return cSize;
|
|
+ return cSize + fhSize;
|
|
+ } else
|
|
+ return fhSize;
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 0);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_getBlockSizeMax(ZSTD_CCtx* cctx)
|
|
+{
|
|
+ return MIN (ZSTD_BLOCKSIZE_ABSOLUTEMAX, 1 << cctx->params.cParams.windowLog);
|
|
+}
|
|
+
|
|
+size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t const blockSizeMax = ZSTD_getBlockSizeMax(cctx);
|
|
+ if (srcSize > blockSizeMax) return ERROR(srcSize_wrong);
|
|
+ return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0, 0);
|
|
+}
|
|
+
|
|
+/*! ZSTD_loadDictionaryContent() :
|
|
+ * @return : 0, or an error code
|
|
+ */
|
|
+static size_t ZSTD_loadDictionaryContent(ZSTD_CCtx* zc, const void* src, size_t srcSize)
|
|
+{
|
|
+ const BYTE* const ip = (const BYTE*) src;
|
|
+ const BYTE* const iend = ip + srcSize;
|
|
+
|
|
+ /* input becomes curr prefix */
|
|
+ zc->lowLimit = zc->dictLimit;
|
|
+ zc->dictLimit = (U32)(zc->nextSrc - zc->base);
|
|
+ zc->dictBase = zc->base;
|
|
+ zc->base += ip - zc->nextSrc;
|
|
+ zc->nextToUpdate = zc->dictLimit;
|
|
+ zc->loadedDictEnd = zc->forceWindow ? 0 : (U32)(iend - zc->base);
|
|
+
|
|
+ zc->nextSrc = iend;
|
|
+ if (srcSize <= HASH_READ_SIZE) return 0;
|
|
+
|
|
+ switch(zc->params.cParams.strategy)
|
|
+ {
|
|
+ case ZSTD_fast:
|
|
+ ZSTD_fillHashTable (zc, iend, zc->params.cParams.searchLength);
|
|
+ break;
|
|
+
|
|
+ case ZSTD_dfast:
|
|
+ ZSTD_fillDoubleHashTable (zc, iend, zc->params.cParams.searchLength);
|
|
+ break;
|
|
+
|
|
+ case ZSTD_greedy:
|
|
+ case ZSTD_lazy:
|
|
+ case ZSTD_lazy2:
|
|
+ if (srcSize >= HASH_READ_SIZE)
|
|
+ ZSTD_insertAndFindFirstIndex(zc, iend-HASH_READ_SIZE, zc->params.cParams.searchLength);
|
|
+ break;
|
|
+
|
|
+ case ZSTD_btlazy2:
|
|
+ case ZSTD_btopt:
|
|
+ case ZSTD_btopt2:
|
|
+ if (srcSize >= HASH_READ_SIZE)
|
|
+ ZSTD_updateTree(zc, iend-HASH_READ_SIZE, iend, 1 << zc->params.cParams.searchLog, zc->params.cParams.searchLength);
|
|
+ break;
|
|
+
|
|
+ default:
|
|
+ return ERROR(GENERIC); /* strategy doesn't exist; impossible */
|
|
+ }
|
|
+
|
|
+ zc->nextToUpdate = (U32)(iend - zc->base);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/* Dictionaries that assign zero probability to symbols that show up causes problems
|
|
+ when FSE encoding. Refuse dictionaries that assign zero probability to symbols
|
|
+ that we may encounter during compression.
|
|
+ NOTE: This behavior is not standard and could be improved in the future. */
|
|
+static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) {
|
|
+ U32 s;
|
|
+ if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted);
|
|
+ for (s = 0; s <= maxSymbolValue; ++s) {
|
|
+ if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted);
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/* Dictionary format :
|
|
+ * See :
|
|
+ * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
|
|
+ */
|
|
+/*! ZSTD_loadZstdDictionary() :
|
|
+ * @return : 0, or an error code
|
|
+ * assumptions : magic number supposed already checked
|
|
+ * dictSize supposed > 8
|
|
+ */
|
|
+static size_t ZSTD_loadZstdDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
|
|
+{
|
|
+ const BYTE* dictPtr = (const BYTE*)dict;
|
|
+ const BYTE* const dictEnd = dictPtr + dictSize;
|
|
+ short offcodeNCount[MaxOff+1];
|
|
+ unsigned offcodeMaxValue = MaxOff;
|
|
+ BYTE scratchBuffer[1<<MAX(MLFSELog,LLFSELog)];
|
|
+
|
|
+ dictPtr += 4; /* skip magic number */
|
|
+ cctx->dictID = cctx->params.fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr);
|
|
+ dictPtr += 4;
|
|
+
|
|
+ { size_t const hufHeaderSize = HUF_readCTable(cctx->hufTable, 255, dictPtr, dictEnd-dictPtr);
|
|
+ if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ dictPtr += hufHeaderSize;
|
|
+ }
|
|
+
|
|
+ { unsigned offcodeLog;
|
|
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
|
|
+ /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
|
|
+ CHECK_E (FSE_buildCTable_wksp(cctx->offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted);
|
|
+ dictPtr += offcodeHeaderSize;
|
|
+ }
|
|
+
|
|
+ { short matchlengthNCount[MaxML+1];
|
|
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
|
|
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
|
|
+ /* Every match length code must have non-zero probability */
|
|
+ CHECK_F (ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
|
|
+ CHECK_E (FSE_buildCTable_wksp(cctx->matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted);
|
|
+ dictPtr += matchlengthHeaderSize;
|
|
+ }
|
|
+
|
|
+ { short litlengthNCount[MaxLL+1];
|
|
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
|
|
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
|
|
+ /* Every literal length code must have non-zero probability */
|
|
+ CHECK_F (ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
|
|
+ CHECK_E(FSE_buildCTable_wksp(cctx->litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, scratchBuffer, sizeof(scratchBuffer)), dictionary_corrupted);
|
|
+ dictPtr += litlengthHeaderSize;
|
|
+ }
|
|
+
|
|
+ if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
|
|
+ cctx->rep[0] = MEM_readLE32(dictPtr+0);
|
|
+ cctx->rep[1] = MEM_readLE32(dictPtr+4);
|
|
+ cctx->rep[2] = MEM_readLE32(dictPtr+8);
|
|
+ dictPtr += 12;
|
|
+
|
|
+ { size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
|
|
+ U32 offcodeMax = MaxOff;
|
|
+ if (dictContentSize <= ((U32)-1) - 128 KB) {
|
|
+ U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
|
|
+ offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
|
|
+ }
|
|
+ /* All offset values <= dictContentSize + 128 KB must be representable */
|
|
+ CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
|
|
+ /* All repCodes must be <= dictContentSize and != 0*/
|
|
+ { U32 u;
|
|
+ for (u=0; u<3; u++) {
|
|
+ if (cctx->rep[u] == 0) return ERROR(dictionary_corrupted);
|
|
+ if (cctx->rep[u] > dictContentSize) return ERROR(dictionary_corrupted);
|
|
+ } }
|
|
+
|
|
+ cctx->flagStaticTables = 1;
|
|
+ cctx->flagStaticHufTable = HUF_repeat_valid;
|
|
+ return ZSTD_loadDictionaryContent(cctx, dictPtr, dictContentSize);
|
|
+ }
|
|
+}
|
|
+
|
|
+/** ZSTD_compress_insertDictionary() :
|
|
+* @return : 0, or an error code */
|
|
+static size_t ZSTD_compress_insertDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
|
|
+{
|
|
+ if ((dict==NULL) || (dictSize<=8)) return 0;
|
|
+
|
|
+ /* dict as pure content */
|
|
+ if ((MEM_readLE32(dict) != ZSTD_DICT_MAGIC) || (cctx->forceRawDict))
|
|
+ return ZSTD_loadDictionaryContent(cctx, dict, dictSize);
|
|
+
|
|
+ /* dict as zstd dictionary */
|
|
+ return ZSTD_loadZstdDictionary(cctx, dict, dictSize);
|
|
+}
|
|
+
|
|
+/*! ZSTD_compressBegin_internal() :
|
|
+* @return : 0, or an error code */
|
|
+static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
|
|
+ const void* dict, size_t dictSize,
|
|
+ ZSTD_parameters params, U64 pledgedSrcSize)
|
|
+{
|
|
+ ZSTD_compResetPolicy_e const crp = dictSize ? ZSTDcrp_fullReset : ZSTDcrp_continue;
|
|
+ CHECK_F(ZSTD_resetCCtx_advanced(cctx, params, pledgedSrcSize, crp));
|
|
+ return ZSTD_compress_insertDictionary(cctx, dict, dictSize);
|
|
+}
|
|
+
|
|
+
|
|
+/*! ZSTD_compressBegin_advanced() :
|
|
+* @return : 0, or an error code */
|
|
+size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
|
|
+ const void* dict, size_t dictSize,
|
|
+ ZSTD_parameters params, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+ /* compression parameters verification and optimization */
|
|
+ CHECK_F(ZSTD_checkCParams(params.cParams));
|
|
+ return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, pledgedSrcSize);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
|
|
+{
|
|
+ ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
|
|
+ return ZSTD_compressBegin_internal(cctx, dict, dictSize, params, 0);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
|
|
+{
|
|
+ return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
|
|
+}
|
|
+
|
|
+
|
|
+/*! ZSTD_writeEpilogue() :
|
|
+* Ends a frame.
|
|
+* @return : nb of bytes written into dst (or an error code) */
|
|
+static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ BYTE* op = ostart;
|
|
+ size_t fhSize = 0;
|
|
+
|
|
+ if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong); /* init missing */
|
|
+
|
|
+ /* special case : empty frame */
|
|
+ if (cctx->stage == ZSTDcs_init) {
|
|
+ fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->params, 0, 0);
|
|
+ if (ZSTD_isError(fhSize)) return fhSize;
|
|
+ dstCapacity -= fhSize;
|
|
+ op += fhSize;
|
|
+ cctx->stage = ZSTDcs_ongoing;
|
|
+ }
|
|
+
|
|
+ if (cctx->stage != ZSTDcs_ending) {
|
|
+ /* write one last empty block, make it the "last" block */
|
|
+ U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
|
|
+ if (dstCapacity<4) return ERROR(dstSize_tooSmall);
|
|
+ MEM_writeLE32(op, cBlockHeader24);
|
|
+ op += ZSTD_blockHeaderSize;
|
|
+ dstCapacity -= ZSTD_blockHeaderSize;
|
|
+ }
|
|
+
|
|
+ if (cctx->params.fParams.checksumFlag) {
|
|
+ U32 const checksum = (U32) xxh64_digest(&cctx->xxhState);
|
|
+ if (dstCapacity<4) return ERROR(dstSize_tooSmall);
|
|
+ MEM_writeLE32(op, checksum);
|
|
+ op += 4;
|
|
+ }
|
|
+
|
|
+ cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t endResult;
|
|
+ size_t const cSize = ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1, 1);
|
|
+ if (ZSTD_isError(cSize)) return cSize;
|
|
+ endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
|
|
+ if (ZSTD_isError(endResult)) return endResult;
|
|
+ return cSize + endResult;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ const void* dict,size_t dictSize,
|
|
+ ZSTD_parameters params)
|
|
+{
|
|
+ CHECK_F(ZSTD_compressBegin_internal(cctx, dict, dictSize, params, srcSize));
|
|
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
|
|
+}
|
|
+
|
|
+size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void* dict, size_t dictSize, ZSTD_parameters params)
|
|
+{
|
|
+ return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_compressCCtx(ZSTD_CCtx* ctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, ZSTD_parameters params)
|
|
+{
|
|
+ return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, NULL, 0, params);
|
|
+}
|
|
+
|
|
+
|
|
+/* ===== Dictionary API ===== */
|
|
+
|
|
+struct ZSTD_CDict_s {
|
|
+ void* dictBuffer;
|
|
+ const void* dictContent;
|
|
+ size_t dictContentSize;
|
|
+ ZSTD_CCtx* refContext;
|
|
+}; /* typedef'd tp ZSTD_CDict within "zstd.h" */
|
|
+
|
|
+size_t ZSTD_CDictWorkspaceBound(ZSTD_compressionParameters cParams)
|
|
+{
|
|
+ return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CDict));
|
|
+}
|
|
+
|
|
+static ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, unsigned byReference,
|
|
+ ZSTD_parameters params, ZSTD_customMem customMem)
|
|
+{
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+
|
|
+ { ZSTD_CDict* const cdict = (ZSTD_CDict*) ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
|
|
+ ZSTD_CCtx* const cctx = ZSTD_createCCtx_advanced(customMem);
|
|
+
|
|
+ if (!cdict || !cctx) {
|
|
+ ZSTD_free(cdict, customMem);
|
|
+ ZSTD_freeCCtx(cctx);
|
|
+ return NULL;
|
|
+ }
|
|
+
|
|
+ if ((byReference) || (!dictBuffer) || (!dictSize)) {
|
|
+ cdict->dictBuffer = NULL;
|
|
+ cdict->dictContent = dictBuffer;
|
|
+ } else {
|
|
+ void* const internalBuffer = ZSTD_malloc(dictSize, customMem);
|
|
+ if (!internalBuffer) { ZSTD_free(cctx, customMem); ZSTD_free(cdict, customMem); return NULL; }
|
|
+ memcpy(internalBuffer, dictBuffer, dictSize);
|
|
+ cdict->dictBuffer = internalBuffer;
|
|
+ cdict->dictContent = internalBuffer;
|
|
+ }
|
|
+
|
|
+ { size_t const errorCode = ZSTD_compressBegin_advanced(cctx, cdict->dictContent, dictSize, params, 0);
|
|
+ if (ZSTD_isError(errorCode)) {
|
|
+ ZSTD_free(cdict->dictBuffer, customMem);
|
|
+ ZSTD_free(cdict, customMem);
|
|
+ ZSTD_freeCCtx(cctx);
|
|
+ return NULL;
|
|
+ } }
|
|
+
|
|
+ cdict->refContext = cctx;
|
|
+ cdict->dictContentSize = dictSize;
|
|
+ return cdict;
|
|
+ }
|
|
+}
|
|
+
|
|
+ZSTD_CDict* ZSTD_initCDict(const void* dict, size_t dictSize, ZSTD_parameters params, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ return ZSTD_createCDict_advanced(dict, dictSize, 1, params, stackMem);
|
|
+}
|
|
+
|
|
+size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
|
|
+{
|
|
+ if (cdict==NULL) return 0; /* support free on NULL */
|
|
+ { ZSTD_customMem const cMem = cdict->refContext->customMem;
|
|
+ ZSTD_freeCCtx(cdict->refContext);
|
|
+ ZSTD_free(cdict->dictBuffer, cMem);
|
|
+ ZSTD_free(cdict, cMem);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+static ZSTD_parameters ZSTD_getParamsFromCDict(const ZSTD_CDict* cdict) {
|
|
+ return ZSTD_getParamsFromCCtx(cdict->refContext);
|
|
+}
|
|
+
|
|
+size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+ if (cdict->dictContentSize) CHECK_F(ZSTD_copyCCtx(cctx, cdict->refContext, pledgedSrcSize))
|
|
+ else {
|
|
+ ZSTD_parameters params = cdict->refContext->params;
|
|
+ params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
|
|
+ CHECK_F(ZSTD_compressBegin_advanced(cctx, NULL, 0, params, pledgedSrcSize));
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*! ZSTD_compress_usingCDict() :
|
|
+* Compression using a digested Dictionary.
|
|
+* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
|
|
+* Note that compression level is decided during dictionary creation */
|
|
+size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ const ZSTD_CDict* cdict)
|
|
+{
|
|
+ CHECK_F(ZSTD_compressBegin_usingCDict(cctx, cdict, srcSize));
|
|
+
|
|
+ if (cdict->refContext->params.fParams.contentSizeFlag==1) {
|
|
+ cctx->params.fParams.contentSizeFlag = 1;
|
|
+ cctx->frameContentSize = srcSize;
|
|
+ } else {
|
|
+ cctx->params.fParams.contentSizeFlag = 0;
|
|
+ }
|
|
+
|
|
+ return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/* ******************************************************************
|
|
+* Streaming
|
|
+********************************************************************/
|
|
+
|
|
+typedef enum { zcss_init, zcss_load, zcss_flush, zcss_final } ZSTD_cStreamStage;
|
|
+
|
|
+struct ZSTD_CStream_s {
|
|
+ ZSTD_CCtx* cctx;
|
|
+ ZSTD_CDict* cdictLocal;
|
|
+ const ZSTD_CDict* cdict;
|
|
+ char* inBuff;
|
|
+ size_t inBuffSize;
|
|
+ size_t inToCompress;
|
|
+ size_t inBuffPos;
|
|
+ size_t inBuffTarget;
|
|
+ size_t blockSize;
|
|
+ char* outBuff;
|
|
+ size_t outBuffSize;
|
|
+ size_t outBuffContentSize;
|
|
+ size_t outBuffFlushedSize;
|
|
+ ZSTD_cStreamStage stage;
|
|
+ U32 checksum;
|
|
+ U32 frameEnded;
|
|
+ U64 pledgedSrcSize;
|
|
+ U64 inputProcessed;
|
|
+ ZSTD_parameters params;
|
|
+ ZSTD_customMem customMem;
|
|
+}; /* typedef'd to ZSTD_CStream within "zstd.h" */
|
|
+
|
|
+size_t ZSTD_CStreamWorkspaceBound(ZSTD_compressionParameters cParams)
|
|
+{
|
|
+ size_t const inBuffSize = (size_t)1 << cParams.windowLog;
|
|
+ size_t const blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, inBuffSize);
|
|
+ size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
|
|
+
|
|
+ return ZSTD_CCtxWorkspaceBound(cParams) + ZSTD_ALIGN(sizeof(ZSTD_CStream)) + ZSTD_ALIGN(inBuffSize) + ZSTD_ALIGN(outBuffSize);
|
|
+}
|
|
+
|
|
+ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
|
|
+{
|
|
+ ZSTD_CStream* zcs;
|
|
+
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+
|
|
+ zcs = (ZSTD_CStream*)ZSTD_malloc(sizeof(ZSTD_CStream), customMem);
|
|
+ if (zcs==NULL) return NULL;
|
|
+ memset(zcs, 0, sizeof(ZSTD_CStream));
|
|
+ memcpy(&zcs->customMem, &customMem, sizeof(ZSTD_customMem));
|
|
+ zcs->cctx = ZSTD_createCCtx_advanced(customMem);
|
|
+ if (zcs->cctx == NULL) { ZSTD_freeCStream(zcs); return NULL; }
|
|
+ return zcs;
|
|
+}
|
|
+
|
|
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
|
|
+{
|
|
+ if (zcs==NULL) return 0; /* support free on NULL */
|
|
+ { ZSTD_customMem const cMem = zcs->customMem;
|
|
+ ZSTD_freeCCtx(zcs->cctx);
|
|
+ zcs->cctx = NULL;
|
|
+ ZSTD_freeCDict(zcs->cdictLocal);
|
|
+ zcs->cdictLocal = NULL;
|
|
+ ZSTD_free(zcs->inBuff, cMem);
|
|
+ zcs->inBuff = NULL;
|
|
+ ZSTD_free(zcs->outBuff, cMem);
|
|
+ zcs->outBuff = NULL;
|
|
+ ZSTD_free(zcs, cMem);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*====== Initialization ======*/
|
|
+
|
|
+size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
|
|
+size_t ZSTD_CStreamOutSize(void) { return ZSTD_compressBound(ZSTD_BLOCKSIZE_ABSOLUTEMAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; }
|
|
+
|
|
+static size_t ZSTD_resetCStream_internal(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+ if (zcs->inBuffSize==0) return ERROR(stage_wrong); /* zcs has not been init at least once => can't reset */
|
|
+
|
|
+ if (zcs->cdict) CHECK_F(ZSTD_compressBegin_usingCDict(zcs->cctx, zcs->cdict, pledgedSrcSize))
|
|
+ else CHECK_F(ZSTD_compressBegin_advanced(zcs->cctx, NULL, 0, zcs->params, pledgedSrcSize));
|
|
+
|
|
+ zcs->inToCompress = 0;
|
|
+ zcs->inBuffPos = 0;
|
|
+ zcs->inBuffTarget = zcs->blockSize;
|
|
+ zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
|
|
+ zcs->stage = zcss_load;
|
|
+ zcs->frameEnded = 0;
|
|
+ zcs->pledgedSrcSize = pledgedSrcSize;
|
|
+ zcs->inputProcessed = 0;
|
|
+ return 0; /* ready to go */
|
|
+}
|
|
+
|
|
+size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+
|
|
+ zcs->params.fParams.contentSizeFlag = (pledgedSrcSize > 0);
|
|
+
|
|
+ return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
|
|
+}
|
|
+
|
|
+static size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
|
|
+ const void* dict, size_t dictSize,
|
|
+ ZSTD_parameters params, unsigned long long pledgedSrcSize)
|
|
+{
|
|
+ /* allocate buffers */
|
|
+ { size_t const neededInBuffSize = (size_t)1 << params.cParams.windowLog;
|
|
+ if (zcs->inBuffSize < neededInBuffSize) {
|
|
+ zcs->inBuffSize = neededInBuffSize;
|
|
+ ZSTD_free(zcs->inBuff, zcs->customMem);
|
|
+ zcs->inBuff = (char*) ZSTD_malloc(neededInBuffSize, zcs->customMem);
|
|
+ if (zcs->inBuff == NULL) return ERROR(memory_allocation);
|
|
+ }
|
|
+ zcs->blockSize = MIN(ZSTD_BLOCKSIZE_ABSOLUTEMAX, neededInBuffSize);
|
|
+ }
|
|
+ if (zcs->outBuffSize < ZSTD_compressBound(zcs->blockSize)+1) {
|
|
+ zcs->outBuffSize = ZSTD_compressBound(zcs->blockSize)+1;
|
|
+ ZSTD_free(zcs->outBuff, zcs->customMem);
|
|
+ zcs->outBuff = (char*) ZSTD_malloc(zcs->outBuffSize, zcs->customMem);
|
|
+ if (zcs->outBuff == NULL) return ERROR(memory_allocation);
|
|
+ }
|
|
+
|
|
+ if (dict && dictSize >= 8) {
|
|
+ ZSTD_freeCDict(zcs->cdictLocal);
|
|
+ zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 0, params, zcs->customMem);
|
|
+ if (zcs->cdictLocal == NULL) return ERROR(memory_allocation);
|
|
+ zcs->cdict = zcs->cdictLocal;
|
|
+ } else zcs->cdict = NULL;
|
|
+
|
|
+ zcs->checksum = params.fParams.checksumFlag > 0;
|
|
+ zcs->params = params;
|
|
+
|
|
+ return ZSTD_resetCStream_internal(zcs, pledgedSrcSize);
|
|
+}
|
|
+
|
|
+ZSTD_CStream* ZSTD_initCStream(ZSTD_parameters params, unsigned long long pledgedSrcSize, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ ZSTD_CStream* const zcs = ZSTD_createCStream_advanced(stackMem);
|
|
+ if (zcs) {
|
|
+ size_t const code = ZSTD_initCStream_advanced(zcs, NULL, 0, params, pledgedSrcSize);
|
|
+ if (ZSTD_isError(code)) { return NULL; }
|
|
+ }
|
|
+ return zcs;
|
|
+}
|
|
+
|
|
+ZSTD_CStream* ZSTD_initCStream_usingCDict(const ZSTD_CDict* cdict, unsigned long long pledgedSrcSize, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_parameters const params = ZSTD_getParamsFromCDict(cdict);
|
|
+ ZSTD_CStream* const zcs = ZSTD_initCStream(params, pledgedSrcSize, workspace, workspaceSize);
|
|
+ if (zcs) {
|
|
+ zcs->cdict = cdict;
|
|
+ if (ZSTD_isError(ZSTD_resetCStream_internal(zcs, pledgedSrcSize))) {
|
|
+ return NULL;
|
|
+ }
|
|
+ }
|
|
+ return zcs;
|
|
+}
|
|
+
|
|
+/*====== Compression ======*/
|
|
+
|
|
+typedef enum { zsf_gather, zsf_flush, zsf_end } ZSTD_flush_e;
|
|
+
|
|
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t const length = MIN(dstCapacity, srcSize);
|
|
+ memcpy(dst, src, length);
|
|
+ return length;
|
|
+}
|
|
+
|
|
+static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
|
|
+ void* dst, size_t* dstCapacityPtr,
|
|
+ const void* src, size_t* srcSizePtr,
|
|
+ ZSTD_flush_e const flush)
|
|
+{
|
|
+ U32 someMoreWork = 1;
|
|
+ const char* const istart = (const char*)src;
|
|
+ const char* const iend = istart + *srcSizePtr;
|
|
+ const char* ip = istart;
|
|
+ char* const ostart = (char*)dst;
|
|
+ char* const oend = ostart + *dstCapacityPtr;
|
|
+ char* op = ostart;
|
|
+
|
|
+ while (someMoreWork) {
|
|
+ switch(zcs->stage)
|
|
+ {
|
|
+ case zcss_init: return ERROR(init_missing); /* call ZBUFF_compressInit() first ! */
|
|
+
|
|
+ case zcss_load:
|
|
+ /* complete inBuffer */
|
|
+ { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
|
|
+ size_t const loaded = ZSTD_limitCopy(zcs->inBuff + zcs->inBuffPos, toLoad, ip, iend-ip);
|
|
+ zcs->inBuffPos += loaded;
|
|
+ ip += loaded;
|
|
+ if ( (zcs->inBuffPos==zcs->inToCompress) || (!flush && (toLoad != loaded)) ) {
|
|
+ someMoreWork = 0; break; /* not enough input to get a full block : stop there, wait for more */
|
|
+ } }
|
|
+ /* compress curr block (note : this stage cannot be stopped in the middle) */
|
|
+ { void* cDst;
|
|
+ size_t cSize;
|
|
+ size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
|
|
+ size_t oSize = oend-op;
|
|
+ if (oSize >= ZSTD_compressBound(iSize))
|
|
+ cDst = op; /* compress directly into output buffer (avoid flush stage) */
|
|
+ else
|
|
+ cDst = zcs->outBuff, oSize = zcs->outBuffSize;
|
|
+ cSize = (flush == zsf_end) ?
|
|
+ ZSTD_compressEnd(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize) :
|
|
+ ZSTD_compressContinue(zcs->cctx, cDst, oSize, zcs->inBuff + zcs->inToCompress, iSize);
|
|
+ if (ZSTD_isError(cSize)) return cSize;
|
|
+ if (flush == zsf_end) zcs->frameEnded = 1;
|
|
+ /* prepare next block */
|
|
+ zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
|
|
+ if (zcs->inBuffTarget > zcs->inBuffSize)
|
|
+ zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; /* note : inBuffSize >= blockSize */
|
|
+ zcs->inToCompress = zcs->inBuffPos;
|
|
+ if (cDst == op) { op += cSize; break; } /* no need to flush */
|
|
+ zcs->outBuffContentSize = cSize;
|
|
+ zcs->outBuffFlushedSize = 0;
|
|
+ zcs->stage = zcss_flush; /* pass-through to flush stage */
|
|
+ }
|
|
+
|
|
+ case zcss_flush:
|
|
+ { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
|
|
+ size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
|
|
+ op += flushed;
|
|
+ zcs->outBuffFlushedSize += flushed;
|
|
+ if (toFlush!=flushed) { someMoreWork = 0; break; } /* dst too small to store flushed data : stop there */
|
|
+ zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
|
|
+ zcs->stage = zcss_load;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ case zcss_final:
|
|
+ someMoreWork = 0; /* do nothing */
|
|
+ break;
|
|
+
|
|
+ default:
|
|
+ return ERROR(GENERIC); /* impossible */
|
|
+ }
|
|
+ }
|
|
+
|
|
+ *srcSizePtr = ip - istart;
|
|
+ *dstCapacityPtr = op - ostart;
|
|
+ zcs->inputProcessed += *srcSizePtr;
|
|
+ if (zcs->frameEnded) return 0;
|
|
+ { size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
|
|
+ if (hintInSize==0) hintInSize = zcs->blockSize;
|
|
+ return hintInSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
|
|
+{
|
|
+ size_t sizeRead = input->size - input->pos;
|
|
+ size_t sizeWritten = output->size - output->pos;
|
|
+ size_t const result = ZSTD_compressStream_generic(zcs,
|
|
+ (char*)(output->dst) + output->pos, &sizeWritten,
|
|
+ (const char*)(input->src) + input->pos, &sizeRead, zsf_gather);
|
|
+ input->pos += sizeRead;
|
|
+ output->pos += sizeWritten;
|
|
+ return result;
|
|
+}
|
|
+
|
|
+
|
|
+/*====== Finalize ======*/
|
|
+
|
|
+/*! ZSTD_flushStream() :
|
|
+* @return : amount of data remaining to flush */
|
|
+size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
|
|
+{
|
|
+ size_t srcSize = 0;
|
|
+ size_t sizeWritten = output->size - output->pos;
|
|
+ size_t const result = ZSTD_compressStream_generic(zcs,
|
|
+ (char*)(output->dst) + output->pos, &sizeWritten,
|
|
+ &srcSize, &srcSize, /* use a valid src address instead of NULL */
|
|
+ zsf_flush);
|
|
+ output->pos += sizeWritten;
|
|
+ if (ZSTD_isError(result)) return result;
|
|
+ return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*)(output->dst) + output->pos;
|
|
+ BYTE* const oend = (BYTE*)(output->dst) + output->size;
|
|
+ BYTE* op = ostart;
|
|
+
|
|
+ if ((zcs->pledgedSrcSize) && (zcs->inputProcessed != zcs->pledgedSrcSize))
|
|
+ return ERROR(srcSize_wrong); /* pledgedSrcSize not respected */
|
|
+
|
|
+ if (zcs->stage != zcss_final) {
|
|
+ /* flush whatever remains */
|
|
+ size_t srcSize = 0;
|
|
+ size_t sizeWritten = output->size - output->pos;
|
|
+ size_t const notEnded = ZSTD_compressStream_generic(zcs, ostart, &sizeWritten, &srcSize, &srcSize, zsf_end); /* use a valid src address instead of NULL */
|
|
+ size_t const remainingToFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
|
|
+ op += sizeWritten;
|
|
+ if (remainingToFlush) {
|
|
+ output->pos += sizeWritten;
|
|
+ return remainingToFlush + ZSTD_BLOCKHEADERSIZE /* final empty block */ + (zcs->checksum * 4);
|
|
+ }
|
|
+ /* create epilogue */
|
|
+ zcs->stage = zcss_final;
|
|
+ zcs->outBuffContentSize = !notEnded ? 0 :
|
|
+ ZSTD_compressEnd(zcs->cctx, zcs->outBuff, zcs->outBuffSize, NULL, 0); /* write epilogue, including final empty block, into outBuff */
|
|
+ }
|
|
+
|
|
+ /* flush epilogue */
|
|
+ { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
|
|
+ size_t const flushed = ZSTD_limitCopy(op, oend-op, zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
|
|
+ op += flushed;
|
|
+ zcs->outBuffFlushedSize += flushed;
|
|
+ output->pos += op-ostart;
|
|
+ if (toFlush==flushed) zcs->stage = zcss_init; /* end reached */
|
|
+ return toFlush - flushed;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/*-===== Pre-defined compression levels =====-*/
|
|
+
|
|
+#define ZSTD_DEFAULT_CLEVEL 1
|
|
+#define ZSTD_MAX_CLEVEL 22
|
|
+int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
|
|
+
|
|
+static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
|
|
+{ /* "default" */
|
|
+ /* W, C, H, S, L, TL, strat */
|
|
+ { 18, 12, 12, 1, 7, 16, ZSTD_fast }, /* level 0 - never used */
|
|
+ { 19, 13, 14, 1, 7, 16, ZSTD_fast }, /* level 1 */
|
|
+ { 19, 15, 16, 1, 6, 16, ZSTD_fast }, /* level 2 */
|
|
+ { 20, 16, 17, 1, 5, 16, ZSTD_dfast }, /* level 3.*/
|
|
+ { 20, 18, 18, 1, 5, 16, ZSTD_dfast }, /* level 4.*/
|
|
+ { 20, 15, 18, 3, 5, 16, ZSTD_greedy }, /* level 5 */
|
|
+ { 21, 16, 19, 2, 5, 16, ZSTD_lazy }, /* level 6 */
|
|
+ { 21, 17, 20, 3, 5, 16, ZSTD_lazy }, /* level 7 */
|
|
+ { 21, 18, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
|
|
+ { 21, 20, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 9 */
|
|
+ { 21, 19, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
|
|
+ { 22, 20, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
|
|
+ { 22, 20, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
|
|
+ { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 13 */
|
|
+ { 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 14 */
|
|
+ { 22, 21, 21, 5, 5, 16, ZSTD_btlazy2 }, /* level 15 */
|
|
+ { 23, 22, 22, 5, 5, 16, ZSTD_btlazy2 }, /* level 16 */
|
|
+ { 23, 21, 22, 4, 5, 24, ZSTD_btopt }, /* level 17 */
|
|
+ { 23, 23, 22, 6, 5, 32, ZSTD_btopt }, /* level 18 */
|
|
+ { 23, 23, 22, 6, 3, 48, ZSTD_btopt }, /* level 19 */
|
|
+ { 25, 25, 23, 7, 3, 64, ZSTD_btopt2 }, /* level 20 */
|
|
+ { 26, 26, 23, 7, 3,256, ZSTD_btopt2 }, /* level 21 */
|
|
+ { 27, 27, 25, 9, 3,512, ZSTD_btopt2 }, /* level 22 */
|
|
+},
|
|
+{ /* for srcSize <= 256 KB */
|
|
+ /* W, C, H, S, L, T, strat */
|
|
+ { 0, 0, 0, 0, 0, 0, ZSTD_fast }, /* level 0 - not used */
|
|
+ { 18, 13, 14, 1, 6, 8, ZSTD_fast }, /* level 1 */
|
|
+ { 18, 14, 13, 1, 5, 8, ZSTD_dfast }, /* level 2 */
|
|
+ { 18, 16, 15, 1, 5, 8, ZSTD_dfast }, /* level 3 */
|
|
+ { 18, 15, 17, 1, 5, 8, ZSTD_greedy }, /* level 4.*/
|
|
+ { 18, 16, 17, 4, 5, 8, ZSTD_greedy }, /* level 5.*/
|
|
+ { 18, 16, 17, 3, 5, 8, ZSTD_lazy }, /* level 6.*/
|
|
+ { 18, 17, 17, 4, 4, 8, ZSTD_lazy }, /* level 7 */
|
|
+ { 18, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
|
|
+ { 18, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
|
|
+ { 18, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
|
|
+ { 18, 18, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 11.*/
|
|
+ { 18, 18, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 12.*/
|
|
+ { 18, 19, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13 */
|
|
+ { 18, 18, 18, 4, 4, 16, ZSTD_btopt }, /* level 14.*/
|
|
+ { 18, 18, 18, 4, 3, 16, ZSTD_btopt }, /* level 15.*/
|
|
+ { 18, 19, 18, 6, 3, 32, ZSTD_btopt }, /* level 16.*/
|
|
+ { 18, 19, 18, 8, 3, 64, ZSTD_btopt }, /* level 17.*/
|
|
+ { 18, 19, 18, 9, 3,128, ZSTD_btopt }, /* level 18.*/
|
|
+ { 18, 19, 18, 10, 3,256, ZSTD_btopt }, /* level 19.*/
|
|
+ { 18, 19, 18, 11, 3,512, ZSTD_btopt2 }, /* level 20.*/
|
|
+ { 18, 19, 18, 12, 3,512, ZSTD_btopt2 }, /* level 21.*/
|
|
+ { 18, 19, 18, 13, 3,512, ZSTD_btopt2 }, /* level 22.*/
|
|
+},
|
|
+{ /* for srcSize <= 128 KB */
|
|
+ /* W, C, H, S, L, T, strat */
|
|
+ { 17, 12, 12, 1, 7, 8, ZSTD_fast }, /* level 0 - not used */
|
|
+ { 17, 12, 13, 1, 6, 8, ZSTD_fast }, /* level 1 */
|
|
+ { 17, 13, 16, 1, 5, 8, ZSTD_fast }, /* level 2 */
|
|
+ { 17, 16, 16, 2, 5, 8, ZSTD_dfast }, /* level 3 */
|
|
+ { 17, 13, 15, 3, 4, 8, ZSTD_greedy }, /* level 4 */
|
|
+ { 17, 15, 17, 4, 4, 8, ZSTD_greedy }, /* level 5 */
|
|
+ { 17, 16, 17, 3, 4, 8, ZSTD_lazy }, /* level 6 */
|
|
+ { 17, 15, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 7 */
|
|
+ { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
|
|
+ { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
|
|
+ { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
|
|
+ { 17, 17, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 11 */
|
|
+ { 17, 17, 17, 8, 4, 8, ZSTD_lazy2 }, /* level 12 */
|
|
+ { 17, 18, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13.*/
|
|
+ { 17, 17, 17, 7, 3, 8, ZSTD_btopt }, /* level 14.*/
|
|
+ { 17, 17, 17, 7, 3, 16, ZSTD_btopt }, /* level 15.*/
|
|
+ { 17, 18, 17, 7, 3, 32, ZSTD_btopt }, /* level 16.*/
|
|
+ { 17, 18, 17, 7, 3, 64, ZSTD_btopt }, /* level 17.*/
|
|
+ { 17, 18, 17, 7, 3,256, ZSTD_btopt }, /* level 18.*/
|
|
+ { 17, 18, 17, 8, 3,256, ZSTD_btopt }, /* level 19.*/
|
|
+ { 17, 18, 17, 9, 3,256, ZSTD_btopt2 }, /* level 20.*/
|
|
+ { 17, 18, 17, 10, 3,256, ZSTD_btopt2 }, /* level 21.*/
|
|
+ { 17, 18, 17, 11, 3,512, ZSTD_btopt2 }, /* level 22.*/
|
|
+},
|
|
+{ /* for srcSize <= 16 KB */
|
|
+ /* W, C, H, S, L, T, strat */
|
|
+ { 14, 12, 12, 1, 7, 6, ZSTD_fast }, /* level 0 - not used */
|
|
+ { 14, 14, 14, 1, 6, 6, ZSTD_fast }, /* level 1 */
|
|
+ { 14, 14, 14, 1, 4, 6, ZSTD_fast }, /* level 2 */
|
|
+ { 14, 14, 14, 1, 4, 6, ZSTD_dfast }, /* level 3.*/
|
|
+ { 14, 14, 14, 4, 4, 6, ZSTD_greedy }, /* level 4.*/
|
|
+ { 14, 14, 14, 3, 4, 6, ZSTD_lazy }, /* level 5.*/
|
|
+ { 14, 14, 14, 4, 4, 6, ZSTD_lazy2 }, /* level 6 */
|
|
+ { 14, 14, 14, 5, 4, 6, ZSTD_lazy2 }, /* level 7 */
|
|
+ { 14, 14, 14, 6, 4, 6, ZSTD_lazy2 }, /* level 8.*/
|
|
+ { 14, 15, 14, 6, 4, 6, ZSTD_btlazy2 }, /* level 9.*/
|
|
+ { 14, 15, 14, 3, 3, 6, ZSTD_btopt }, /* level 10.*/
|
|
+ { 14, 15, 14, 6, 3, 8, ZSTD_btopt }, /* level 11.*/
|
|
+ { 14, 15, 14, 6, 3, 16, ZSTD_btopt }, /* level 12.*/
|
|
+ { 14, 15, 14, 6, 3, 24, ZSTD_btopt }, /* level 13.*/
|
|
+ { 14, 15, 15, 6, 3, 48, ZSTD_btopt }, /* level 14.*/
|
|
+ { 14, 15, 15, 6, 3, 64, ZSTD_btopt }, /* level 15.*/
|
|
+ { 14, 15, 15, 6, 3, 96, ZSTD_btopt }, /* level 16.*/
|
|
+ { 14, 15, 15, 6, 3,128, ZSTD_btopt }, /* level 17.*/
|
|
+ { 14, 15, 15, 6, 3,256, ZSTD_btopt }, /* level 18.*/
|
|
+ { 14, 15, 15, 7, 3,256, ZSTD_btopt }, /* level 19.*/
|
|
+ { 14, 15, 15, 8, 3,256, ZSTD_btopt2 }, /* level 20.*/
|
|
+ { 14, 15, 15, 9, 3,256, ZSTD_btopt2 }, /* level 21.*/
|
|
+ { 14, 15, 15, 10, 3,256, ZSTD_btopt2 }, /* level 22.*/
|
|
+},
|
|
+};
|
|
+
|
|
+/*! ZSTD_getCParams() :
|
|
+* @return ZSTD_compressionParameters structure for a selected compression level, `srcSize` and `dictSize`.
|
|
+* Size values are optional, provide 0 if not known or unused */
|
|
+ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSize, size_t dictSize)
|
|
+{
|
|
+ ZSTD_compressionParameters cp;
|
|
+ size_t const addedSize = srcSize ? 0 : 500;
|
|
+ U64 const rSize = srcSize+dictSize ? srcSize+dictSize+addedSize : (U64)-1;
|
|
+ U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */
|
|
+ if (compressionLevel <= 0) compressionLevel = ZSTD_DEFAULT_CLEVEL; /* 0 == default; no negative compressionLevel yet */
|
|
+ if (compressionLevel > ZSTD_MAX_CLEVEL) compressionLevel = ZSTD_MAX_CLEVEL;
|
|
+ cp = ZSTD_defaultCParameters[tableID][compressionLevel];
|
|
+ if (MEM_32bits()) { /* auto-correction, for 32-bits mode */
|
|
+ if (cp.windowLog > ZSTD_WINDOWLOG_MAX) cp.windowLog = ZSTD_WINDOWLOG_MAX;
|
|
+ if (cp.chainLog > ZSTD_CHAINLOG_MAX) cp.chainLog = ZSTD_CHAINLOG_MAX;
|
|
+ if (cp.hashLog > ZSTD_HASHLOG_MAX) cp.hashLog = ZSTD_HASHLOG_MAX;
|
|
+ }
|
|
+ cp = ZSTD_adjustCParams(cp, srcSize, dictSize);
|
|
+ return cp;
|
|
+}
|
|
+
|
|
+/*! ZSTD_getParams() :
|
|
+* same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
|
|
+* All fields of `ZSTD_frameParameters` are set to default (0) */
|
|
+ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSize, size_t dictSize) {
|
|
+ ZSTD_parameters params;
|
|
+ ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSize, dictSize);
|
|
+ memset(¶ms, 0, sizeof(params));
|
|
+ params.cParams = cParams;
|
|
+ return params;
|
|
+}
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_maxCLevel);
|
|
+EXPORT_SYMBOL(ZSTD_compressBound);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_CCtxWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initCCtx);
|
|
+EXPORT_SYMBOL(ZSTD_compressCCtx);
|
|
+EXPORT_SYMBOL(ZSTD_compress_usingDict);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_CDictWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initCDict);
|
|
+EXPORT_SYMBOL(ZSTD_compress_usingCDict);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_CStreamWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initCStream);
|
|
+EXPORT_SYMBOL(ZSTD_initCStream_usingCDict);
|
|
+EXPORT_SYMBOL(ZSTD_resetCStream);
|
|
+EXPORT_SYMBOL(ZSTD_compressStream);
|
|
+EXPORT_SYMBOL(ZSTD_flushStream);
|
|
+EXPORT_SYMBOL(ZSTD_endStream);
|
|
+EXPORT_SYMBOL(ZSTD_CStreamInSize);
|
|
+EXPORT_SYMBOL(ZSTD_CStreamOutSize);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_getCParams);
|
|
+EXPORT_SYMBOL(ZSTD_getParams);
|
|
+EXPORT_SYMBOL(ZSTD_checkCParams);
|
|
+EXPORT_SYMBOL(ZSTD_adjustCParams);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_compressBegin);
|
|
+EXPORT_SYMBOL(ZSTD_compressBegin_usingDict);
|
|
+EXPORT_SYMBOL(ZSTD_compressBegin_advanced);
|
|
+EXPORT_SYMBOL(ZSTD_copyCCtx);
|
|
+EXPORT_SYMBOL(ZSTD_compressBegin_usingCDict);
|
|
+EXPORT_SYMBOL(ZSTD_compressContinue);
|
|
+EXPORT_SYMBOL(ZSTD_compressEnd);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_getBlockSizeMax);
|
|
+EXPORT_SYMBOL(ZSTD_compressBlock);
|
|
+
|
|
+MODULE_LICENSE("Dual BSD/GPL");
|
|
+MODULE_DESCRIPTION("Zstd Compressor");
|
|
diff --git a/lib/zstd/decompress.c b/lib/zstd/decompress.c
|
|
new file mode 100644
|
|
index 0000000..bd76a75
|
|
--- /dev/null
|
|
+++ b/lib/zstd/decompress.c
|
|
@@ -0,0 +1,2356 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+
|
|
+/* ***************************************************************
|
|
+* Tuning parameters
|
|
+*****************************************************************/
|
|
+/*!
|
|
+* MAXWINDOWSIZE_DEFAULT :
|
|
+* maximum window size accepted by DStream, by default.
|
|
+* Frames requiring more memory will be rejected.
|
|
+*/
|
|
+#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
|
|
+# define ZSTD_MAXWINDOWSIZE_DEFAULT ((1 << ZSTD_WINDOWLOG_MAX) + 1) /* defined within zstd.h */
|
|
+#endif
|
|
+
|
|
+
|
|
+/*-*******************************************************
|
|
+* Dependencies
|
|
+*********************************************************/
|
|
+#include <linux/kernel.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/string.h> /* memcpy, memmove, memset */
|
|
+#include "mem.h" /* low level memory routines */
|
|
+#include "fse.h"
|
|
+#include "huf.h"
|
|
+#include "zstd_internal.h"
|
|
+
|
|
+#define ZSTD_PREFETCH(ptr) __builtin_prefetch(ptr, 0, 0)
|
|
+
|
|
+/*-*************************************
|
|
+* Macros
|
|
+***************************************/
|
|
+#define ZSTD_isError ERR_isError /* for inlining */
|
|
+#define FSE_isError ERR_isError
|
|
+#define HUF_isError ERR_isError
|
|
+
|
|
+
|
|
+/*_*******************************************************
|
|
+* Memory operations
|
|
+**********************************************************/
|
|
+static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
|
|
+
|
|
+
|
|
+/*-*************************************************************
|
|
+* Context management
|
|
+***************************************************************/
|
|
+typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
|
|
+ ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
|
|
+ ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
|
|
+ ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
|
|
+
|
|
+typedef struct {
|
|
+ FSE_DTable LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
|
|
+ FSE_DTable OFTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
|
|
+ FSE_DTable MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
|
|
+ HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
|
|
+ U32 rep[ZSTD_REP_NUM];
|
|
+} ZSTD_entropyTables_t;
|
|
+
|
|
+struct ZSTD_DCtx_s
|
|
+{
|
|
+ const FSE_DTable* LLTptr;
|
|
+ const FSE_DTable* MLTptr;
|
|
+ const FSE_DTable* OFTptr;
|
|
+ const HUF_DTable* HUFptr;
|
|
+ ZSTD_entropyTables_t entropy;
|
|
+ const void* previousDstEnd; /* detect continuity */
|
|
+ const void* base; /* start of curr segment */
|
|
+ const void* vBase; /* virtual start of previous segment if it was just before curr one */
|
|
+ const void* dictEnd; /* end of previous segment */
|
|
+ size_t expected;
|
|
+ ZSTD_frameParams fParams;
|
|
+ blockType_e bType; /* used in ZSTD_decompressContinue(), to transfer blockType between header decoding and block decoding stages */
|
|
+ ZSTD_dStage stage;
|
|
+ U32 litEntropy;
|
|
+ U32 fseEntropy;
|
|
+ struct xxh64_state xxhState;
|
|
+ size_t headerSize;
|
|
+ U32 dictID;
|
|
+ const BYTE* litPtr;
|
|
+ ZSTD_customMem customMem;
|
|
+ size_t litSize;
|
|
+ size_t rleSize;
|
|
+ BYTE litBuffer[ZSTD_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH];
|
|
+ BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
|
|
+}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
|
|
+
|
|
+size_t ZSTD_DCtxWorkspaceBound(void)
|
|
+{
|
|
+ return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_DCtx));
|
|
+}
|
|
+
|
|
+size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
|
|
+{
|
|
+ dctx->expected = ZSTD_frameHeaderSize_prefix;
|
|
+ dctx->stage = ZSTDds_getFrameHeaderSize;
|
|
+ dctx->previousDstEnd = NULL;
|
|
+ dctx->base = NULL;
|
|
+ dctx->vBase = NULL;
|
|
+ dctx->dictEnd = NULL;
|
|
+ dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
|
|
+ dctx->litEntropy = dctx->fseEntropy = 0;
|
|
+ dctx->dictID = 0;
|
|
+ MEM_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
|
|
+ memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
|
|
+ dctx->LLTptr = dctx->entropy.LLTable;
|
|
+ dctx->MLTptr = dctx->entropy.MLTable;
|
|
+ dctx->OFTptr = dctx->entropy.OFTable;
|
|
+ dctx->HUFptr = dctx->entropy.hufTable;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
|
|
+{
|
|
+ ZSTD_DCtx* dctx;
|
|
+
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+
|
|
+ dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(ZSTD_DCtx), customMem);
|
|
+ if (!dctx) return NULL;
|
|
+ memcpy(&dctx->customMem, &customMem, sizeof(customMem));
|
|
+ ZSTD_decompressBegin(dctx);
|
|
+ return dctx;
|
|
+}
|
|
+
|
|
+ZSTD_DCtx* ZSTD_initDCtx(void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ return ZSTD_createDCtx_advanced(stackMem);
|
|
+}
|
|
+
|
|
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
|
|
+{
|
|
+ if (dctx==NULL) return 0; /* support free on NULL */
|
|
+ ZSTD_free(dctx, dctx->customMem);
|
|
+ return 0; /* reserved as a potential error code in the future */
|
|
+}
|
|
+
|
|
+void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
|
|
+{
|
|
+ size_t const workSpaceSize = (ZSTD_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH) + ZSTD_frameHeaderSize_max;
|
|
+ memcpy(dstDCtx, srcDCtx, sizeof(ZSTD_DCtx) - workSpaceSize); /* no need to copy workspace */
|
|
+}
|
|
+
|
|
+static void ZSTD_refDDict(ZSTD_DCtx* dstDCtx, const ZSTD_DDict* ddict);
|
|
+
|
|
+
|
|
+/*-*************************************************************
|
|
+* Decompression section
|
|
+***************************************************************/
|
|
+
|
|
+/*! ZSTD_isFrame() :
|
|
+ * Tells if the content of `buffer` starts with a valid Frame Identifier.
|
|
+ * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
|
|
+ * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
|
|
+ * Note 3 : Skippable Frame Identifiers are considered valid. */
|
|
+unsigned ZSTD_isFrame(const void* buffer, size_t size)
|
|
+{
|
|
+ if (size < 4) return 0;
|
|
+ { U32 const magic = MEM_readLE32(buffer);
|
|
+ if (magic == ZSTD_MAGICNUMBER) return 1;
|
|
+ if ((magic & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/** ZSTD_frameHeaderSize() :
|
|
+* srcSize must be >= ZSTD_frameHeaderSize_prefix.
|
|
+* @return : size of the Frame Header */
|
|
+static size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
|
|
+{
|
|
+ if (srcSize < ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong);
|
|
+ { BYTE const fhd = ((const BYTE*)src)[4];
|
|
+ U32 const dictID= fhd & 3;
|
|
+ U32 const singleSegment = (fhd >> 5) & 1;
|
|
+ U32 const fcsId = fhd >> 6;
|
|
+ return ZSTD_frameHeaderSize_prefix + !singleSegment + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
|
|
+ + (singleSegment && !fcsId);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/** ZSTD_getFrameParams() :
|
|
+* decode Frame Header, or require larger `srcSize`.
|
|
+* @return : 0, `fparamsPtr` is correctly filled,
|
|
+* >0, `srcSize` is too small, result is expected `srcSize`,
|
|
+* or an error code, which can be tested using ZSTD_isError() */
|
|
+size_t ZSTD_getFrameParams(ZSTD_frameParams* fparamsPtr, const void* src, size_t srcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+
|
|
+ if (srcSize < ZSTD_frameHeaderSize_prefix) return ZSTD_frameHeaderSize_prefix;
|
|
+ if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
|
|
+ if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
|
|
+ if (srcSize < ZSTD_skippableHeaderSize) return ZSTD_skippableHeaderSize; /* magic number + skippable frame length */
|
|
+ memset(fparamsPtr, 0, sizeof(*fparamsPtr));
|
|
+ fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4);
|
|
+ fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */
|
|
+ return 0;
|
|
+ }
|
|
+ return ERROR(prefix_unknown);
|
|
+ }
|
|
+
|
|
+ /* ensure there is enough `srcSize` to fully read/decode frame header */
|
|
+ { size_t const fhsize = ZSTD_frameHeaderSize(src, srcSize);
|
|
+ if (srcSize < fhsize) return fhsize; }
|
|
+
|
|
+ { BYTE const fhdByte = ip[4];
|
|
+ size_t pos = 5;
|
|
+ U32 const dictIDSizeCode = fhdByte&3;
|
|
+ U32 const checksumFlag = (fhdByte>>2)&1;
|
|
+ U32 const singleSegment = (fhdByte>>5)&1;
|
|
+ U32 const fcsID = fhdByte>>6;
|
|
+ U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX;
|
|
+ U32 windowSize = 0;
|
|
+ U32 dictID = 0;
|
|
+ U64 frameContentSize = 0;
|
|
+ if ((fhdByte & 0x08) != 0) return ERROR(frameParameter_unsupported); /* reserved bits, which must be zero */
|
|
+ if (!singleSegment) {
|
|
+ BYTE const wlByte = ip[pos++];
|
|
+ U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
|
|
+ if (windowLog > ZSTD_WINDOWLOG_MAX) return ERROR(frameParameter_windowTooLarge); /* avoids issue with 1 << windowLog */
|
|
+ windowSize = (1U << windowLog);
|
|
+ windowSize += (windowSize >> 3) * (wlByte&7);
|
|
+ }
|
|
+
|
|
+ switch(dictIDSizeCode)
|
|
+ {
|
|
+ default: /* impossible */
|
|
+ case 0 : break;
|
|
+ case 1 : dictID = ip[pos]; pos++; break;
|
|
+ case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
|
|
+ case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
|
|
+ }
|
|
+ switch(fcsID)
|
|
+ {
|
|
+ default: /* impossible */
|
|
+ case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
|
|
+ case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
|
|
+ case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
|
|
+ case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
|
|
+ }
|
|
+ if (!windowSize) windowSize = (U32)frameContentSize;
|
|
+ if (windowSize > windowSizeMax) return ERROR(frameParameter_windowTooLarge);
|
|
+ fparamsPtr->frameContentSize = frameContentSize;
|
|
+ fparamsPtr->windowSize = windowSize;
|
|
+ fparamsPtr->dictID = dictID;
|
|
+ fparamsPtr->checksumFlag = checksumFlag;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/** ZSTD_getFrameContentSize() :
|
|
+* compatible with legacy mode
|
|
+* @return : decompressed size of the single frame pointed to be `src` if known, otherwise
|
|
+* - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
|
|
+* - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
|
|
+unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
|
|
+{
|
|
+ {
|
|
+ ZSTD_frameParams fParams;
|
|
+ if (ZSTD_getFrameParams(&fParams, src, srcSize) != 0) return ZSTD_CONTENTSIZE_ERROR;
|
|
+ if (fParams.windowSize == 0) {
|
|
+ /* Either skippable or empty frame, size == 0 either way */
|
|
+ return 0;
|
|
+ } else if (fParams.frameContentSize != 0) {
|
|
+ return fParams.frameContentSize;
|
|
+ } else {
|
|
+ return ZSTD_CONTENTSIZE_UNKNOWN;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/** ZSTD_findDecompressedSize() :
|
|
+ * compatible with legacy mode
|
|
+ * `srcSize` must be the exact length of some number of ZSTD compressed and/or
|
|
+ * skippable frames
|
|
+ * @return : decompressed size of the frames contained */
|
|
+unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
|
|
+{
|
|
+ {
|
|
+ unsigned long long totalDstSize = 0;
|
|
+ while (srcSize >= ZSTD_frameHeaderSize_prefix) {
|
|
+ const U32 magicNumber = MEM_readLE32(src);
|
|
+
|
|
+ if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
|
|
+ size_t skippableSize;
|
|
+ if (srcSize < ZSTD_skippableHeaderSize)
|
|
+ return ERROR(srcSize_wrong);
|
|
+ skippableSize = MEM_readLE32((const BYTE *)src + 4) +
|
|
+ ZSTD_skippableHeaderSize;
|
|
+ if (srcSize < skippableSize) {
|
|
+ return ZSTD_CONTENTSIZE_ERROR;
|
|
+ }
|
|
+
|
|
+ src = (const BYTE *)src + skippableSize;
|
|
+ srcSize -= skippableSize;
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ {
|
|
+ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
|
|
+ if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
|
|
+
|
|
+ /* check for overflow */
|
|
+ if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
|
|
+ totalDstSize += ret;
|
|
+ }
|
|
+ {
|
|
+ size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
|
|
+ if (ZSTD_isError(frameSrcSize)) {
|
|
+ return ZSTD_CONTENTSIZE_ERROR;
|
|
+ }
|
|
+
|
|
+ src = (const BYTE *)src + frameSrcSize;
|
|
+ srcSize -= frameSrcSize;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (srcSize) {
|
|
+ return ZSTD_CONTENTSIZE_ERROR;
|
|
+ }
|
|
+
|
|
+ return totalDstSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+/** ZSTD_decodeFrameHeader() :
|
|
+* `headerSize` must be the size provided by ZSTD_frameHeaderSize().
|
|
+* @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
|
|
+static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
|
|
+{
|
|
+ size_t const result = ZSTD_getFrameParams(&(dctx->fParams), src, headerSize);
|
|
+ if (ZSTD_isError(result)) return result; /* invalid header */
|
|
+ if (result>0) return ERROR(srcSize_wrong); /* headerSize too small */
|
|
+ if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong);
|
|
+ if (dctx->fParams.checksumFlag) xxh64_reset(&dctx->xxhState, 0);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+typedef struct
|
|
+{
|
|
+ blockType_e blockType;
|
|
+ U32 lastBlock;
|
|
+ U32 origSize;
|
|
+} blockProperties_t;
|
|
+
|
|
+/*! ZSTD_getcBlockSize() :
|
|
+* Provides the size of compressed block from block header `src` */
|
|
+size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
|
+{
|
|
+ if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
|
|
+ { U32 const cBlockHeader = MEM_readLE24(src);
|
|
+ U32 const cSize = cBlockHeader >> 3;
|
|
+ bpPtr->lastBlock = cBlockHeader & 1;
|
|
+ bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
|
|
+ bpPtr->origSize = cSize; /* only useful for RLE */
|
|
+ if (bpPtr->blockType == bt_rle) return 1;
|
|
+ if (bpPtr->blockType == bt_reserved) return ERROR(corruption_detected);
|
|
+ return cSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+ memcpy(dst, src, srcSize);
|
|
+ return srcSize;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, size_t regenSize)
|
|
+{
|
|
+ if (srcSize != 1) return ERROR(srcSize_wrong);
|
|
+ if (regenSize > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+ memset(dst, *(const BYTE*)src, regenSize);
|
|
+ return regenSize;
|
|
+}
|
|
+
|
|
+/*! ZSTD_decodeLiteralsBlock() :
|
|
+ @return : nb of bytes read from src (< srcSize ) */
|
|
+size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
|
|
+ const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
|
|
+{
|
|
+ if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
|
|
+
|
|
+ { const BYTE* const istart = (const BYTE*) src;
|
|
+ symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
|
|
+
|
|
+ switch(litEncType)
|
|
+ {
|
|
+ case set_repeat:
|
|
+ if (dctx->litEntropy==0) return ERROR(dictionary_corrupted);
|
|
+ /* fall-through */
|
|
+ case set_compressed:
|
|
+ if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
|
|
+ { size_t lhSize, litSize, litCSize;
|
|
+ U32 singleStream=0;
|
|
+ U32 const lhlCode = (istart[0] >> 2) & 3;
|
|
+ U32 const lhc = MEM_readLE32(istart);
|
|
+ switch(lhlCode)
|
|
+ {
|
|
+ case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
|
|
+ /* 2 - 2 - 10 - 10 */
|
|
+ singleStream = !lhlCode;
|
|
+ lhSize = 3;
|
|
+ litSize = (lhc >> 4) & 0x3FF;
|
|
+ litCSize = (lhc >> 14) & 0x3FF;
|
|
+ break;
|
|
+ case 2:
|
|
+ /* 2 - 2 - 14 - 14 */
|
|
+ lhSize = 4;
|
|
+ litSize = (lhc >> 4) & 0x3FFF;
|
|
+ litCSize = lhc >> 18;
|
|
+ break;
|
|
+ case 3:
|
|
+ /* 2 - 2 - 18 - 18 */
|
|
+ lhSize = 5;
|
|
+ litSize = (lhc >> 4) & 0x3FFFF;
|
|
+ litCSize = (lhc >> 22) + (istart[4] << 10);
|
|
+ break;
|
|
+ }
|
|
+ if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
|
|
+ if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
|
|
+
|
|
+ if (HUF_isError((litEncType==set_repeat) ?
|
|
+ ( singleStream ?
|
|
+ HUF_decompress1X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) :
|
|
+ HUF_decompress4X_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr) ) :
|
|
+ ( singleStream ?
|
|
+ HUF_decompress1X2_DCtx(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) :
|
|
+ HUF_decompress4X_hufOnly (dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize)) ))
|
|
+ return ERROR(corruption_detected);
|
|
+
|
|
+ dctx->litPtr = dctx->litBuffer;
|
|
+ dctx->litSize = litSize;
|
|
+ dctx->litEntropy = 1;
|
|
+ if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
|
|
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
|
|
+ return litCSize + lhSize;
|
|
+ }
|
|
+
|
|
+ case set_basic:
|
|
+ { size_t litSize, lhSize;
|
|
+ U32 const lhlCode = ((istart[0]) >> 2) & 3;
|
|
+ switch(lhlCode)
|
|
+ {
|
|
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
|
|
+ lhSize = 1;
|
|
+ litSize = istart[0] >> 3;
|
|
+ break;
|
|
+ case 1:
|
|
+ lhSize = 2;
|
|
+ litSize = MEM_readLE16(istart) >> 4;
|
|
+ break;
|
|
+ case 3:
|
|
+ lhSize = 3;
|
|
+ litSize = MEM_readLE24(istart) >> 4;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
|
|
+ if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
|
|
+ memcpy(dctx->litBuffer, istart+lhSize, litSize);
|
|
+ dctx->litPtr = dctx->litBuffer;
|
|
+ dctx->litSize = litSize;
|
|
+ memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
|
|
+ return lhSize+litSize;
|
|
+ }
|
|
+ /* direct reference into compressed stream */
|
|
+ dctx->litPtr = istart+lhSize;
|
|
+ dctx->litSize = litSize;
|
|
+ return lhSize+litSize;
|
|
+ }
|
|
+
|
|
+ case set_rle:
|
|
+ { U32 const lhlCode = ((istart[0]) >> 2) & 3;
|
|
+ size_t litSize, lhSize;
|
|
+ switch(lhlCode)
|
|
+ {
|
|
+ case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
|
|
+ lhSize = 1;
|
|
+ litSize = istart[0] >> 3;
|
|
+ break;
|
|
+ case 1:
|
|
+ lhSize = 2;
|
|
+ litSize = MEM_readLE16(istart) >> 4;
|
|
+ break;
|
|
+ case 3:
|
|
+ lhSize = 3;
|
|
+ litSize = MEM_readLE24(istart) >> 4;
|
|
+ if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
|
|
+ break;
|
|
+ }
|
|
+ if (litSize > ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected);
|
|
+ memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
|
|
+ dctx->litPtr = dctx->litBuffer;
|
|
+ dctx->litSize = litSize;
|
|
+ return lhSize+1;
|
|
+ }
|
|
+ default:
|
|
+ return ERROR(corruption_detected); /* impossible */
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+typedef union {
|
|
+ FSE_decode_t realData;
|
|
+ U32 alignedBy4;
|
|
+} FSE_decode_t4;
|
|
+
|
|
+static const FSE_decode_t4 LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
|
|
+ { { LL_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
|
|
+ { { 0, 0, 4 } }, /* 0 : base, symbol, bits */
|
|
+ { { 16, 0, 4 } },
|
|
+ { { 32, 1, 5 } },
|
|
+ { { 0, 3, 5 } },
|
|
+ { { 0, 4, 5 } },
|
|
+ { { 0, 6, 5 } },
|
|
+ { { 0, 7, 5 } },
|
|
+ { { 0, 9, 5 } },
|
|
+ { { 0, 10, 5 } },
|
|
+ { { 0, 12, 5 } },
|
|
+ { { 0, 14, 6 } },
|
|
+ { { 0, 16, 5 } },
|
|
+ { { 0, 18, 5 } },
|
|
+ { { 0, 19, 5 } },
|
|
+ { { 0, 21, 5 } },
|
|
+ { { 0, 22, 5 } },
|
|
+ { { 0, 24, 5 } },
|
|
+ { { 32, 25, 5 } },
|
|
+ { { 0, 26, 5 } },
|
|
+ { { 0, 27, 6 } },
|
|
+ { { 0, 29, 6 } },
|
|
+ { { 0, 31, 6 } },
|
|
+ { { 32, 0, 4 } },
|
|
+ { { 0, 1, 4 } },
|
|
+ { { 0, 2, 5 } },
|
|
+ { { 32, 4, 5 } },
|
|
+ { { 0, 5, 5 } },
|
|
+ { { 32, 7, 5 } },
|
|
+ { { 0, 8, 5 } },
|
|
+ { { 32, 10, 5 } },
|
|
+ { { 0, 11, 5 } },
|
|
+ { { 0, 13, 6 } },
|
|
+ { { 32, 16, 5 } },
|
|
+ { { 0, 17, 5 } },
|
|
+ { { 32, 19, 5 } },
|
|
+ { { 0, 20, 5 } },
|
|
+ { { 32, 22, 5 } },
|
|
+ { { 0, 23, 5 } },
|
|
+ { { 0, 25, 4 } },
|
|
+ { { 16, 25, 4 } },
|
|
+ { { 32, 26, 5 } },
|
|
+ { { 0, 28, 6 } },
|
|
+ { { 0, 30, 6 } },
|
|
+ { { 48, 0, 4 } },
|
|
+ { { 16, 1, 4 } },
|
|
+ { { 32, 2, 5 } },
|
|
+ { { 32, 3, 5 } },
|
|
+ { { 32, 5, 5 } },
|
|
+ { { 32, 6, 5 } },
|
|
+ { { 32, 8, 5 } },
|
|
+ { { 32, 9, 5 } },
|
|
+ { { 32, 11, 5 } },
|
|
+ { { 32, 12, 5 } },
|
|
+ { { 0, 15, 6 } },
|
|
+ { { 32, 17, 5 } },
|
|
+ { { 32, 18, 5 } },
|
|
+ { { 32, 20, 5 } },
|
|
+ { { 32, 21, 5 } },
|
|
+ { { 32, 23, 5 } },
|
|
+ { { 32, 24, 5 } },
|
|
+ { { 0, 35, 6 } },
|
|
+ { { 0, 34, 6 } },
|
|
+ { { 0, 33, 6 } },
|
|
+ { { 0, 32, 6 } },
|
|
+}; /* LL_defaultDTable */
|
|
+
|
|
+static const FSE_decode_t4 ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
|
|
+ { { ML_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
|
|
+ { { 0, 0, 6 } }, /* 0 : base, symbol, bits */
|
|
+ { { 0, 1, 4 } },
|
|
+ { { 32, 2, 5 } },
|
|
+ { { 0, 3, 5 } },
|
|
+ { { 0, 5, 5 } },
|
|
+ { { 0, 6, 5 } },
|
|
+ { { 0, 8, 5 } },
|
|
+ { { 0, 10, 6 } },
|
|
+ { { 0, 13, 6 } },
|
|
+ { { 0, 16, 6 } },
|
|
+ { { 0, 19, 6 } },
|
|
+ { { 0, 22, 6 } },
|
|
+ { { 0, 25, 6 } },
|
|
+ { { 0, 28, 6 } },
|
|
+ { { 0, 31, 6 } },
|
|
+ { { 0, 33, 6 } },
|
|
+ { { 0, 35, 6 } },
|
|
+ { { 0, 37, 6 } },
|
|
+ { { 0, 39, 6 } },
|
|
+ { { 0, 41, 6 } },
|
|
+ { { 0, 43, 6 } },
|
|
+ { { 0, 45, 6 } },
|
|
+ { { 16, 1, 4 } },
|
|
+ { { 0, 2, 4 } },
|
|
+ { { 32, 3, 5 } },
|
|
+ { { 0, 4, 5 } },
|
|
+ { { 32, 6, 5 } },
|
|
+ { { 0, 7, 5 } },
|
|
+ { { 0, 9, 6 } },
|
|
+ { { 0, 12, 6 } },
|
|
+ { { 0, 15, 6 } },
|
|
+ { { 0, 18, 6 } },
|
|
+ { { 0, 21, 6 } },
|
|
+ { { 0, 24, 6 } },
|
|
+ { { 0, 27, 6 } },
|
|
+ { { 0, 30, 6 } },
|
|
+ { { 0, 32, 6 } },
|
|
+ { { 0, 34, 6 } },
|
|
+ { { 0, 36, 6 } },
|
|
+ { { 0, 38, 6 } },
|
|
+ { { 0, 40, 6 } },
|
|
+ { { 0, 42, 6 } },
|
|
+ { { 0, 44, 6 } },
|
|
+ { { 32, 1, 4 } },
|
|
+ { { 48, 1, 4 } },
|
|
+ { { 16, 2, 4 } },
|
|
+ { { 32, 4, 5 } },
|
|
+ { { 32, 5, 5 } },
|
|
+ { { 32, 7, 5 } },
|
|
+ { { 32, 8, 5 } },
|
|
+ { { 0, 11, 6 } },
|
|
+ { { 0, 14, 6 } },
|
|
+ { { 0, 17, 6 } },
|
|
+ { { 0, 20, 6 } },
|
|
+ { { 0, 23, 6 } },
|
|
+ { { 0, 26, 6 } },
|
|
+ { { 0, 29, 6 } },
|
|
+ { { 0, 52, 6 } },
|
|
+ { { 0, 51, 6 } },
|
|
+ { { 0, 50, 6 } },
|
|
+ { { 0, 49, 6 } },
|
|
+ { { 0, 48, 6 } },
|
|
+ { { 0, 47, 6 } },
|
|
+ { { 0, 46, 6 } },
|
|
+}; /* ML_defaultDTable */
|
|
+
|
|
+static const FSE_decode_t4 OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
|
|
+ { { OF_DEFAULTNORMLOG, 1, 1 } }, /* header : tableLog, fastMode, fastMode */
|
|
+ { { 0, 0, 5 } }, /* 0 : base, symbol, bits */
|
|
+ { { 0, 6, 4 } },
|
|
+ { { 0, 9, 5 } },
|
|
+ { { 0, 15, 5 } },
|
|
+ { { 0, 21, 5 } },
|
|
+ { { 0, 3, 5 } },
|
|
+ { { 0, 7, 4 } },
|
|
+ { { 0, 12, 5 } },
|
|
+ { { 0, 18, 5 } },
|
|
+ { { 0, 23, 5 } },
|
|
+ { { 0, 5, 5 } },
|
|
+ { { 0, 8, 4 } },
|
|
+ { { 0, 14, 5 } },
|
|
+ { { 0, 20, 5 } },
|
|
+ { { 0, 2, 5 } },
|
|
+ { { 16, 7, 4 } },
|
|
+ { { 0, 11, 5 } },
|
|
+ { { 0, 17, 5 } },
|
|
+ { { 0, 22, 5 } },
|
|
+ { { 0, 4, 5 } },
|
|
+ { { 16, 8, 4 } },
|
|
+ { { 0, 13, 5 } },
|
|
+ { { 0, 19, 5 } },
|
|
+ { { 0, 1, 5 } },
|
|
+ { { 16, 6, 4 } },
|
|
+ { { 0, 10, 5 } },
|
|
+ { { 0, 16, 5 } },
|
|
+ { { 0, 28, 5 } },
|
|
+ { { 0, 27, 5 } },
|
|
+ { { 0, 26, 5 } },
|
|
+ { { 0, 25, 5 } },
|
|
+ { { 0, 24, 5 } },
|
|
+}; /* OF_defaultDTable */
|
|
+
|
|
+/*! ZSTD_buildSeqTable() :
|
|
+ @return : nb bytes read from src,
|
|
+ or an error code if it fails, testable with ZSTD_isError()
|
|
+*/
|
|
+static size_t ZSTD_buildSeqTable(FSE_DTable* DTableSpace, const FSE_DTable** DTablePtr,
|
|
+ symbolEncodingType_e type, U32 max, U32 maxLog,
|
|
+ const void* src, size_t srcSize,
|
|
+ const FSE_decode_t4* defaultTable, U32 flagRepeatTable)
|
|
+{
|
|
+ const void* const tmpPtr = defaultTable; /* bypass strict aliasing */
|
|
+ switch(type)
|
|
+ {
|
|
+ case set_rle :
|
|
+ if (!srcSize) return ERROR(srcSize_wrong);
|
|
+ if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
|
|
+ FSE_buildDTable_rle(DTableSpace, *(const BYTE*)src);
|
|
+ *DTablePtr = DTableSpace;
|
|
+ return 1;
|
|
+ case set_basic :
|
|
+ *DTablePtr = (const FSE_DTable*)tmpPtr;
|
|
+ return 0;
|
|
+ case set_repeat:
|
|
+ if (!flagRepeatTable) return ERROR(corruption_detected);
|
|
+ return 0;
|
|
+ default : /* impossible */
|
|
+ case set_compressed :
|
|
+ { U32 tableLog;
|
|
+ S16 norm[MaxSeq+1];
|
|
+ size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
|
|
+ if (FSE_isError(headerSize)) return ERROR(corruption_detected);
|
|
+ if (tableLog > maxLog) return ERROR(corruption_detected);
|
|
+ FSE_buildDTable(DTableSpace, norm, max, tableLog);
|
|
+ *DTablePtr = DTableSpace;
|
|
+ return headerSize;
|
|
+ } }
|
|
+}
|
|
+
|
|
+size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ const BYTE* const istart = (const BYTE* const)src;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* ip = istart;
|
|
+
|
|
+ /* check */
|
|
+ if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
|
|
+
|
|
+ /* SeqHead */
|
|
+ { int nbSeq = *ip++;
|
|
+ if (!nbSeq) { *nbSeqPtr=0; return 1; }
|
|
+ if (nbSeq > 0x7F) {
|
|
+ if (nbSeq == 0xFF) {
|
|
+ if (ip+2 > iend) return ERROR(srcSize_wrong);
|
|
+ nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
|
|
+ } else {
|
|
+ if (ip >= iend) return ERROR(srcSize_wrong);
|
|
+ nbSeq = ((nbSeq-0x80)<<8) + *ip++;
|
|
+ }
|
|
+ }
|
|
+ *nbSeqPtr = nbSeq;
|
|
+ }
|
|
+
|
|
+ /* FSE table descriptors */
|
|
+ if (ip+4 > iend) return ERROR(srcSize_wrong); /* minimum possible size */
|
|
+ { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
|
|
+ symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
|
|
+ symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
|
|
+ ip++;
|
|
+
|
|
+ /* Build DTables */
|
|
+ { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
|
|
+ LLtype, MaxLL, LLFSELog,
|
|
+ ip, iend-ip, LL_defaultDTable, dctx->fseEntropy);
|
|
+ if (ZSTD_isError(llhSize)) return ERROR(corruption_detected);
|
|
+ ip += llhSize;
|
|
+ }
|
|
+ { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
|
|
+ OFtype, MaxOff, OffFSELog,
|
|
+ ip, iend-ip, OF_defaultDTable, dctx->fseEntropy);
|
|
+ if (ZSTD_isError(ofhSize)) return ERROR(corruption_detected);
|
|
+ ip += ofhSize;
|
|
+ }
|
|
+ { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
|
|
+ MLtype, MaxML, MLFSELog,
|
|
+ ip, iend-ip, ML_defaultDTable, dctx->fseEntropy);
|
|
+ if (ZSTD_isError(mlhSize)) return ERROR(corruption_detected);
|
|
+ ip += mlhSize;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return ip-istart;
|
|
+}
|
|
+
|
|
+
|
|
+typedef struct {
|
|
+ size_t litLength;
|
|
+ size_t matchLength;
|
|
+ size_t offset;
|
|
+ const BYTE* match;
|
|
+} seq_t;
|
|
+
|
|
+typedef struct {
|
|
+ BIT_DStream_t DStream;
|
|
+ FSE_DState_t stateLL;
|
|
+ FSE_DState_t stateOffb;
|
|
+ FSE_DState_t stateML;
|
|
+ size_t prevOffset[ZSTD_REP_NUM];
|
|
+ const BYTE* base;
|
|
+ size_t pos;
|
|
+ uPtrDiff gotoDict;
|
|
+} seqState_t;
|
|
+
|
|
+
|
|
+FORCE_NOINLINE
|
|
+size_t ZSTD_execSequenceLast7(BYTE* op,
|
|
+ BYTE* const oend, seq_t sequence,
|
|
+ const BYTE** litPtr, const BYTE* const litLimit,
|
|
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
|
|
+{
|
|
+ BYTE* const oLitEnd = op + sequence.litLength;
|
|
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
|
|
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
|
|
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
|
|
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
|
|
+ const BYTE* match = oLitEnd - sequence.offset;
|
|
+
|
|
+ /* check */
|
|
+ if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
|
|
+ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
|
|
+ if (oLitEnd <= oend_w) return ERROR(GENERIC); /* Precondition */
|
|
+
|
|
+ /* copy literals */
|
|
+ if (op < oend_w) {
|
|
+ ZSTD_wildcopy(op, *litPtr, oend_w - op);
|
|
+ *litPtr += oend_w - op;
|
|
+ op = oend_w;
|
|
+ }
|
|
+ while (op < oLitEnd) *op++ = *(*litPtr)++;
|
|
+
|
|
+ /* copy Match */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
|
|
+ /* offset beyond prefix */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
|
|
+ match = dictEnd - (base-match);
|
|
+ if (match + sequence.matchLength <= dictEnd) {
|
|
+ memmove(oLitEnd, match, sequence.matchLength);
|
|
+ return sequenceLength;
|
|
+ }
|
|
+ /* span extDict & currPrefixSegment */
|
|
+ { size_t const length1 = dictEnd - match;
|
|
+ memmove(oLitEnd, match, length1);
|
|
+ op = oLitEnd + length1;
|
|
+ sequence.matchLength -= length1;
|
|
+ match = base;
|
|
+ } }
|
|
+ while (op < oMatchEnd) *op++ = *match++;
|
|
+ return sequenceLength;
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+
|
|
+static seq_t ZSTD_decodeSequence(seqState_t* seqState)
|
|
+{
|
|
+ seq_t seq;
|
|
+
|
|
+ U32 const llCode = FSE_peekSymbol(&seqState->stateLL);
|
|
+ U32 const mlCode = FSE_peekSymbol(&seqState->stateML);
|
|
+ U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */
|
|
+
|
|
+ U32 const llBits = LL_bits[llCode];
|
|
+ U32 const mlBits = ML_bits[mlCode];
|
|
+ U32 const ofBits = ofCode;
|
|
+ U32 const totalBits = llBits+mlBits+ofBits;
|
|
+
|
|
+ static const U32 LL_base[MaxLL+1] = {
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
+ 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
|
|
+ 0x2000, 0x4000, 0x8000, 0x10000 };
|
|
+
|
|
+ static const U32 ML_base[MaxML+1] = {
|
|
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
|
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
|
|
+ 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
|
|
+ 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
|
|
+
|
|
+ static const U32 OF_base[MaxOff+1] = {
|
|
+ 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
|
|
+ 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
|
|
+ 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
|
|
+ 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD };
|
|
+
|
|
+ /* sequence */
|
|
+ { size_t offset;
|
|
+ if (!ofCode)
|
|
+ offset = 0;
|
|
+ else {
|
|
+ offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
|
|
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
|
|
+ }
|
|
+
|
|
+ if (ofCode <= 1) {
|
|
+ offset += (llCode==0);
|
|
+ if (offset) {
|
|
+ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
|
|
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
|
|
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
|
|
+ seqState->prevOffset[1] = seqState->prevOffset[0];
|
|
+ seqState->prevOffset[0] = offset = temp;
|
|
+ } else {
|
|
+ offset = seqState->prevOffset[0];
|
|
+ }
|
|
+ } else {
|
|
+ seqState->prevOffset[2] = seqState->prevOffset[1];
|
|
+ seqState->prevOffset[1] = seqState->prevOffset[0];
|
|
+ seqState->prevOffset[0] = offset;
|
|
+ }
|
|
+ seq.offset = offset;
|
|
+ }
|
|
+
|
|
+ seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
|
|
+ if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&seqState->DStream);
|
|
+
|
|
+ seq.litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
|
|
+ if (MEM_32bits() ||
|
|
+ (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&seqState->DStream);
|
|
+
|
|
+ /* ANS state update */
|
|
+ FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
|
|
+ FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
|
|
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
|
|
+ FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
|
|
+
|
|
+ return seq;
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE
|
|
+size_t ZSTD_execSequence(BYTE* op,
|
|
+ BYTE* const oend, seq_t sequence,
|
|
+ const BYTE** litPtr, const BYTE* const litLimit,
|
|
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
|
|
+{
|
|
+ BYTE* const oLitEnd = op + sequence.litLength;
|
|
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
|
|
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
|
|
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
|
|
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
|
|
+ const BYTE* match = oLitEnd - sequence.offset;
|
|
+
|
|
+ /* check */
|
|
+ if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
|
|
+ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
|
|
+ if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd);
|
|
+
|
|
+ /* copy Literals */
|
|
+ ZSTD_copy8(op, *litPtr);
|
|
+ if (sequence.litLength > 8)
|
|
+ ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
|
|
+ op = oLitEnd;
|
|
+ *litPtr = iLitEnd; /* update for next sequence */
|
|
+
|
|
+ /* copy Match */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
|
|
+ /* offset beyond prefix */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
|
|
+ match = dictEnd + (match - base);
|
|
+ if (match + sequence.matchLength <= dictEnd) {
|
|
+ memmove(oLitEnd, match, sequence.matchLength);
|
|
+ return sequenceLength;
|
|
+ }
|
|
+ /* span extDict & currPrefixSegment */
|
|
+ { size_t const length1 = dictEnd - match;
|
|
+ memmove(oLitEnd, match, length1);
|
|
+ op = oLitEnd + length1;
|
|
+ sequence.matchLength -= length1;
|
|
+ match = base;
|
|
+ if (op > oend_w || sequence.matchLength < MINMATCH) {
|
|
+ U32 i;
|
|
+ for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
|
|
+ return sequenceLength;
|
|
+ }
|
|
+ } }
|
|
+ /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
|
|
+
|
|
+ /* match within prefix */
|
|
+ if (sequence.offset < 8) {
|
|
+ /* close range match, overlap */
|
|
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
|
|
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
|
|
+ int const sub2 = dec64table[sequence.offset];
|
|
+ op[0] = match[0];
|
|
+ op[1] = match[1];
|
|
+ op[2] = match[2];
|
|
+ op[3] = match[3];
|
|
+ match += dec32table[sequence.offset];
|
|
+ ZSTD_copy4(op+4, match);
|
|
+ match -= sub2;
|
|
+ } else {
|
|
+ ZSTD_copy8(op, match);
|
|
+ }
|
|
+ op += 8; match += 8;
|
|
+
|
|
+ if (oMatchEnd > oend-(16-MINMATCH)) {
|
|
+ if (op < oend_w) {
|
|
+ ZSTD_wildcopy(op, match, oend_w - op);
|
|
+ match += oend_w - op;
|
|
+ op = oend_w;
|
|
+ }
|
|
+ while (op < oMatchEnd) *op++ = *match++;
|
|
+ } else {
|
|
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
|
|
+ }
|
|
+ return sequenceLength;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_decompressSequences(
|
|
+ ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t maxDstSize,
|
|
+ const void* seqStart, size_t seqSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)seqStart;
|
|
+ const BYTE* const iend = ip + seqSize;
|
|
+ BYTE* const ostart = (BYTE* const)dst;
|
|
+ BYTE* const oend = ostart + maxDstSize;
|
|
+ BYTE* op = ostart;
|
|
+ const BYTE* litPtr = dctx->litPtr;
|
|
+ const BYTE* const litEnd = litPtr + dctx->litSize;
|
|
+ const BYTE* const base = (const BYTE*) (dctx->base);
|
|
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
|
|
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
|
|
+ int nbSeq;
|
|
+
|
|
+ /* Build Decoding Tables */
|
|
+ { size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize);
|
|
+ if (ZSTD_isError(seqHSize)) return seqHSize;
|
|
+ ip += seqHSize;
|
|
+ }
|
|
+
|
|
+ /* Regen sequences */
|
|
+ if (nbSeq) {
|
|
+ seqState_t seqState;
|
|
+ dctx->fseEntropy = 1;
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
|
|
+ CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
|
|
+ FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
|
|
+ FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
|
|
+ FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
|
|
+
|
|
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
|
|
+ nbSeq--;
|
|
+ { seq_t const sequence = ZSTD_decodeSequence(&seqState);
|
|
+ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
|
|
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
|
|
+ op += oneSeqSize;
|
|
+ } }
|
|
+
|
|
+ /* check if reached exact end */
|
|
+ if (nbSeq) return ERROR(corruption_detected);
|
|
+ /* save reps for next block */
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
|
|
+ }
|
|
+
|
|
+ /* last literal segment */
|
|
+ { size_t const lastLLSize = litEnd - litPtr;
|
|
+ if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
|
|
+ memcpy(op, litPtr, lastLLSize);
|
|
+ op += lastLLSize;
|
|
+ }
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE seq_t ZSTD_decodeSequenceLong_generic(seqState_t* seqState, int const longOffsets)
|
|
+{
|
|
+ seq_t seq;
|
|
+
|
|
+ U32 const llCode = FSE_peekSymbol(&seqState->stateLL);
|
|
+ U32 const mlCode = FSE_peekSymbol(&seqState->stateML);
|
|
+ U32 const ofCode = FSE_peekSymbol(&seqState->stateOffb); /* <= maxOff, by table construction */
|
|
+
|
|
+ U32 const llBits = LL_bits[llCode];
|
|
+ U32 const mlBits = ML_bits[mlCode];
|
|
+ U32 const ofBits = ofCode;
|
|
+ U32 const totalBits = llBits+mlBits+ofBits;
|
|
+
|
|
+ static const U32 LL_base[MaxLL+1] = {
|
|
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
+ 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
|
|
+ 0x2000, 0x4000, 0x8000, 0x10000 };
|
|
+
|
|
+ static const U32 ML_base[MaxML+1] = {
|
|
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
|
+ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
|
|
+ 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
|
|
+ 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
|
|
+
|
|
+ static const U32 OF_base[MaxOff+1] = {
|
|
+ 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
|
|
+ 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
|
|
+ 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
|
|
+ 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD };
|
|
+
|
|
+ /* sequence */
|
|
+ { size_t offset;
|
|
+ if (!ofCode)
|
|
+ offset = 0;
|
|
+ else {
|
|
+ if (longOffsets) {
|
|
+ int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN);
|
|
+ offset = OF_base[ofCode] + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
|
|
+ if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream);
|
|
+ if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
|
|
+ } else {
|
|
+ offset = OF_base[ofCode] + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
|
|
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (ofCode <= 1) {
|
|
+ offset += (llCode==0);
|
|
+ if (offset) {
|
|
+ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
|
|
+ temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
|
|
+ if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
|
|
+ seqState->prevOffset[1] = seqState->prevOffset[0];
|
|
+ seqState->prevOffset[0] = offset = temp;
|
|
+ } else {
|
|
+ offset = seqState->prevOffset[0];
|
|
+ }
|
|
+ } else {
|
|
+ seqState->prevOffset[2] = seqState->prevOffset[1];
|
|
+ seqState->prevOffset[1] = seqState->prevOffset[0];
|
|
+ seqState->prevOffset[0] = offset;
|
|
+ }
|
|
+ seq.offset = offset;
|
|
+ }
|
|
+
|
|
+ seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
|
|
+ if (MEM_32bits() && (mlBits+llBits>24)) BIT_reloadDStream(&seqState->DStream);
|
|
+
|
|
+ seq.litLength = LL_base[llCode] + ((llCode>15) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
|
|
+ if (MEM_32bits() ||
|
|
+ (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BIT_reloadDStream(&seqState->DStream);
|
|
+
|
|
+ { size_t const pos = seqState->pos + seq.litLength;
|
|
+ seq.match = seqState->base + pos - seq.offset; /* single memory segment */
|
|
+ if (seq.offset > pos) seq.match += seqState->gotoDict; /* separate memory segment */
|
|
+ seqState->pos = pos + seq.matchLength;
|
|
+ }
|
|
+
|
|
+ /* ANS state update */
|
|
+ FSE_updateState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
|
|
+ FSE_updateState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
|
|
+ if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
|
|
+ FSE_updateState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
|
|
+
|
|
+ return seq;
|
|
+}
|
|
+
|
|
+static seq_t ZSTD_decodeSequenceLong(seqState_t* seqState, unsigned const windowSize) {
|
|
+ if (ZSTD_highbit32(windowSize) > STREAM_ACCUMULATOR_MIN) {
|
|
+ return ZSTD_decodeSequenceLong_generic(seqState, 1);
|
|
+ } else {
|
|
+ return ZSTD_decodeSequenceLong_generic(seqState, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+FORCE_INLINE
|
|
+size_t ZSTD_execSequenceLong(BYTE* op,
|
|
+ BYTE* const oend, seq_t sequence,
|
|
+ const BYTE** litPtr, const BYTE* const litLimit,
|
|
+ const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
|
|
+{
|
|
+ BYTE* const oLitEnd = op + sequence.litLength;
|
|
+ size_t const sequenceLength = sequence.litLength + sequence.matchLength;
|
|
+ BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
|
|
+ BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
|
|
+ const BYTE* const iLitEnd = *litPtr + sequence.litLength;
|
|
+ const BYTE* match = sequence.match;
|
|
+
|
|
+ /* check */
|
|
+ if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
|
|
+ if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
|
|
+ if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, base, vBase, dictEnd);
|
|
+
|
|
+ /* copy Literals */
|
|
+ ZSTD_copy8(op, *litPtr);
|
|
+ if (sequence.litLength > 8)
|
|
+ ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
|
|
+ op = oLitEnd;
|
|
+ *litPtr = iLitEnd; /* update for next sequence */
|
|
+
|
|
+ /* copy Match */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - base)) {
|
|
+ /* offset beyond prefix */
|
|
+ if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
|
|
+ if (match + sequence.matchLength <= dictEnd) {
|
|
+ memmove(oLitEnd, match, sequence.matchLength);
|
|
+ return sequenceLength;
|
|
+ }
|
|
+ /* span extDict & currPrefixSegment */
|
|
+ { size_t const length1 = dictEnd - match;
|
|
+ memmove(oLitEnd, match, length1);
|
|
+ op = oLitEnd + length1;
|
|
+ sequence.matchLength -= length1;
|
|
+ match = base;
|
|
+ if (op > oend_w || sequence.matchLength < MINMATCH) {
|
|
+ U32 i;
|
|
+ for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
|
|
+ return sequenceLength;
|
|
+ }
|
|
+ } }
|
|
+ /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
|
|
+
|
|
+ /* match within prefix */
|
|
+ if (sequence.offset < 8) {
|
|
+ /* close range match, overlap */
|
|
+ static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
|
|
+ static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
|
|
+ int const sub2 = dec64table[sequence.offset];
|
|
+ op[0] = match[0];
|
|
+ op[1] = match[1];
|
|
+ op[2] = match[2];
|
|
+ op[3] = match[3];
|
|
+ match += dec32table[sequence.offset];
|
|
+ ZSTD_copy4(op+4, match);
|
|
+ match -= sub2;
|
|
+ } else {
|
|
+ ZSTD_copy8(op, match);
|
|
+ }
|
|
+ op += 8; match += 8;
|
|
+
|
|
+ if (oMatchEnd > oend-(16-MINMATCH)) {
|
|
+ if (op < oend_w) {
|
|
+ ZSTD_wildcopy(op, match, oend_w - op);
|
|
+ match += oend_w - op;
|
|
+ op = oend_w;
|
|
+ }
|
|
+ while (op < oMatchEnd) *op++ = *match++;
|
|
+ } else {
|
|
+ ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
|
|
+ }
|
|
+ return sequenceLength;
|
|
+}
|
|
+
|
|
+static size_t ZSTD_decompressSequencesLong(
|
|
+ ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t maxDstSize,
|
|
+ const void* seqStart, size_t seqSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)seqStart;
|
|
+ const BYTE* const iend = ip + seqSize;
|
|
+ BYTE* const ostart = (BYTE* const)dst;
|
|
+ BYTE* const oend = ostart + maxDstSize;
|
|
+ BYTE* op = ostart;
|
|
+ const BYTE* litPtr = dctx->litPtr;
|
|
+ const BYTE* const litEnd = litPtr + dctx->litSize;
|
|
+ const BYTE* const base = (const BYTE*) (dctx->base);
|
|
+ const BYTE* const vBase = (const BYTE*) (dctx->vBase);
|
|
+ const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
|
|
+ unsigned const windowSize = dctx->fParams.windowSize;
|
|
+ int nbSeq;
|
|
+
|
|
+ /* Build Decoding Tables */
|
|
+ { size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, seqSize);
|
|
+ if (ZSTD_isError(seqHSize)) return seqHSize;
|
|
+ ip += seqHSize;
|
|
+ }
|
|
+
|
|
+ /* Regen sequences */
|
|
+ if (nbSeq) {
|
|
+#define STORED_SEQS 4
|
|
+#define STOSEQ_MASK (STORED_SEQS-1)
|
|
+#define ADVANCED_SEQS 4
|
|
+ seq_t sequences[STORED_SEQS];
|
|
+ int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
|
|
+ seqState_t seqState;
|
|
+ int seqNb;
|
|
+ dctx->fseEntropy = 1;
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
|
|
+ seqState.base = base;
|
|
+ seqState.pos = (size_t)(op-base);
|
|
+ seqState.gotoDict = (uPtrDiff)dictEnd - (uPtrDiff)base; /* cast to avoid undefined behaviour */
|
|
+ CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
|
|
+ FSE_initDState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
|
|
+ FSE_initDState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
|
|
+ FSE_initDState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
|
|
+
|
|
+ /* prepare in advance */
|
|
+ for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && seqNb<seqAdvance; seqNb++) {
|
|
+ sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, windowSize);
|
|
+ }
|
|
+ if (seqNb<seqAdvance) return ERROR(corruption_detected);
|
|
+
|
|
+ /* decode and decompress */
|
|
+ for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && seqNb<nbSeq ; seqNb++) {
|
|
+ seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, windowSize);
|
|
+ size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STOSEQ_MASK], &litPtr, litEnd, base, vBase, dictEnd);
|
|
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
|
|
+ ZSTD_PREFETCH(sequence.match);
|
|
+ sequences[seqNb&STOSEQ_MASK] = sequence;
|
|
+ op += oneSeqSize;
|
|
+ }
|
|
+ if (seqNb<nbSeq) return ERROR(corruption_detected);
|
|
+
|
|
+ /* finish queue */
|
|
+ seqNb -= seqAdvance;
|
|
+ for ( ; seqNb<nbSeq ; seqNb++) {
|
|
+ size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[seqNb&STOSEQ_MASK], &litPtr, litEnd, base, vBase, dictEnd);
|
|
+ if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
|
|
+ op += oneSeqSize;
|
|
+ }
|
|
+
|
|
+ /* save reps for next block */
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
|
|
+ }
|
|
+
|
|
+ /* last literal segment */
|
|
+ { size_t const lastLLSize = litEnd - litPtr;
|
|
+ if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
|
|
+ memcpy(op, litPtr, lastLLSize);
|
|
+ op += lastLLSize;
|
|
+ }
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize)
|
|
+{ /* blockType == blockCompressed */
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+
|
|
+ if (srcSize >= ZSTD_BLOCKSIZE_ABSOLUTEMAX) return ERROR(srcSize_wrong);
|
|
+
|
|
+ /* Decode literals section */
|
|
+ { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
|
|
+ if (ZSTD_isError(litCSize)) return litCSize;
|
|
+ ip += litCSize;
|
|
+ srcSize -= litCSize;
|
|
+ }
|
|
+ if (sizeof(size_t) > 4) /* do not enable prefetching on 32-bits x86, as it's performance detrimental */
|
|
+ /* likely because of register pressure */
|
|
+ /* if that's the correct cause, then 32-bits ARM should be affected differently */
|
|
+ /* it would be good to test this on ARM real hardware, to see if prefetch version improves speed */
|
|
+ if (dctx->fParams.windowSize > (1<<23))
|
|
+ return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize);
|
|
+ return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize);
|
|
+}
|
|
+
|
|
+
|
|
+static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
|
|
+{
|
|
+ if (dst != dctx->previousDstEnd) { /* not contiguous */
|
|
+ dctx->dictEnd = dctx->previousDstEnd;
|
|
+ dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
|
|
+ dctx->base = dst;
|
|
+ dctx->previousDstEnd = dst;
|
|
+ }
|
|
+}
|
|
+
|
|
+size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t dSize;
|
|
+ ZSTD_checkContinuity(dctx, dst);
|
|
+ dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
|
|
+ dctx->previousDstEnd = (char*)dst + dSize;
|
|
+ return dSize;
|
|
+}
|
|
+
|
|
+
|
|
+/** ZSTD_insertBlock() :
|
|
+ insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
|
|
+size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
|
|
+{
|
|
+ ZSTD_checkContinuity(dctx, blockStart);
|
|
+ dctx->previousDstEnd = (const char*)blockStart + blockSize;
|
|
+ return blockSize;
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length)
|
|
+{
|
|
+ if (length > dstCapacity) return ERROR(dstSize_tooSmall);
|
|
+ memset(dst, byte, length);
|
|
+ return length;
|
|
+}
|
|
+
|
|
+/** ZSTD_findFrameCompressedSize() :
|
|
+ * compatible with legacy mode
|
|
+ * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
|
|
+ * `srcSize` must be at least as large as the frame contained
|
|
+ * @return : the compressed size of the frame starting at `src` */
|
|
+size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
|
|
+{
|
|
+ if (srcSize >= ZSTD_skippableHeaderSize &&
|
|
+ (MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
|
|
+ return ZSTD_skippableHeaderSize + MEM_readLE32((const BYTE*)src + 4);
|
|
+ } else {
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+ const BYTE* const ipstart = ip;
|
|
+ size_t remainingSize = srcSize;
|
|
+ ZSTD_frameParams fParams;
|
|
+
|
|
+ size_t const headerSize = ZSTD_frameHeaderSize(ip, remainingSize);
|
|
+ if (ZSTD_isError(headerSize)) return headerSize;
|
|
+
|
|
+ /* Frame Header */
|
|
+ { size_t const ret = ZSTD_getFrameParams(&fParams, ip, remainingSize);
|
|
+ if (ZSTD_isError(ret)) return ret;
|
|
+ if (ret > 0) return ERROR(srcSize_wrong);
|
|
+ }
|
|
+
|
|
+ ip += headerSize;
|
|
+ remainingSize -= headerSize;
|
|
+
|
|
+ /* Loop on each block */
|
|
+ while (1) {
|
|
+ blockProperties_t blockProperties;
|
|
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
|
|
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
|
|
+
|
|
+ if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) return ERROR(srcSize_wrong);
|
|
+
|
|
+ ip += ZSTD_blockHeaderSize + cBlockSize;
|
|
+ remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
|
|
+
|
|
+ if (blockProperties.lastBlock) break;
|
|
+ }
|
|
+
|
|
+ if (fParams.checksumFlag) { /* Frame content checksum */
|
|
+ if (remainingSize < 4) return ERROR(srcSize_wrong);
|
|
+ ip += 4;
|
|
+ remainingSize -= 4;
|
|
+ }
|
|
+
|
|
+ return ip - ipstart;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*! ZSTD_decompressFrame() :
|
|
+* @dctx must be properly initialized */
|
|
+static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void** srcPtr, size_t *srcSizePtr)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)(*srcPtr);
|
|
+ BYTE* const ostart = (BYTE* const)dst;
|
|
+ BYTE* const oend = ostart + dstCapacity;
|
|
+ BYTE* op = ostart;
|
|
+ size_t remainingSize = *srcSizePtr;
|
|
+
|
|
+ /* check */
|
|
+ if (remainingSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
|
|
+
|
|
+ /* Frame Header */
|
|
+ { size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_frameHeaderSize_prefix);
|
|
+ if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
|
|
+ if (remainingSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
|
|
+ CHECK_F(ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize));
|
|
+ ip += frameHeaderSize; remainingSize -= frameHeaderSize;
|
|
+ }
|
|
+
|
|
+ /* Loop on each block */
|
|
+ while (1) {
|
|
+ size_t decodedSize;
|
|
+ blockProperties_t blockProperties;
|
|
+ size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
|
|
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
|
|
+
|
|
+ ip += ZSTD_blockHeaderSize;
|
|
+ remainingSize -= ZSTD_blockHeaderSize;
|
|
+ if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
|
|
+
|
|
+ switch(blockProperties.blockType)
|
|
+ {
|
|
+ case bt_compressed:
|
|
+ decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize);
|
|
+ break;
|
|
+ case bt_raw :
|
|
+ decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
|
|
+ break;
|
|
+ case bt_rle :
|
|
+ decodedSize = ZSTD_generateNxBytes(op, oend-op, *ip, blockProperties.origSize);
|
|
+ break;
|
|
+ case bt_reserved :
|
|
+ default:
|
|
+ return ERROR(corruption_detected);
|
|
+ }
|
|
+
|
|
+ if (ZSTD_isError(decodedSize)) return decodedSize;
|
|
+ if (dctx->fParams.checksumFlag) xxh64_update(&dctx->xxhState, op, decodedSize);
|
|
+ op += decodedSize;
|
|
+ ip += cBlockSize;
|
|
+ remainingSize -= cBlockSize;
|
|
+ if (blockProperties.lastBlock) break;
|
|
+ }
|
|
+
|
|
+ if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
|
|
+ U32 const checkCalc = (U32)xxh64_digest(&dctx->xxhState);
|
|
+ U32 checkRead;
|
|
+ if (remainingSize<4) return ERROR(checksum_wrong);
|
|
+ checkRead = MEM_readLE32(ip);
|
|
+ if (checkRead != checkCalc) return ERROR(checksum_wrong);
|
|
+ ip += 4;
|
|
+ remainingSize -= 4;
|
|
+ }
|
|
+
|
|
+ /* Allow caller to get size read */
|
|
+ *srcPtr = ip;
|
|
+ *srcSizePtr = remainingSize;
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict);
|
|
+static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict);
|
|
+
|
|
+static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ const void *dict, size_t dictSize,
|
|
+ const ZSTD_DDict* ddict)
|
|
+{
|
|
+ void* const dststart = dst;
|
|
+
|
|
+ if (ddict) {
|
|
+ if (dict) {
|
|
+ /* programmer error, these two cases should be mutually exclusive */
|
|
+ return ERROR(GENERIC);
|
|
+ }
|
|
+
|
|
+ dict = ZSTD_DDictDictContent(ddict);
|
|
+ dictSize = ZSTD_DDictDictSize(ddict);
|
|
+ }
|
|
+
|
|
+ while (srcSize >= ZSTD_frameHeaderSize_prefix) {
|
|
+ U32 magicNumber;
|
|
+
|
|
+ magicNumber = MEM_readLE32(src);
|
|
+ if (magicNumber != ZSTD_MAGICNUMBER) {
|
|
+ if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
|
|
+ size_t skippableSize;
|
|
+ if (srcSize < ZSTD_skippableHeaderSize)
|
|
+ return ERROR(srcSize_wrong);
|
|
+ skippableSize = MEM_readLE32((const BYTE *)src + 4) +
|
|
+ ZSTD_skippableHeaderSize;
|
|
+ if (srcSize < skippableSize) {
|
|
+ return ERROR(srcSize_wrong);
|
|
+ }
|
|
+
|
|
+ src = (const BYTE *)src + skippableSize;
|
|
+ srcSize -= skippableSize;
|
|
+ continue;
|
|
+ } else {
|
|
+ return ERROR(prefix_unknown);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (ddict) {
|
|
+ /* we were called from ZSTD_decompress_usingDDict */
|
|
+ ZSTD_refDDict(dctx, ddict);
|
|
+ } else {
|
|
+ /* this will initialize correctly with no dict if dict == NULL, so
|
|
+ * use this in all cases but ddict */
|
|
+ CHECK_F(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
|
|
+ }
|
|
+ ZSTD_checkContinuity(dctx, dst);
|
|
+
|
|
+ { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
|
|
+ &src, &srcSize);
|
|
+ if (ZSTD_isError(res)) return res;
|
|
+ /* don't need to bounds check this, ZSTD_decompressFrame will have
|
|
+ * already */
|
|
+ dst = (BYTE*)dst + res;
|
|
+ dstCapacity -= res;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (srcSize) return ERROR(srcSize_wrong); /* input not entirely consumed */
|
|
+
|
|
+ return (BYTE*)dst - (BYTE*)dststart;
|
|
+}
|
|
+
|
|
+size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, const void *dict, size_t dictSize)
|
|
+{
|
|
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
|
|
+}
|
|
+
|
|
+
|
|
+/*-**************************************
|
|
+* Advanced Streaming Decompression API
|
|
+* Bufferless and synchronous
|
|
+****************************************/
|
|
+size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
|
|
+
|
|
+ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
|
|
+ switch(dctx->stage)
|
|
+ {
|
|
+ default: /* should not happen */
|
|
+ case ZSTDds_getFrameHeaderSize:
|
|
+ case ZSTDds_decodeFrameHeader:
|
|
+ return ZSTDnit_frameHeader;
|
|
+ case ZSTDds_decodeBlockHeader:
|
|
+ return ZSTDnit_blockHeader;
|
|
+ case ZSTDds_decompressBlock:
|
|
+ return ZSTDnit_block;
|
|
+ case ZSTDds_decompressLastBlock:
|
|
+ return ZSTDnit_lastBlock;
|
|
+ case ZSTDds_checkChecksum:
|
|
+ return ZSTDnit_checksum;
|
|
+ case ZSTDds_decodeSkippableHeader:
|
|
+ case ZSTDds_skipFrame:
|
|
+ return ZSTDnit_skippableFrame;
|
|
+ }
|
|
+}
|
|
+
|
|
+int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } /* for zbuff */
|
|
+
|
|
+/** ZSTD_decompressContinue() :
|
|
+* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
|
|
+* or an error code, which can be tested using ZSTD_isError() */
|
|
+size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ /* Sanity check */
|
|
+ if (srcSize != dctx->expected) return ERROR(srcSize_wrong);
|
|
+ if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
|
|
+
|
|
+ switch (dctx->stage)
|
|
+ {
|
|
+ case ZSTDds_getFrameHeaderSize :
|
|
+ if (srcSize != ZSTD_frameHeaderSize_prefix) return ERROR(srcSize_wrong); /* impossible */
|
|
+ if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
|
|
+ memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
|
|
+ dctx->expected = ZSTD_skippableHeaderSize - ZSTD_frameHeaderSize_prefix; /* magic number + skippable frame length */
|
|
+ dctx->stage = ZSTDds_decodeSkippableHeader;
|
|
+ return 0;
|
|
+ }
|
|
+ dctx->headerSize = ZSTD_frameHeaderSize(src, ZSTD_frameHeaderSize_prefix);
|
|
+ if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
|
|
+ memcpy(dctx->headerBuffer, src, ZSTD_frameHeaderSize_prefix);
|
|
+ if (dctx->headerSize > ZSTD_frameHeaderSize_prefix) {
|
|
+ dctx->expected = dctx->headerSize - ZSTD_frameHeaderSize_prefix;
|
|
+ dctx->stage = ZSTDds_decodeFrameHeader;
|
|
+ return 0;
|
|
+ }
|
|
+ dctx->expected = 0; /* not necessary to copy more */
|
|
+
|
|
+ case ZSTDds_decodeFrameHeader:
|
|
+ memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
|
|
+ CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
|
|
+ dctx->expected = ZSTD_blockHeaderSize;
|
|
+ dctx->stage = ZSTDds_decodeBlockHeader;
|
|
+ return 0;
|
|
+
|
|
+ case ZSTDds_decodeBlockHeader:
|
|
+ { blockProperties_t bp;
|
|
+ size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
|
|
+ if (ZSTD_isError(cBlockSize)) return cBlockSize;
|
|
+ dctx->expected = cBlockSize;
|
|
+ dctx->bType = bp.blockType;
|
|
+ dctx->rleSize = bp.origSize;
|
|
+ if (cBlockSize) {
|
|
+ dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
|
|
+ return 0;
|
|
+ }
|
|
+ /* empty block */
|
|
+ if (bp.lastBlock) {
|
|
+ if (dctx->fParams.checksumFlag) {
|
|
+ dctx->expected = 4;
|
|
+ dctx->stage = ZSTDds_checkChecksum;
|
|
+ } else {
|
|
+ dctx->expected = 0; /* end of frame */
|
|
+ dctx->stage = ZSTDds_getFrameHeaderSize;
|
|
+ }
|
|
+ } else {
|
|
+ dctx->expected = 3; /* go directly to next header */
|
|
+ dctx->stage = ZSTDds_decodeBlockHeader;
|
|
+ }
|
|
+ return 0;
|
|
+ }
|
|
+ case ZSTDds_decompressLastBlock:
|
|
+ case ZSTDds_decompressBlock:
|
|
+ { size_t rSize;
|
|
+ switch(dctx->bType)
|
|
+ {
|
|
+ case bt_compressed:
|
|
+ rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize);
|
|
+ break;
|
|
+ case bt_raw :
|
|
+ rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
|
|
+ break;
|
|
+ case bt_rle :
|
|
+ rSize = ZSTD_setRleBlock(dst, dstCapacity, src, srcSize, dctx->rleSize);
|
|
+ break;
|
|
+ case bt_reserved : /* should never happen */
|
|
+ default:
|
|
+ return ERROR(corruption_detected);
|
|
+ }
|
|
+ if (ZSTD_isError(rSize)) return rSize;
|
|
+ if (dctx->fParams.checksumFlag) xxh64_update(&dctx->xxhState, dst, rSize);
|
|
+
|
|
+ if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
|
|
+ if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
|
|
+ dctx->expected = 4;
|
|
+ dctx->stage = ZSTDds_checkChecksum;
|
|
+ } else {
|
|
+ dctx->expected = 0; /* ends here */
|
|
+ dctx->stage = ZSTDds_getFrameHeaderSize;
|
|
+ }
|
|
+ } else {
|
|
+ dctx->stage = ZSTDds_decodeBlockHeader;
|
|
+ dctx->expected = ZSTD_blockHeaderSize;
|
|
+ dctx->previousDstEnd = (char*)dst + rSize;
|
|
+ }
|
|
+ return rSize;
|
|
+ }
|
|
+ case ZSTDds_checkChecksum:
|
|
+ { U32 const h32 = (U32)xxh64_digest(&dctx->xxhState);
|
|
+ U32 const check32 = MEM_readLE32(src); /* srcSize == 4, guaranteed by dctx->expected */
|
|
+ if (check32 != h32) return ERROR(checksum_wrong);
|
|
+ dctx->expected = 0;
|
|
+ dctx->stage = ZSTDds_getFrameHeaderSize;
|
|
+ return 0;
|
|
+ }
|
|
+ case ZSTDds_decodeSkippableHeader:
|
|
+ { memcpy(dctx->headerBuffer + ZSTD_frameHeaderSize_prefix, src, dctx->expected);
|
|
+ dctx->expected = MEM_readLE32(dctx->headerBuffer + 4);
|
|
+ dctx->stage = ZSTDds_skipFrame;
|
|
+ return 0;
|
|
+ }
|
|
+ case ZSTDds_skipFrame:
|
|
+ { dctx->expected = 0;
|
|
+ dctx->stage = ZSTDds_getFrameHeaderSize;
|
|
+ return 0;
|
|
+ }
|
|
+ default:
|
|
+ return ERROR(GENERIC); /* impossible */
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
|
|
+{
|
|
+ dctx->dictEnd = dctx->previousDstEnd;
|
|
+ dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
|
|
+ dctx->base = dict;
|
|
+ dctx->previousDstEnd = (const char*)dict + dictSize;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/* ZSTD_loadEntropy() :
|
|
+ * dict : must point at beginning of a valid zstd dictionary
|
|
+ * @return : size of entropy tables read */
|
|
+static size_t ZSTD_loadEntropy(ZSTD_entropyTables_t* entropy, const void* const dict, size_t const dictSize)
|
|
+{
|
|
+ const BYTE* dictPtr = (const BYTE*)dict;
|
|
+ const BYTE* const dictEnd = dictPtr + dictSize;
|
|
+
|
|
+ if (dictSize <= 8) return ERROR(dictionary_corrupted);
|
|
+ dictPtr += 8; /* skip header = magic + dictID */
|
|
+
|
|
+
|
|
+ { size_t const hSize = HUF_readDTableX4(entropy->hufTable, dictPtr, dictEnd-dictPtr);
|
|
+ if (HUF_isError(hSize)) return ERROR(dictionary_corrupted);
|
|
+ dictPtr += hSize;
|
|
+ }
|
|
+
|
|
+ { short offcodeNCount[MaxOff+1];
|
|
+ U32 offcodeMaxValue = MaxOff, offcodeLog;
|
|
+ size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
|
|
+ CHECK_E(FSE_buildDTable(entropy->OFTable, offcodeNCount, offcodeMaxValue, offcodeLog), dictionary_corrupted);
|
|
+ dictPtr += offcodeHeaderSize;
|
|
+ }
|
|
+
|
|
+ { short matchlengthNCount[MaxML+1];
|
|
+ unsigned matchlengthMaxValue = MaxML, matchlengthLog;
|
|
+ size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
|
|
+ CHECK_E(FSE_buildDTable(entropy->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog), dictionary_corrupted);
|
|
+ dictPtr += matchlengthHeaderSize;
|
|
+ }
|
|
+
|
|
+ { short litlengthNCount[MaxLL+1];
|
|
+ unsigned litlengthMaxValue = MaxLL, litlengthLog;
|
|
+ size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
|
|
+ if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
|
|
+ if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
|
|
+ CHECK_E(FSE_buildDTable(entropy->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog), dictionary_corrupted);
|
|
+ dictPtr += litlengthHeaderSize;
|
|
+ }
|
|
+
|
|
+ if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
|
|
+ { int i;
|
|
+ size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
|
|
+ for (i=0; i<3; i++) {
|
|
+ U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
|
|
+ if (rep==0 || rep >= dictContentSize) return ERROR(dictionary_corrupted);
|
|
+ entropy->rep[i] = rep;
|
|
+ } }
|
|
+
|
|
+ return dictPtr - (const BYTE*)dict;
|
|
+}
|
|
+
|
|
+static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
|
|
+{
|
|
+ if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
|
|
+ { U32 const magic = MEM_readLE32(dict);
|
|
+ if (magic != ZSTD_DICT_MAGIC) {
|
|
+ return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
|
|
+ } }
|
|
+ dctx->dictID = MEM_readLE32((const char*)dict + 4);
|
|
+
|
|
+ /* load entropy tables */
|
|
+ { size_t const eSize = ZSTD_loadEntropy(&dctx->entropy, dict, dictSize);
|
|
+ if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted);
|
|
+ dict = (const char*)dict + eSize;
|
|
+ dictSize -= eSize;
|
|
+ }
|
|
+ dctx->litEntropy = dctx->fseEntropy = 1;
|
|
+
|
|
+ /* reference dictionary content */
|
|
+ return ZSTD_refDictContent(dctx, dict, dictSize);
|
|
+}
|
|
+
|
|
+size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
|
|
+{
|
|
+ CHECK_F(ZSTD_decompressBegin(dctx));
|
|
+ if (dict && dictSize) CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+/* ====== ZSTD_DDict ====== */
|
|
+
|
|
+struct ZSTD_DDict_s {
|
|
+ void* dictBuffer;
|
|
+ const void* dictContent;
|
|
+ size_t dictSize;
|
|
+ ZSTD_entropyTables_t entropy;
|
|
+ U32 dictID;
|
|
+ U32 entropyPresent;
|
|
+ ZSTD_customMem cMem;
|
|
+}; /* typedef'd to ZSTD_DDict within "zstd.h" */
|
|
+
|
|
+size_t ZSTD_DDictWorkspaceBound(void)
|
|
+{
|
|
+ return ZSTD_ALIGN(sizeof(ZSTD_stack)) + ZSTD_ALIGN(sizeof(ZSTD_DDict));
|
|
+}
|
|
+
|
|
+static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict)
|
|
+{
|
|
+ return ddict->dictContent;
|
|
+}
|
|
+
|
|
+static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict)
|
|
+{
|
|
+ return ddict->dictSize;
|
|
+}
|
|
+
|
|
+static void ZSTD_refDDict(ZSTD_DCtx* dstDCtx, const ZSTD_DDict* ddict)
|
|
+{
|
|
+ ZSTD_decompressBegin(dstDCtx); /* init */
|
|
+ if (ddict) { /* support refDDict on NULL */
|
|
+ dstDCtx->dictID = ddict->dictID;
|
|
+ dstDCtx->base = ddict->dictContent;
|
|
+ dstDCtx->vBase = ddict->dictContent;
|
|
+ dstDCtx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
|
|
+ dstDCtx->previousDstEnd = dstDCtx->dictEnd;
|
|
+ if (ddict->entropyPresent) {
|
|
+ dstDCtx->litEntropy = 1;
|
|
+ dstDCtx->fseEntropy = 1;
|
|
+ dstDCtx->LLTptr = ddict->entropy.LLTable;
|
|
+ dstDCtx->MLTptr = ddict->entropy.MLTable;
|
|
+ dstDCtx->OFTptr = ddict->entropy.OFTable;
|
|
+ dstDCtx->HUFptr = ddict->entropy.hufTable;
|
|
+ dstDCtx->entropy.rep[0] = ddict->entropy.rep[0];
|
|
+ dstDCtx->entropy.rep[1] = ddict->entropy.rep[1];
|
|
+ dstDCtx->entropy.rep[2] = ddict->entropy.rep[2];
|
|
+ } else {
|
|
+ dstDCtx->litEntropy = 0;
|
|
+ dstDCtx->fseEntropy = 0;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+static size_t ZSTD_loadEntropy_inDDict(ZSTD_DDict* ddict)
|
|
+{
|
|
+ ddict->dictID = 0;
|
|
+ ddict->entropyPresent = 0;
|
|
+ if (ddict->dictSize < 8) return 0;
|
|
+ { U32 const magic = MEM_readLE32(ddict->dictContent);
|
|
+ if (magic != ZSTD_DICT_MAGIC) return 0; /* pure content mode */
|
|
+ }
|
|
+ ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + 4);
|
|
+
|
|
+ /* load entropy tables */
|
|
+ CHECK_E( ZSTD_loadEntropy(&ddict->entropy, ddict->dictContent, ddict->dictSize), dictionary_corrupted );
|
|
+ ddict->entropyPresent = 1;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+static ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, unsigned byReference, ZSTD_customMem customMem)
|
|
+{
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+
|
|
+ { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem);
|
|
+ if (!ddict) return NULL;
|
|
+ ddict->cMem = customMem;
|
|
+
|
|
+ if ((byReference) || (!dict) || (!dictSize)) {
|
|
+ ddict->dictBuffer = NULL;
|
|
+ ddict->dictContent = dict;
|
|
+ } else {
|
|
+ void* const internalBuffer = ZSTD_malloc(dictSize, customMem);
|
|
+ if (!internalBuffer) { ZSTD_freeDDict(ddict); return NULL; }
|
|
+ memcpy(internalBuffer, dict, dictSize);
|
|
+ ddict->dictBuffer = internalBuffer;
|
|
+ ddict->dictContent = internalBuffer;
|
|
+ }
|
|
+ ddict->dictSize = dictSize;
|
|
+ ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
|
|
+ /* parse dictionary content */
|
|
+ { size_t const errorCode = ZSTD_loadEntropy_inDDict(ddict);
|
|
+ if (ZSTD_isError(errorCode)) {
|
|
+ ZSTD_freeDDict(ddict);
|
|
+ return NULL;
|
|
+ } }
|
|
+
|
|
+ return ddict;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*! ZSTD_initDDict() :
|
|
+* Create a digested dictionary, to start decompression without startup delay.
|
|
+* `dict` content is copied inside DDict.
|
|
+* Consequently, `dict` can be released after `ZSTD_DDict` creation */
|
|
+ZSTD_DDict* ZSTD_initDDict(const void* dict, size_t dictSize, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ return ZSTD_createDDict_advanced(dict, dictSize, 1, stackMem);
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
|
|
+{
|
|
+ if (ddict==NULL) return 0; /* support free on NULL */
|
|
+ { ZSTD_customMem const cMem = ddict->cMem;
|
|
+ ZSTD_free(ddict->dictBuffer, cMem);
|
|
+ ZSTD_free(ddict, cMem);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*! ZSTD_getDictID_fromDict() :
|
|
+ * Provides the dictID stored within dictionary.
|
|
+ * if @return == 0, the dictionary is not conformant with Zstandard specification.
|
|
+ * It can still be loaded, but as a content-only dictionary. */
|
|
+unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
|
|
+{
|
|
+ if (dictSize < 8) return 0;
|
|
+ if (MEM_readLE32(dict) != ZSTD_DICT_MAGIC) return 0;
|
|
+ return MEM_readLE32((const char*)dict + 4);
|
|
+}
|
|
+
|
|
+/*! ZSTD_getDictID_fromDDict() :
|
|
+ * Provides the dictID of the dictionary loaded into `ddict`.
|
|
+ * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
|
|
+ * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
|
|
+unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
|
|
+{
|
|
+ if (ddict==NULL) return 0;
|
|
+ return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
|
|
+}
|
|
+
|
|
+/*! ZSTD_getDictID_fromFrame() :
|
|
+ * Provides the dictID required to decompressed the frame stored within `src`.
|
|
+ * If @return == 0, the dictID could not be decoded.
|
|
+ * This could for one of the following reasons :
|
|
+ * - The frame does not require a dictionary to be decoded (most common case).
|
|
+ * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information.
|
|
+ * Note : this use case also happens when using a non-conformant dictionary.
|
|
+ * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`).
|
|
+ * - This is not a Zstandard frame.
|
|
+ * When identifying the exact failure cause, it's possible to used ZSTD_getFrameParams(), which will provide a more precise error code. */
|
|
+unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
|
|
+{
|
|
+ ZSTD_frameParams zfp = { 0 , 0 , 0 , 0 };
|
|
+ size_t const hError = ZSTD_getFrameParams(&zfp, src, srcSize);
|
|
+ if (ZSTD_isError(hError)) return 0;
|
|
+ return zfp.dictID;
|
|
+}
|
|
+
|
|
+
|
|
+/*! ZSTD_decompress_usingDDict() :
|
|
+* Decompression using a pre-digested Dictionary
|
|
+* Use dictionary without significant overhead. */
|
|
+size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
|
|
+ void* dst, size_t dstCapacity,
|
|
+ const void* src, size_t srcSize,
|
|
+ const ZSTD_DDict* ddict)
|
|
+{
|
|
+ /* pass content and size in case legacy frames are encountered */
|
|
+ return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize,
|
|
+ NULL, 0,
|
|
+ ddict);
|
|
+}
|
|
+
|
|
+
|
|
+/*=====================================
|
|
+* Streaming decompression
|
|
+*====================================*/
|
|
+
|
|
+typedef enum { zdss_init, zdss_loadHeader,
|
|
+ zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
|
|
+
|
|
+/* *** Resource management *** */
|
|
+struct ZSTD_DStream_s {
|
|
+ ZSTD_DCtx* dctx;
|
|
+ ZSTD_DDict* ddictLocal;
|
|
+ const ZSTD_DDict* ddict;
|
|
+ ZSTD_frameParams fParams;
|
|
+ ZSTD_dStreamStage stage;
|
|
+ char* inBuff;
|
|
+ size_t inBuffSize;
|
|
+ size_t inPos;
|
|
+ size_t maxWindowSize;
|
|
+ char* outBuff;
|
|
+ size_t outBuffSize;
|
|
+ size_t outStart;
|
|
+ size_t outEnd;
|
|
+ size_t blockSize;
|
|
+ BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; /* tmp buffer to store frame header */
|
|
+ size_t lhSize;
|
|
+ ZSTD_customMem customMem;
|
|
+ void* legacyContext;
|
|
+ U32 previousLegacyVersion;
|
|
+ U32 legacyVersion;
|
|
+ U32 hostageByte;
|
|
+}; /* typedef'd to ZSTD_DStream within "zstd.h" */
|
|
+
|
|
+size_t ZSTD_DStreamWorkspaceBound(size_t maxWindowSize) {
|
|
+ size_t const blockSize = MIN(maxWindowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
|
|
+ size_t const inBuffSize = blockSize;
|
|
+ size_t const outBuffSize = maxWindowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
|
|
+ return ZSTD_DCtxWorkspaceBound() + ZSTD_ALIGN(sizeof(ZSTD_DStream)) + ZSTD_ALIGN(inBuffSize) + ZSTD_ALIGN(outBuffSize);
|
|
+}
|
|
+
|
|
+static ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
|
|
+{
|
|
+ ZSTD_DStream* zds;
|
|
+
|
|
+ if (!customMem.customAlloc || !customMem.customFree) return NULL;
|
|
+
|
|
+ zds = (ZSTD_DStream*) ZSTD_malloc(sizeof(ZSTD_DStream), customMem);
|
|
+ if (zds==NULL) return NULL;
|
|
+ memset(zds, 0, sizeof(ZSTD_DStream));
|
|
+ memcpy(&zds->customMem, &customMem, sizeof(ZSTD_customMem));
|
|
+ zds->dctx = ZSTD_createDCtx_advanced(customMem);
|
|
+ if (zds->dctx == NULL) { ZSTD_freeDStream(zds); return NULL; }
|
|
+ zds->stage = zdss_init;
|
|
+ zds->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
|
|
+ return zds;
|
|
+}
|
|
+
|
|
+ZSTD_DStream* ZSTD_initDStream(size_t maxWindowSize, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_customMem const stackMem = ZSTD_initStack(workspace, workspaceSize);
|
|
+ ZSTD_DStream* zds = ZSTD_createDStream_advanced(stackMem);
|
|
+ if (!zds) { return NULL; }
|
|
+
|
|
+ zds->maxWindowSize = maxWindowSize;
|
|
+ zds->stage = zdss_loadHeader;
|
|
+ zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
|
|
+ ZSTD_freeDDict(zds->ddictLocal);
|
|
+ zds->ddictLocal = NULL;
|
|
+ zds->ddict = zds->ddictLocal;
|
|
+ zds->legacyVersion = 0;
|
|
+ zds->hostageByte = 0;
|
|
+ return zds;
|
|
+}
|
|
+
|
|
+ZSTD_DStream* ZSTD_initDStream_usingDDict(size_t maxWindowSize, const ZSTD_DDict* ddict, void* workspace, size_t workspaceSize)
|
|
+{
|
|
+ ZSTD_DStream* zds = ZSTD_initDStream(maxWindowSize, workspace, workspaceSize);
|
|
+ if (zds) {
|
|
+ zds->ddict = ddict;
|
|
+ }
|
|
+ return zds;
|
|
+}
|
|
+
|
|
+size_t ZSTD_freeDStream(ZSTD_DStream* zds)
|
|
+{
|
|
+ if (zds==NULL) return 0; /* support free on null */
|
|
+ { ZSTD_customMem const cMem = zds->customMem;
|
|
+ ZSTD_freeDCtx(zds->dctx);
|
|
+ zds->dctx = NULL;
|
|
+ ZSTD_freeDDict(zds->ddictLocal);
|
|
+ zds->ddictLocal = NULL;
|
|
+ ZSTD_free(zds->inBuff, cMem);
|
|
+ zds->inBuff = NULL;
|
|
+ ZSTD_free(zds->outBuff, cMem);
|
|
+ zds->outBuff = NULL;
|
|
+ ZSTD_free(zds, cMem);
|
|
+ return 0;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/* *** Initialization *** */
|
|
+
|
|
+size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX + ZSTD_blockHeaderSize; }
|
|
+size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_ABSOLUTEMAX; }
|
|
+
|
|
+size_t ZSTD_resetDStream(ZSTD_DStream* zds)
|
|
+{
|
|
+ zds->stage = zdss_loadHeader;
|
|
+ zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0;
|
|
+ zds->legacyVersion = 0;
|
|
+ zds->hostageByte = 0;
|
|
+ return ZSTD_frameHeaderSize_prefix;
|
|
+}
|
|
+
|
|
+/* ***** Decompression ***** */
|
|
+
|
|
+MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
|
|
+{
|
|
+ size_t const length = MIN(dstCapacity, srcSize);
|
|
+ memcpy(dst, src, length);
|
|
+ return length;
|
|
+}
|
|
+
|
|
+
|
|
+size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
|
|
+{
|
|
+ const char* const istart = (const char*)(input->src) + input->pos;
|
|
+ const char* const iend = (const char*)(input->src) + input->size;
|
|
+ const char* ip = istart;
|
|
+ char* const ostart = (char*)(output->dst) + output->pos;
|
|
+ char* const oend = (char*)(output->dst) + output->size;
|
|
+ char* op = ostart;
|
|
+ U32 someMoreWork = 1;
|
|
+
|
|
+ while (someMoreWork) {
|
|
+ switch(zds->stage)
|
|
+ {
|
|
+ case zdss_init :
|
|
+ ZSTD_resetDStream(zds); /* transparent reset on starting decoding a new frame */
|
|
+ /* fall-through */
|
|
+
|
|
+ case zdss_loadHeader :
|
|
+ { size_t const hSize = ZSTD_getFrameParams(&zds->fParams, zds->headerBuffer, zds->lhSize);
|
|
+ if (ZSTD_isError(hSize))
|
|
+ return hSize;
|
|
+ if (hSize != 0) { /* need more input */
|
|
+ size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
|
|
+ if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */
|
|
+ memcpy(zds->headerBuffer + zds->lhSize, ip, iend-ip);
|
|
+ zds->lhSize += iend-ip;
|
|
+ input->pos = input->size;
|
|
+ return (MAX(ZSTD_frameHeaderSize_min, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
|
|
+ }
|
|
+ memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
|
|
+ break;
|
|
+ } }
|
|
+
|
|
+ /* check for single-pass mode opportunity */
|
|
+ if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */
|
|
+ && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
|
|
+ size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart);
|
|
+ if (cSize <= (size_t)(iend-istart)) {
|
|
+ size_t const decompressedSize = ZSTD_decompress_usingDDict(zds->dctx, op, oend-op, istart, cSize, zds->ddict);
|
|
+ if (ZSTD_isError(decompressedSize)) return decompressedSize;
|
|
+ ip = istart + cSize;
|
|
+ op += decompressedSize;
|
|
+ zds->dctx->expected = 0;
|
|
+ zds->stage = zdss_init;
|
|
+ someMoreWork = 0;
|
|
+ break;
|
|
+ } }
|
|
+
|
|
+ /* Consume header */
|
|
+ ZSTD_refDDict(zds->dctx, zds->ddict);
|
|
+ { size_t const h1Size = ZSTD_nextSrcSizeToDecompress(zds->dctx); /* == ZSTD_frameHeaderSize_prefix */
|
|
+ CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer, h1Size));
|
|
+ { size_t const h2Size = ZSTD_nextSrcSizeToDecompress(zds->dctx);
|
|
+ CHECK_F(ZSTD_decompressContinue(zds->dctx, NULL, 0, zds->headerBuffer+h1Size, h2Size));
|
|
+ } }
|
|
+
|
|
+ zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
|
|
+ if (zds->fParams.windowSize > zds->maxWindowSize) return ERROR(frameParameter_windowTooLarge);
|
|
+
|
|
+ /* Adapt buffer sizes to frame header instructions */
|
|
+ { size_t const blockSize = MIN(zds->fParams.windowSize, ZSTD_BLOCKSIZE_ABSOLUTEMAX);
|
|
+ size_t const neededOutSize = zds->fParams.windowSize + blockSize + WILDCOPY_OVERLENGTH * 2;
|
|
+ zds->blockSize = blockSize;
|
|
+ if (zds->inBuffSize < blockSize) {
|
|
+ ZSTD_free(zds->inBuff, zds->customMem);
|
|
+ zds->inBuffSize = blockSize;
|
|
+ zds->inBuff = (char*)ZSTD_malloc(blockSize, zds->customMem);
|
|
+ if (zds->inBuff == NULL) return ERROR(memory_allocation);
|
|
+ }
|
|
+ if (zds->outBuffSize < neededOutSize) {
|
|
+ ZSTD_free(zds->outBuff, zds->customMem);
|
|
+ zds->outBuffSize = neededOutSize;
|
|
+ zds->outBuff = (char*)ZSTD_malloc(neededOutSize, zds->customMem);
|
|
+ if (zds->outBuff == NULL) return ERROR(memory_allocation);
|
|
+ } }
|
|
+ zds->stage = zdss_read;
|
|
+ /* pass-through */
|
|
+
|
|
+ case zdss_read:
|
|
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
|
|
+ if (neededInSize==0) { /* end of frame */
|
|
+ zds->stage = zdss_init;
|
|
+ someMoreWork = 0;
|
|
+ break;
|
|
+ }
|
|
+ if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
|
|
+ const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
|
|
+ size_t const decodedSize = ZSTD_decompressContinue(zds->dctx,
|
|
+ zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart),
|
|
+ ip, neededInSize);
|
|
+ if (ZSTD_isError(decodedSize)) return decodedSize;
|
|
+ ip += neededInSize;
|
|
+ if (!decodedSize && !isSkipFrame) break; /* this was just a header */
|
|
+ zds->outEnd = zds->outStart + decodedSize;
|
|
+ zds->stage = zdss_flush;
|
|
+ break;
|
|
+ }
|
|
+ if (ip==iend) { someMoreWork = 0; break; } /* no more input */
|
|
+ zds->stage = zdss_load;
|
|
+ /* pass-through */
|
|
+ }
|
|
+
|
|
+ case zdss_load:
|
|
+ { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds->dctx);
|
|
+ size_t const toLoad = neededInSize - zds->inPos; /* should always be <= remaining space within inBuff */
|
|
+ size_t loadedSize;
|
|
+ if (toLoad > zds->inBuffSize - zds->inPos) return ERROR(corruption_detected); /* should never happen */
|
|
+ loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip);
|
|
+ ip += loadedSize;
|
|
+ zds->inPos += loadedSize;
|
|
+ if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
|
|
+
|
|
+ /* decode loaded input */
|
|
+ { const int isSkipFrame = ZSTD_isSkipFrame(zds->dctx);
|
|
+ size_t const decodedSize = ZSTD_decompressContinue(zds->dctx,
|
|
+ zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart,
|
|
+ zds->inBuff, neededInSize);
|
|
+ if (ZSTD_isError(decodedSize)) return decodedSize;
|
|
+ zds->inPos = 0; /* input is consumed */
|
|
+ if (!decodedSize && !isSkipFrame) { zds->stage = zdss_read; break; } /* this was just a header */
|
|
+ zds->outEnd = zds->outStart + decodedSize;
|
|
+ zds->stage = zdss_flush;
|
|
+ /* pass-through */
|
|
+ } }
|
|
+
|
|
+ case zdss_flush:
|
|
+ { size_t const toFlushSize = zds->outEnd - zds->outStart;
|
|
+ size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize);
|
|
+ op += flushedSize;
|
|
+ zds->outStart += flushedSize;
|
|
+ if (flushedSize == toFlushSize) { /* flush completed */
|
|
+ zds->stage = zdss_read;
|
|
+ if (zds->outStart + zds->blockSize > zds->outBuffSize)
|
|
+ zds->outStart = zds->outEnd = 0;
|
|
+ break;
|
|
+ }
|
|
+ /* cannot complete flush */
|
|
+ someMoreWork = 0;
|
|
+ break;
|
|
+ }
|
|
+ default: return ERROR(GENERIC); /* impossible */
|
|
+ } }
|
|
+
|
|
+ /* result */
|
|
+ input->pos += (size_t)(ip-istart);
|
|
+ output->pos += (size_t)(op-ostart);
|
|
+ { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds->dctx);
|
|
+ if (!nextSrcSizeHint) { /* frame fully decoded */
|
|
+ if (zds->outEnd == zds->outStart) { /* output fully flushed */
|
|
+ if (zds->hostageByte) {
|
|
+ if (input->pos >= input->size) { zds->stage = zdss_read; return 1; } /* can't release hostage (not present) */
|
|
+ input->pos++; /* release hostage */
|
|
+ }
|
|
+ return 0;
|
|
+ }
|
|
+ if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
|
|
+ input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
|
|
+ zds->hostageByte=1;
|
|
+ }
|
|
+ return 1;
|
|
+ }
|
|
+ nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds->dctx) == ZSTDnit_block); /* preload header of next block */
|
|
+ if (zds->inPos > nextSrcSizeHint) return ERROR(GENERIC); /* should never happen */
|
|
+ nextSrcSizeHint -= zds->inPos; /* already loaded*/
|
|
+ return nextSrcSizeHint;
|
|
+ }
|
|
+}
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_DCtxWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initDCtx);
|
|
+EXPORT_SYMBOL(ZSTD_decompressDCtx);
|
|
+EXPORT_SYMBOL(ZSTD_decompress_usingDict);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_DDictWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initDDict);
|
|
+EXPORT_SYMBOL(ZSTD_decompress_usingDDict);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_DStreamWorkspaceBound);
|
|
+EXPORT_SYMBOL(ZSTD_initDStream);
|
|
+EXPORT_SYMBOL(ZSTD_initDStream_usingDDict);
|
|
+EXPORT_SYMBOL(ZSTD_resetDStream);
|
|
+EXPORT_SYMBOL(ZSTD_decompressStream);
|
|
+EXPORT_SYMBOL(ZSTD_DStreamInSize);
|
|
+EXPORT_SYMBOL(ZSTD_DStreamOutSize);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_findFrameCompressedSize);
|
|
+EXPORT_SYMBOL(ZSTD_getFrameContentSize);
|
|
+EXPORT_SYMBOL(ZSTD_findDecompressedSize);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_isFrame);
|
|
+EXPORT_SYMBOL(ZSTD_getDictID_fromDict);
|
|
+EXPORT_SYMBOL(ZSTD_getDictID_fromDDict);
|
|
+EXPORT_SYMBOL(ZSTD_getDictID_fromFrame);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_getFrameParams);
|
|
+EXPORT_SYMBOL(ZSTD_decompressBegin);
|
|
+EXPORT_SYMBOL(ZSTD_decompressBegin_usingDict);
|
|
+EXPORT_SYMBOL(ZSTD_copyDCtx);
|
|
+EXPORT_SYMBOL(ZSTD_nextSrcSizeToDecompress);
|
|
+EXPORT_SYMBOL(ZSTD_decompressContinue);
|
|
+EXPORT_SYMBOL(ZSTD_nextInputType);
|
|
+
|
|
+EXPORT_SYMBOL(ZSTD_decompressBlock);
|
|
+EXPORT_SYMBOL(ZSTD_insertBlock);
|
|
+
|
|
+MODULE_LICENSE("Dual BSD/GPL");
|
|
+MODULE_DESCRIPTION("Zstd Decompressor");
|
|
diff --git a/lib/zstd/entropy_common.c b/lib/zstd/entropy_common.c
|
|
new file mode 100644
|
|
index 0000000..b13fb99
|
|
--- /dev/null
|
|
+++ b/lib/zstd/entropy_common.c
|
|
@@ -0,0 +1,222 @@
|
|
+/*
|
|
+ * Common functions of New Generation Entropy library
|
|
+ * Copyright (C) 2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+
|
|
+/* *************************************
|
|
+* Dependencies
|
|
+***************************************/
|
|
+#include "mem.h"
|
|
+#include "error_private.h" /* ERR_*, ERROR */
|
|
+#include "fse.h"
|
|
+#include "huf.h"
|
|
+
|
|
+
|
|
+/*=== Version ===*/
|
|
+unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
|
|
+
|
|
+
|
|
+/*=== Error Management ===*/
|
|
+unsigned FSE_isError(size_t code) { return ERR_isError(code); }
|
|
+
|
|
+unsigned HUF_isError(size_t code) { return ERR_isError(code); }
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* FSE NCount encoding-decoding
|
|
+****************************************************************/
|
|
+size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
|
|
+ const void* headerBuffer, size_t hbSize)
|
|
+{
|
|
+ const BYTE* const istart = (const BYTE*) headerBuffer;
|
|
+ const BYTE* const iend = istart + hbSize;
|
|
+ const BYTE* ip = istart;
|
|
+ int nbBits;
|
|
+ int remaining;
|
|
+ int threshold;
|
|
+ U32 bitStream;
|
|
+ int bitCount;
|
|
+ unsigned charnum = 0;
|
|
+ int previous0 = 0;
|
|
+
|
|
+ if (hbSize < 4) return ERROR(srcSize_wrong);
|
|
+ bitStream = MEM_readLE32(ip);
|
|
+ nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
|
|
+ if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
|
|
+ bitStream >>= 4;
|
|
+ bitCount = 4;
|
|
+ *tableLogPtr = nbBits;
|
|
+ remaining = (1<<nbBits)+1;
|
|
+ threshold = 1<<nbBits;
|
|
+ nbBits++;
|
|
+
|
|
+ while ((remaining>1) & (charnum<=*maxSVPtr)) {
|
|
+ if (previous0) {
|
|
+ unsigned n0 = charnum;
|
|
+ while ((bitStream & 0xFFFF) == 0xFFFF) {
|
|
+ n0 += 24;
|
|
+ if (ip < iend-5) {
|
|
+ ip += 2;
|
|
+ bitStream = MEM_readLE32(ip) >> bitCount;
|
|
+ } else {
|
|
+ bitStream >>= 16;
|
|
+ bitCount += 16;
|
|
+ } }
|
|
+ while ((bitStream & 3) == 3) {
|
|
+ n0 += 3;
|
|
+ bitStream >>= 2;
|
|
+ bitCount += 2;
|
|
+ }
|
|
+ n0 += bitStream & 3;
|
|
+ bitCount += 2;
|
|
+ if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
|
|
+ while (charnum < n0) normalizedCounter[charnum++] = 0;
|
|
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
|
|
+ ip += bitCount>>3;
|
|
+ bitCount &= 7;
|
|
+ bitStream = MEM_readLE32(ip) >> bitCount;
|
|
+ } else {
|
|
+ bitStream >>= 2;
|
|
+ } }
|
|
+ { int const max = (2*threshold-1) - remaining;
|
|
+ int count;
|
|
+
|
|
+ if ((bitStream & (threshold-1)) < (U32)max) {
|
|
+ count = bitStream & (threshold-1);
|
|
+ bitCount += nbBits-1;
|
|
+ } else {
|
|
+ count = bitStream & (2*threshold-1);
|
|
+ if (count >= threshold) count -= max;
|
|
+ bitCount += nbBits;
|
|
+ }
|
|
+
|
|
+ count--; /* extra accuracy */
|
|
+ remaining -= count < 0 ? -count : count; /* -1 means +1 */
|
|
+ normalizedCounter[charnum++] = (short)count;
|
|
+ previous0 = !count;
|
|
+ while (remaining < threshold) {
|
|
+ nbBits--;
|
|
+ threshold >>= 1;
|
|
+ }
|
|
+
|
|
+ if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
|
|
+ ip += bitCount>>3;
|
|
+ bitCount &= 7;
|
|
+ } else {
|
|
+ bitCount -= (int)(8 * (iend - 4 - ip));
|
|
+ ip = iend - 4;
|
|
+ }
|
|
+ bitStream = MEM_readLE32(ip) >> (bitCount & 31);
|
|
+ } } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */
|
|
+ if (remaining != 1) return ERROR(corruption_detected);
|
|
+ if (bitCount > 32) return ERROR(corruption_detected);
|
|
+ *maxSVPtr = charnum-1;
|
|
+
|
|
+ ip += (bitCount+7)>>3;
|
|
+ return ip-istart;
|
|
+}
|
|
+
|
|
+
|
|
+/*! HUF_readStats() :
|
|
+ Read compact Huffman tree, saved by HUF_writeCTable().
|
|
+ `huffWeight` is destination buffer.
|
|
+ `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
|
|
+ @return : size read from `src` , or an error Code .
|
|
+ Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
|
|
+*/
|
|
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|
+ U32* nbSymbolsPtr, U32* tableLogPtr,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ U32 weightTotal;
|
|
+ const BYTE* ip = (const BYTE*) src;
|
|
+ size_t iSize;
|
|
+ size_t oSize;
|
|
+
|
|
+ if (!srcSize) return ERROR(srcSize_wrong);
|
|
+ iSize = ip[0];
|
|
+ /* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
|
|
+
|
|
+ if (iSize >= 128) { /* special header */
|
|
+ oSize = iSize - 127;
|
|
+ iSize = ((oSize+1)/2);
|
|
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
+ if (oSize >= hwSize) return ERROR(corruption_detected);
|
|
+ ip += 1;
|
|
+ { U32 n;
|
|
+ for (n=0; n<oSize; n+=2) {
|
|
+ huffWeight[n] = ip[n/2] >> 4;
|
|
+ huffWeight[n+1] = ip[n/2] & 15;
|
|
+ } } }
|
|
+ else { /* header compressed with FSE (normal case) */
|
|
+ FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */
|
|
+ if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
+ oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */
|
|
+ if (FSE_isError(oSize)) return oSize;
|
|
+ }
|
|
+
|
|
+ /* collect weight stats */
|
|
+ memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
|
|
+ weightTotal = 0;
|
|
+ { U32 n; for (n=0; n<oSize; n++) {
|
|
+ if (huffWeight[n] >= HUF_TABLELOG_MAX) return ERROR(corruption_detected);
|
|
+ rankStats[huffWeight[n]]++;
|
|
+ weightTotal += (1 << huffWeight[n]) >> 1;
|
|
+ } }
|
|
+ if (weightTotal == 0) return ERROR(corruption_detected);
|
|
+
|
|
+ /* get last non-null symbol weight (implied, total must be 2^n) */
|
|
+ { U32 const tableLog = BIT_highbit32(weightTotal) + 1;
|
|
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
|
|
+ *tableLogPtr = tableLog;
|
|
+ /* determine last weight */
|
|
+ { U32 const total = 1 << tableLog;
|
|
+ U32 const rest = total - weightTotal;
|
|
+ U32 const verif = 1 << BIT_highbit32(rest);
|
|
+ U32 const lastWeight = BIT_highbit32(rest) + 1;
|
|
+ if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
|
+ huffWeight[oSize] = (BYTE)lastWeight;
|
|
+ rankStats[lastWeight]++;
|
|
+ } }
|
|
+
|
|
+ /* check tree construction validity */
|
|
+ if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
|
|
+
|
|
+ /* results */
|
|
+ *nbSymbolsPtr = (U32)(oSize+1);
|
|
+ return iSize+1;
|
|
+}
|
|
diff --git a/lib/zstd/error_private.h b/lib/zstd/error_private.h
|
|
new file mode 100644
|
|
index 0000000..fd1f4ff
|
|
--- /dev/null
|
|
+++ b/lib/zstd/error_private.h
|
|
@@ -0,0 +1,51 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+/* Note : this module is expected to remain private, do not expose it */
|
|
+
|
|
+#ifndef ERROR_H_MODULE
|
|
+#define ERROR_H_MODULE
|
|
+
|
|
+/* ****************************************
|
|
+* Dependencies
|
|
+******************************************/
|
|
+#include <linux/types.h> /* size_t */
|
|
+#include <linux/zstd.h> /* enum list */
|
|
+
|
|
+
|
|
+/* ****************************************
|
|
+* Compiler-specific
|
|
+******************************************/
|
|
+#define ERR_STATIC static __attribute__((unused))
|
|
+
|
|
+
|
|
+/*-****************************************
|
|
+* Customization (error_public.h)
|
|
+******************************************/
|
|
+typedef ZSTD_ErrorCode ERR_enum;
|
|
+#define PREFIX(name) ZSTD_error_##name
|
|
+
|
|
+
|
|
+/*-****************************************
|
|
+* Error codes handling
|
|
+******************************************/
|
|
+#define ERROR(name) ((size_t)-PREFIX(name))
|
|
+
|
|
+ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
|
|
+
|
|
+ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
|
|
+
|
|
+#endif /* ERROR_H_MODULE */
|
|
diff --git a/lib/zstd/fse.h b/lib/zstd/fse.h
|
|
new file mode 100644
|
|
index 0000000..a042154
|
|
--- /dev/null
|
|
+++ b/lib/zstd/fse.h
|
|
@@ -0,0 +1,612 @@
|
|
+/*
|
|
+ * FSE : Finite State Entropy codec
|
|
+ * Public Prototypes declaration
|
|
+ * Copyright (C) 2013-2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+#ifndef FSE_H
|
|
+#define FSE_H
|
|
+
|
|
+
|
|
+/*-*****************************************
|
|
+* Dependencies
|
|
+******************************************/
|
|
+#include <linux/types.h> /* size_t, ptrdiff_t */
|
|
+
|
|
+
|
|
+/*-*****************************************
|
|
+* FSE_PUBLIC_API : control library symbols visibility
|
|
+******************************************/
|
|
+#define FSE_PUBLIC_API
|
|
+
|
|
+/*------ Version ------*/
|
|
+#define FSE_VERSION_MAJOR 0
|
|
+#define FSE_VERSION_MINOR 9
|
|
+#define FSE_VERSION_RELEASE 0
|
|
+
|
|
+#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
|
|
+#define FSE_QUOTE(str) #str
|
|
+#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
|
|
+#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
|
|
+
|
|
+#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
|
|
+FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
|
|
+
|
|
+/*-*****************************************
|
|
+* Tool functions
|
|
+******************************************/
|
|
+FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
|
|
+
|
|
+/* Error Management */
|
|
+FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
|
|
+
|
|
+
|
|
+/*-*****************************************
|
|
+* FSE detailed API
|
|
+******************************************/
|
|
+/*!
|
|
+FSE_compress() does the following:
|
|
+1. count symbol occurrence from source[] into table count[]
|
|
+2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
|
|
+3. save normalized counters to memory buffer using writeNCount()
|
|
+4. build encoding table 'CTable' from normalized counters
|
|
+5. encode the data stream using encoding table 'CTable'
|
|
+
|
|
+FSE_decompress() does the following:
|
|
+1. read normalized counters with readNCount()
|
|
+2. build decoding table 'DTable' from normalized counters
|
|
+3. decode the data stream using decoding table 'DTable'
|
|
+
|
|
+The following API allows targeting specific sub-functions for advanced tasks.
|
|
+For example, it's possible to compress several blocks using the same 'CTable',
|
|
+or to save and provide normalized distribution using external method.
|
|
+*/
|
|
+
|
|
+/* *** COMPRESSION *** */
|
|
+/*! FSE_optimalTableLog():
|
|
+ dynamically downsize 'tableLog' when conditions are met.
|
|
+ It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
|
|
+ @return : recommended tableLog (necessarily <= 'maxTableLog') */
|
|
+FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
|
+
|
|
+/*! FSE_normalizeCount():
|
|
+ normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
|
|
+ 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
|
|
+ @return : tableLog,
|
|
+ or an errorCode, which can be tested using FSE_isError() */
|
|
+FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue);
|
|
+
|
|
+/*! FSE_NCountWriteBound():
|
|
+ Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
|
|
+ Typically useful for allocation purpose. */
|
|
+FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
|
|
+
|
|
+/*! FSE_writeNCount():
|
|
+ Compactly save 'normalizedCounter' into 'buffer'.
|
|
+ @return : size of the compressed table,
|
|
+ or an errorCode, which can be tested using FSE_isError(). */
|
|
+FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
|
+
|
|
+
|
|
+/*! Constructor and Destructor of FSE_CTable.
|
|
+ Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
|
|
+typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
|
|
+
|
|
+/*! FSE_compress_usingCTable():
|
|
+ Compress `src` using `ct` into `dst` which must be already allocated.
|
|
+ @return : size of compressed data (<= `dstCapacity`),
|
|
+ or 0 if compressed data could not fit into `dst`,
|
|
+ or an errorCode, which can be tested using FSE_isError() */
|
|
+FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
|
|
+
|
|
+/*!
|
|
+Tutorial :
|
|
+----------
|
|
+The first step is to count all symbols. FSE_count() does this job very fast.
|
|
+Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
|
|
+'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
|
|
+maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
|
|
+FSE_count() will return the number of occurrence of the most frequent symbol.
|
|
+This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
|
|
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
|
|
+
|
|
+The next step is to normalize the frequencies.
|
|
+FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
|
|
+It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
|
|
+You can use 'tableLog'==0 to mean "use default tableLog value".
|
|
+If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
|
|
+which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
|
|
+
|
|
+The result of FSE_normalizeCount() will be saved into a table,
|
|
+called 'normalizedCounter', which is a table of signed short.
|
|
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
|
|
+The return value is tableLog if everything proceeded as expected.
|
|
+It is 0 if there is a single symbol within distribution.
|
|
+If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
|
|
+
|
|
+'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
|
|
+'buffer' must be already allocated.
|
|
+For guaranteed success, buffer size must be at least FSE_headerBound().
|
|
+The result of the function is the number of bytes written into 'buffer'.
|
|
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
|
|
+
|
|
+'normalizedCounter' can then be used to create the compression table 'CTable'.
|
|
+The space required by 'CTable' must be already allocated, using FSE_createCTable().
|
|
+You can then use FSE_buildCTable() to fill 'CTable'.
|
|
+If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
|
|
+
|
|
+'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
|
|
+Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
|
|
+The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
|
|
+If it returns '0', compressed data could not fit into 'dst'.
|
|
+If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
|
|
+*/
|
|
+
|
|
+
|
|
+/* *** DECOMPRESSION *** */
|
|
+
|
|
+/*! FSE_readNCount():
|
|
+ Read compactly saved 'normalizedCounter' from 'rBuffer'.
|
|
+ @return : size read from 'rBuffer',
|
|
+ or an errorCode, which can be tested using FSE_isError().
|
|
+ maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
|
|
+FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
|
|
+
|
|
+/*! Constructor and Destructor of FSE_DTable.
|
|
+ Note that its size depends on 'tableLog' */
|
|
+typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
|
|
+
|
|
+/*! FSE_buildDTable():
|
|
+ Builds 'dt', which must be already allocated, using FSE_createDTable().
|
|
+ return : 0, or an errorCode, which can be tested using FSE_isError() */
|
|
+FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
|
|
+
|
|
+/*! FSE_decompress_usingDTable():
|
|
+ Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
|
|
+ into `dst` which must be already allocated.
|
|
+ @return : size of regenerated data (necessarily <= `dstCapacity`),
|
|
+ or an errorCode, which can be tested using FSE_isError() */
|
|
+FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
|
|
+
|
|
+/*!
|
|
+Tutorial :
|
|
+----------
|
|
+(Note : these functions only decompress FSE-compressed blocks.
|
|
+ If block is uncompressed, use memcpy() instead
|
|
+ If block is a single repeated byte, use memset() instead )
|
|
+
|
|
+The first step is to obtain the normalized frequencies of symbols.
|
|
+This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
|
|
+'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
|
|
+In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
|
|
+or size the table to handle worst case situations (typically 256).
|
|
+FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
|
|
+The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
|
|
+Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
|
|
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
|
|
+
|
|
+The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
|
|
+This is performed by the function FSE_buildDTable().
|
|
+The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
|
|
+If there is an error, the function will return an error code, which can be tested using FSE_isError().
|
|
+
|
|
+`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
|
|
+`cSrcSize` must be strictly correct, otherwise decompression will fail.
|
|
+FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
|
|
+If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
|
|
+*/
|
|
+
|
|
+
|
|
+/* *** Dependency *** */
|
|
+#include "bitstream.h"
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* Static allocation
|
|
+*******************************************/
|
|
+/* FSE buffer bounds */
|
|
+#define FSE_NCOUNTBOUND 512
|
|
+#define FSE_BLOCKBOUND(size) (size + (size>>7))
|
|
+#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
|
+
|
|
+/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
|
|
+#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
|
|
+#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* FSE advanced API
|
|
+*******************************************/
|
|
+/* FSE_count_wksp() :
|
|
+ * Same as FSE_count(), but using an externally provided scratch buffer.
|
|
+ * `workSpace` size must be table of >= `1024` unsigned
|
|
+ */
|
|
+size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
|
+ const void* source, size_t sourceSize, unsigned* workSpace);
|
|
+
|
|
+/* FSE_countFast_wksp() :
|
|
+ * Same as FSE_countFast(), but using an externally provided scratch buffer.
|
|
+ * `workSpace` must be a table of minimum `1024` unsigned
|
|
+ */
|
|
+size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* workSpace);
|
|
+
|
|
+/*! FSE_count_simple
|
|
+ * Same as FSE_countFast(), but does not use any additional memory (not even on stack).
|
|
+ * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` (presuming it's also the size of `count`).
|
|
+*/
|
|
+size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize);
|
|
+
|
|
+
|
|
+
|
|
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
|
|
+/**< same as FSE_optimalTableLog(), which used `minus==2` */
|
|
+
|
|
+/* FSE_compress_wksp() :
|
|
+ * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
|
|
+ * FSE_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
|
|
+ */
|
|
+#define FSE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
|
|
+size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
|
|
+
|
|
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
|
|
+/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
|
|
+
|
|
+size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
|
|
+/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
|
|
+
|
|
+/* FSE_buildCTable_wksp() :
|
|
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
|
|
+ * `wkspSize` must be >= `(1<<tableLog)`.
|
|
+ */
|
|
+size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
|
|
+
|
|
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
|
|
+/**< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
|
|
+
|
|
+size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
|
|
+/**< build a fake FSE_DTable, designed to always generate the same symbolValue */
|
|
+
|
|
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog);
|
|
+/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DTABLE_SIZE_U32(maxLog)` */
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* FSE symbol compression API
|
|
+*******************************************/
|
|
+/*!
|
|
+ This API consists of small unitary functions, which highly benefit from being inlined.
|
|
+ Hence their body are included in next section.
|
|
+*/
|
|
+typedef struct {
|
|
+ ptrdiff_t value;
|
|
+ const void* stateTable;
|
|
+ const void* symbolTT;
|
|
+ unsigned stateLog;
|
|
+} FSE_CState_t;
|
|
+
|
|
+static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
|
|
+
|
|
+static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
|
|
+
|
|
+static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
|
|
+
|
|
+/**<
|
|
+These functions are inner components of FSE_compress_usingCTable().
|
|
+They allow the creation of custom streams, mixing multiple tables and bit sources.
|
|
+
|
|
+A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
|
|
+So the first symbol you will encode is the last you will decode, like a LIFO stack.
|
|
+
|
|
+You will need a few variables to track your CStream. They are :
|
|
+
|
|
+FSE_CTable ct; // Provided by FSE_buildCTable()
|
|
+BIT_CStream_t bitStream; // bitStream tracking structure
|
|
+FSE_CState_t state; // State tracking structure (can have several)
|
|
+
|
|
+
|
|
+The first thing to do is to init bitStream and state.
|
|
+ size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
|
|
+ FSE_initCState(&state, ct);
|
|
+
|
|
+Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
|
|
+You can then encode your input data, byte after byte.
|
|
+FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
|
|
+Remember decoding will be done in reverse direction.
|
|
+ FSE_encodeByte(&bitStream, &state, symbol);
|
|
+
|
|
+At any time, you can also add any bit sequence.
|
|
+Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
|
|
+ BIT_addBits(&bitStream, bitField, nbBits);
|
|
+
|
|
+The above methods don't commit data to memory, they just store it into local register, for speed.
|
|
+Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
|
+Writing data to memory is a manual operation, performed by the flushBits function.
|
|
+ BIT_flushBits(&bitStream);
|
|
+
|
|
+Your last FSE encoding operation shall be to flush your last state value(s).
|
|
+ FSE_flushState(&bitStream, &state);
|
|
+
|
|
+Finally, you must close the bitStream.
|
|
+The function returns the size of CStream in bytes.
|
|
+If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
|
|
+If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
|
|
+ size_t size = BIT_closeCStream(&bitStream);
|
|
+*/
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* FSE symbol decompression API
|
|
+*******************************************/
|
|
+typedef struct {
|
|
+ size_t state;
|
|
+ const void* table; /* precise table may vary, depending on U16 */
|
|
+} FSE_DState_t;
|
|
+
|
|
+
|
|
+static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
|
|
+
|
|
+static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
|
+
|
|
+static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
|
+
|
|
+/**<
|
|
+Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
|
+You will decode FSE-encoded symbols from the bitStream,
|
|
+and also any other bitFields you put in, **in reverse order**.
|
|
+
|
|
+You will need a few variables to track your bitStream. They are :
|
|
+
|
|
+BIT_DStream_t DStream; // Stream context
|
|
+FSE_DState_t DState; // State context. Multiple ones are possible
|
|
+FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
|
+
|
|
+The first thing to do is to init the bitStream.
|
|
+ errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
|
+
|
|
+You should then retrieve your initial state(s)
|
|
+(in reverse flushing order if you have several ones) :
|
|
+ errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
|
+
|
|
+You can then decode your data, symbol after symbol.
|
|
+For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
|
+Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
|
+ unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
|
+
|
|
+You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
|
+Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
|
+ size_t bitField = BIT_readBits(&DStream, nbBits);
|
|
+
|
|
+All above operations only read from local register (which size depends on size_t).
|
|
+Refueling the register from memory is manually performed by the reload method.
|
|
+ endSignal = FSE_reloadDStream(&DStream);
|
|
+
|
|
+BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
|
+BIT_DStream_unfinished : there is still some data left into the DStream.
|
|
+BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
|
+BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
|
+BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
|
+
|
|
+When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
|
+to properly detect the exact end of stream.
|
|
+After each decoded symbol, check if DStream is fully consumed using this simple test :
|
|
+ BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
|
+
|
|
+When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
|
+Checking if DStream has reached its end is performed by :
|
|
+ BIT_endOfDStream(&DStream);
|
|
+Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
|
+ FSE_endOfDState(&DState);
|
|
+*/
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* FSE unsafe API
|
|
+*******************************************/
|
|
+static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
|
+/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
|
|
+
|
|
+
|
|
+/* *****************************************
|
|
+* Implementation of inlined functions
|
|
+*******************************************/
|
|
+typedef struct {
|
|
+ int deltaFindState;
|
|
+ U32 deltaNbBits;
|
|
+} FSE_symbolCompressionTransform; /* total 8 bytes */
|
|
+
|
|
+MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
|
|
+{
|
|
+ const void* ptr = ct;
|
|
+ const U16* u16ptr = (const U16*) ptr;
|
|
+ const U32 tableLog = MEM_read16(ptr);
|
|
+ statePtr->value = (ptrdiff_t)1<<tableLog;
|
|
+ statePtr->stateTable = u16ptr+2;
|
|
+ statePtr->symbolTT = ((const U32*)ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1));
|
|
+ statePtr->stateLog = tableLog;
|
|
+}
|
|
+
|
|
+
|
|
+/*! FSE_initCState2() :
|
|
+* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
|
|
+* uses the smallest state value possible, saving the cost of this symbol */
|
|
+MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
|
|
+{
|
|
+ FSE_initCState(statePtr, ct);
|
|
+ { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
|
+ const U16* stateTable = (const U16*)(statePtr->stateTable);
|
|
+ U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
|
|
+ statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
|
|
+ statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
|
+ }
|
|
+}
|
|
+
|
|
+MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, U32 symbol)
|
|
+{
|
|
+ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
|
|
+ const U16* const stateTable = (const U16*)(statePtr->stateTable);
|
|
+ U32 nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
|
|
+ BIT_addBits(bitC, statePtr->value, nbBitsOut);
|
|
+ statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
|
|
+}
|
|
+
|
|
+MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
|
|
+{
|
|
+ BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
|
|
+ BIT_flushBits(bitC);
|
|
+}
|
|
+
|
|
+
|
|
+/* ====== Decompression ====== */
|
|
+
|
|
+typedef struct {
|
|
+ U16 tableLog;
|
|
+ U16 fastMode;
|
|
+} FSE_DTableHeader; /* sizeof U32 */
|
|
+
|
|
+typedef struct
|
|
+{
|
|
+ unsigned short newState;
|
|
+ unsigned char symbol;
|
|
+ unsigned char nbBits;
|
|
+} FSE_decode_t; /* size == U32 */
|
|
+
|
|
+MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
|
|
+{
|
|
+ const void* ptr = dt;
|
|
+ const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
|
|
+ DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
|
|
+ BIT_reloadDStream(bitD);
|
|
+ DStatePtr->table = dt + 1;
|
|
+}
|
|
+
|
|
+MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
|
|
+{
|
|
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
+ return DInfo.symbol;
|
|
+}
|
|
+
|
|
+MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
|
+{
|
|
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
+ U32 const nbBits = DInfo.nbBits;
|
|
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
|
|
+ DStatePtr->state = DInfo.newState + lowBits;
|
|
+}
|
|
+
|
|
+MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
|
+{
|
|
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
+ U32 const nbBits = DInfo.nbBits;
|
|
+ BYTE const symbol = DInfo.symbol;
|
|
+ size_t const lowBits = BIT_readBits(bitD, nbBits);
|
|
+
|
|
+ DStatePtr->state = DInfo.newState + lowBits;
|
|
+ return symbol;
|
|
+}
|
|
+
|
|
+/*! FSE_decodeSymbolFast() :
|
|
+ unsafe, only works if no symbol has a probability > 50% */
|
|
+MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
|
+{
|
|
+ FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
+ U32 const nbBits = DInfo.nbBits;
|
|
+ BYTE const symbol = DInfo.symbol;
|
|
+ size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
|
|
+
|
|
+ DStatePtr->state = DInfo.newState + lowBits;
|
|
+ return symbol;
|
|
+}
|
|
+
|
|
+MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
|
|
+{
|
|
+ return DStatePtr->state == 0;
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+#ifndef FSE_COMMONDEFS_ONLY
|
|
+
|
|
+/* **************************************************************
|
|
+* Tuning parameters
|
|
+****************************************************************/
|
|
+/*!MEMORY_USAGE :
|
|
+* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
|
+* Increasing memory usage improves compression ratio
|
|
+* Reduced memory usage can improve speed, due to cache effect
|
|
+* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
|
|
+#ifndef FSE_MAX_MEMORY_USAGE
|
|
+# define FSE_MAX_MEMORY_USAGE 14
|
|
+#endif
|
|
+#ifndef FSE_DEFAULT_MEMORY_USAGE
|
|
+# define FSE_DEFAULT_MEMORY_USAGE 13
|
|
+#endif
|
|
+
|
|
+/*!FSE_MAX_SYMBOL_VALUE :
|
|
+* Maximum symbol value authorized.
|
|
+* Required for proper stack allocation */
|
|
+#ifndef FSE_MAX_SYMBOL_VALUE
|
|
+# define FSE_MAX_SYMBOL_VALUE 255
|
|
+#endif
|
|
+
|
|
+/* **************************************************************
|
|
+* template functions type & suffix
|
|
+****************************************************************/
|
|
+#define FSE_FUNCTION_TYPE BYTE
|
|
+#define FSE_FUNCTION_EXTENSION
|
|
+#define FSE_DECODE_TYPE FSE_decode_t
|
|
+
|
|
+
|
|
+#endif /* !FSE_COMMONDEFS_ONLY */
|
|
+
|
|
+
|
|
+/* ***************************************************************
|
|
+* Constants
|
|
+*****************************************************************/
|
|
+#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
|
|
+#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
|
|
+#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
|
|
+#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
|
|
+#define FSE_MIN_TABLELOG 5
|
|
+
|
|
+#define FSE_TABLELOG_ABSOLUTE_MAX 15
|
|
+#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
|
|
+# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
|
|
+#endif
|
|
+
|
|
+#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3)
|
|
+
|
|
+
|
|
+#endif /* FSE_H */
|
|
diff --git a/lib/zstd/fse_compress.c b/lib/zstd/fse_compress.c
|
|
new file mode 100644
|
|
index 0000000..d13f00d
|
|
--- /dev/null
|
|
+++ b/lib/zstd/fse_compress.c
|
|
@@ -0,0 +1,779 @@
|
|
+/*
|
|
+ * FSE : Finite State Entropy encoder
|
|
+ * Copyright (C) 2013-2015, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+
|
|
+/* **************************************************************
|
|
+* Compiler specifics
|
|
+****************************************************************/
|
|
+#define FORCE_INLINE static __always_inline
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Includes
|
|
+****************************************************************/
|
|
+#include <linux/compiler.h>
|
|
+#include <linux/string.h> /* memcpy, memset */
|
|
+#include "bitstream.h"
|
|
+#include "fse.h"
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Error Management
|
|
+****************************************************************/
|
|
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Templates
|
|
+****************************************************************/
|
|
+/*
|
|
+ designed to be included
|
|
+ for type-specific functions (template emulation in C)
|
|
+ Objective is to write these functions only once, for improved maintenance
|
|
+*/
|
|
+
|
|
+/* safety checks */
|
|
+#ifndef FSE_FUNCTION_EXTENSION
|
|
+# error "FSE_FUNCTION_EXTENSION must be defined"
|
|
+#endif
|
|
+#ifndef FSE_FUNCTION_TYPE
|
|
+# error "FSE_FUNCTION_TYPE must be defined"
|
|
+#endif
|
|
+
|
|
+/* Function names */
|
|
+#define FSE_CAT(X,Y) X##Y
|
|
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
|
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
|
+
|
|
+
|
|
+/* Function templates */
|
|
+
|
|
+/* FSE_buildCTable_wksp() :
|
|
+ * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
|
|
+ * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
|
|
+ * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
|
|
+ */
|
|
+size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
|
|
+{
|
|
+ U32 const tableSize = 1 << tableLog;
|
|
+ U32 const tableMask = tableSize - 1;
|
|
+ void* const ptr = ct;
|
|
+ U16* const tableU16 = ( (U16*) ptr) + 2;
|
|
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
|
|
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
|
|
+ U32 const step = FSE_TABLESTEP(tableSize);
|
|
+ U32 cumul[FSE_MAX_SYMBOL_VALUE+2];
|
|
+
|
|
+ FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)workSpace;
|
|
+ U32 highThreshold = tableSize-1;
|
|
+
|
|
+ /* CTable header */
|
|
+ if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge);
|
|
+ tableU16[-2] = (U16) tableLog;
|
|
+ tableU16[-1] = (U16) maxSymbolValue;
|
|
+
|
|
+ /* For explanations on how to distribute symbol values over the table :
|
|
+ * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
|
|
+
|
|
+ /* symbol start positions */
|
|
+ { U32 u;
|
|
+ cumul[0] = 0;
|
|
+ for (u=1; u<=maxSymbolValue+1; u++) {
|
|
+ if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
|
|
+ cumul[u] = cumul[u-1] + 1;
|
|
+ tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
|
|
+ } else {
|
|
+ cumul[u] = cumul[u-1] + normalizedCounter[u-1];
|
|
+ } }
|
|
+ cumul[maxSymbolValue+1] = tableSize+1;
|
|
+ }
|
|
+
|
|
+ /* Spread symbols */
|
|
+ { U32 position = 0;
|
|
+ U32 symbol;
|
|
+ for (symbol=0; symbol<=maxSymbolValue; symbol++) {
|
|
+ int nbOccurences;
|
|
+ for (nbOccurences=0; nbOccurences<normalizedCounter[symbol]; nbOccurences++) {
|
|
+ tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
|
|
+ position = (position + step) & tableMask;
|
|
+ while (position > highThreshold) position = (position + step) & tableMask; /* Low proba area */
|
|
+ } }
|
|
+
|
|
+ if (position!=0) return ERROR(GENERIC); /* Must have gone through all positions */
|
|
+ }
|
|
+
|
|
+ /* Build table */
|
|
+ { U32 u; for (u=0; u<tableSize; u++) {
|
|
+ FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
|
|
+ tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
|
|
+ } }
|
|
+
|
|
+ /* Build Symbol Transformation Table */
|
|
+ { unsigned total = 0;
|
|
+ unsigned s;
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ switch (normalizedCounter[s])
|
|
+ {
|
|
+ case 0: break;
|
|
+
|
|
+ case -1:
|
|
+ case 1:
|
|
+ symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
|
|
+ symbolTT[s].deltaFindState = total - 1;
|
|
+ total ++;
|
|
+ break;
|
|
+ default :
|
|
+ {
|
|
+ U32 const maxBitsOut = tableLog - BIT_highbit32 (normalizedCounter[s]-1);
|
|
+ U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
|
|
+ symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
|
|
+ symbolTT[s].deltaFindState = total - normalizedCounter[s];
|
|
+ total += normalizedCounter[s];
|
|
+ } } } }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+#ifndef FSE_COMMONDEFS_ONLY
|
|
+
|
|
+/*-**************************************************************
|
|
+* FSE NCount encoding-decoding
|
|
+****************************************************************/
|
|
+size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
|
|
+{
|
|
+ size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog) >> 3) + 3;
|
|
+ return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
|
|
+}
|
|
+
|
|
+static size_t FSE_writeNCount_generic (void* header, size_t headerBufferSize,
|
|
+ const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
|
|
+ unsigned writeIsSafe)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*) header;
|
|
+ BYTE* out = ostart;
|
|
+ BYTE* const oend = ostart + headerBufferSize;
|
|
+ int nbBits;
|
|
+ const int tableSize = 1 << tableLog;
|
|
+ int remaining;
|
|
+ int threshold;
|
|
+ U32 bitStream;
|
|
+ int bitCount;
|
|
+ unsigned charnum = 0;
|
|
+ int previous0 = 0;
|
|
+
|
|
+ bitStream = 0;
|
|
+ bitCount = 0;
|
|
+ /* Table Size */
|
|
+ bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
|
|
+ bitCount += 4;
|
|
+
|
|
+ /* Init */
|
|
+ remaining = tableSize+1; /* +1 for extra accuracy */
|
|
+ threshold = tableSize;
|
|
+ nbBits = tableLog+1;
|
|
+
|
|
+ while (remaining>1) { /* stops at 1 */
|
|
+ if (previous0) {
|
|
+ unsigned start = charnum;
|
|
+ while (!normalizedCounter[charnum]) charnum++;
|
|
+ while (charnum >= start+24) {
|
|
+ start+=24;
|
|
+ bitStream += 0xFFFFU << bitCount;
|
|
+ if ((!writeIsSafe) && (out > oend-2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
|
+ out[0] = (BYTE) bitStream;
|
|
+ out[1] = (BYTE)(bitStream>>8);
|
|
+ out+=2;
|
|
+ bitStream>>=16;
|
|
+ }
|
|
+ while (charnum >= start+3) {
|
|
+ start+=3;
|
|
+ bitStream += 3 << bitCount;
|
|
+ bitCount += 2;
|
|
+ }
|
|
+ bitStream += (charnum-start) << bitCount;
|
|
+ bitCount += 2;
|
|
+ if (bitCount>16) {
|
|
+ if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
|
+ out[0] = (BYTE)bitStream;
|
|
+ out[1] = (BYTE)(bitStream>>8);
|
|
+ out += 2;
|
|
+ bitStream >>= 16;
|
|
+ bitCount -= 16;
|
|
+ } }
|
|
+ { int count = normalizedCounter[charnum++];
|
|
+ int const max = (2*threshold-1)-remaining;
|
|
+ remaining -= count < 0 ? -count : count;
|
|
+ count++; /* +1 for extra accuracy */
|
|
+ if (count>=threshold) count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
|
|
+ bitStream += count << bitCount;
|
|
+ bitCount += nbBits;
|
|
+ bitCount -= (count<max);
|
|
+ previous0 = (count==1);
|
|
+ if (remaining<1) return ERROR(GENERIC);
|
|
+ while (remaining<threshold) nbBits--, threshold>>=1;
|
|
+ }
|
|
+ if (bitCount>16) {
|
|
+ if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
|
+ out[0] = (BYTE)bitStream;
|
|
+ out[1] = (BYTE)(bitStream>>8);
|
|
+ out += 2;
|
|
+ bitStream >>= 16;
|
|
+ bitCount -= 16;
|
|
+ } }
|
|
+
|
|
+ /* flush remaining bitStream */
|
|
+ if ((!writeIsSafe) && (out > oend - 2)) return ERROR(dstSize_tooSmall); /* Buffer overflow */
|
|
+ out[0] = (BYTE)bitStream;
|
|
+ out[1] = (BYTE)(bitStream>>8);
|
|
+ out+= (bitCount+7) /8;
|
|
+
|
|
+ if (charnum > maxSymbolValue + 1) return ERROR(GENERIC);
|
|
+
|
|
+ return (out-ostart);
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
|
+{
|
|
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
|
|
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
|
|
+
|
|
+ if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
|
|
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
|
|
+
|
|
+ return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
|
|
+}
|
|
+
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* Counting histogram
|
|
+****************************************************************/
|
|
+/*! FSE_count_simple
|
|
+ This function counts byte values within `src`, and store the histogram into table `count`.
|
|
+ It doesn't use any additional memory.
|
|
+ But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
|
|
+ For this reason, prefer using a table `count` with 256 elements.
|
|
+ @return : count of most numerous element
|
|
+*/
|
|
+size_t FSE_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
|
|
+ const void* src, size_t srcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+ const BYTE* const end = ip + srcSize;
|
|
+ unsigned maxSymbolValue = *maxSymbolValuePtr;
|
|
+ unsigned max=0;
|
|
+
|
|
+ memset(count, 0, (maxSymbolValue+1)*sizeof(*count));
|
|
+ if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
|
|
+
|
|
+ while (ip<end) count[*ip++]++;
|
|
+
|
|
+ while (!count[maxSymbolValue]) maxSymbolValue--;
|
|
+ *maxSymbolValuePtr = maxSymbolValue;
|
|
+
|
|
+ { U32 s; for (s=0; s<=maxSymbolValue; s++) if (count[s] > max) max = count[s]; }
|
|
+
|
|
+ return (size_t)max;
|
|
+}
|
|
+
|
|
+
|
|
+/* FSE_count_parallel_wksp() :
|
|
+ * Same as FSE_count_parallel(), but using an externally provided scratch buffer.
|
|
+ * `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
|
|
+static size_t FSE_count_parallel_wksp(
|
|
+ unsigned* count, unsigned* maxSymbolValuePtr,
|
|
+ const void* source, size_t sourceSize,
|
|
+ unsigned checkMax, unsigned* const workSpace)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)source;
|
|
+ const BYTE* const iend = ip+sourceSize;
|
|
+ unsigned maxSymbolValue = *maxSymbolValuePtr;
|
|
+ unsigned max=0;
|
|
+ U32* const Counting1 = workSpace;
|
|
+ U32* const Counting2 = Counting1 + 256;
|
|
+ U32* const Counting3 = Counting2 + 256;
|
|
+ U32* const Counting4 = Counting3 + 256;
|
|
+
|
|
+ memset(Counting1, 0, 4*256*sizeof(unsigned));
|
|
+
|
|
+ /* safety checks */
|
|
+ if (!sourceSize) {
|
|
+ memset(count, 0, maxSymbolValue + 1);
|
|
+ *maxSymbolValuePtr = 0;
|
|
+ return 0;
|
|
+ }
|
|
+ if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */
|
|
+
|
|
+ /* by stripes of 16 bytes */
|
|
+ { U32 cached = MEM_read32(ip); ip += 4;
|
|
+ while (ip < iend-15) {
|
|
+ U32 c = cached; cached = MEM_read32(ip); ip += 4;
|
|
+ Counting1[(BYTE) c ]++;
|
|
+ Counting2[(BYTE)(c>>8) ]++;
|
|
+ Counting3[(BYTE)(c>>16)]++;
|
|
+ Counting4[ c>>24 ]++;
|
|
+ c = cached; cached = MEM_read32(ip); ip += 4;
|
|
+ Counting1[(BYTE) c ]++;
|
|
+ Counting2[(BYTE)(c>>8) ]++;
|
|
+ Counting3[(BYTE)(c>>16)]++;
|
|
+ Counting4[ c>>24 ]++;
|
|
+ c = cached; cached = MEM_read32(ip); ip += 4;
|
|
+ Counting1[(BYTE) c ]++;
|
|
+ Counting2[(BYTE)(c>>8) ]++;
|
|
+ Counting3[(BYTE)(c>>16)]++;
|
|
+ Counting4[ c>>24 ]++;
|
|
+ c = cached; cached = MEM_read32(ip); ip += 4;
|
|
+ Counting1[(BYTE) c ]++;
|
|
+ Counting2[(BYTE)(c>>8) ]++;
|
|
+ Counting3[(BYTE)(c>>16)]++;
|
|
+ Counting4[ c>>24 ]++;
|
|
+ }
|
|
+ ip-=4;
|
|
+ }
|
|
+
|
|
+ /* finish last symbols */
|
|
+ while (ip<iend) Counting1[*ip++]++;
|
|
+
|
|
+ if (checkMax) { /* verify stats will fit into destination table */
|
|
+ U32 s; for (s=255; s>maxSymbolValue; s--) {
|
|
+ Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
|
|
+ if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall);
|
|
+ } }
|
|
+
|
|
+ { U32 s; for (s=0; s<=maxSymbolValue; s++) {
|
|
+ count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
|
|
+ if (count[s] > max) max = count[s];
|
|
+ } }
|
|
+
|
|
+ while (!count[maxSymbolValue]) maxSymbolValue--;
|
|
+ *maxSymbolValuePtr = maxSymbolValue;
|
|
+ return (size_t)max;
|
|
+}
|
|
+
|
|
+/* FSE_countFast_wksp() :
|
|
+ * Same as FSE_countFast(), but using an externally provided scratch buffer.
|
|
+ * `workSpace` size must be table of >= `1024` unsigned */
|
|
+size_t FSE_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
|
+ const void* source, size_t sourceSize, unsigned* workSpace)
|
|
+{
|
|
+ if (sourceSize < 1500) return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
|
|
+ return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
|
|
+}
|
|
+
|
|
+/* FSE_count_wksp() :
|
|
+ * Same as FSE_count(), but using an externally provided scratch buffer.
|
|
+ * `workSpace` size must be table of >= `1024` unsigned */
|
|
+size_t FSE_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
|
|
+ const void* source, size_t sourceSize, unsigned* workSpace)
|
|
+{
|
|
+ if (*maxSymbolValuePtr < 255)
|
|
+ return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
|
|
+ *maxSymbolValuePtr = 255;
|
|
+ return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
|
|
+}
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* FSE Compression Code
|
|
+****************************************************************/
|
|
+/*! FSE_sizeof_CTable() :
|
|
+ FSE_CTable is a variable size structure which contains :
|
|
+ `U16 tableLog;`
|
|
+ `U16 maxSymbolValue;`
|
|
+ `U16 nextStateNumber[1 << tableLog];` // This size is variable
|
|
+ `FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];` // This size is variable
|
|
+Allocation is manual (C standard does not support variable-size structures).
|
|
+*/
|
|
+size_t FSE_sizeof_CTable (unsigned maxSymbolValue, unsigned tableLog)
|
|
+{
|
|
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
+ return FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32);
|
|
+}
|
|
+
|
|
+/* provides the minimum logSize to safely represent a distribution */
|
|
+static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
|
|
+{
|
|
+ U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
|
|
+ U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
|
|
+ U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
|
|
+ return minBits;
|
|
+}
|
|
+
|
|
+unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
|
|
+{
|
|
+ U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
|
|
+ U32 tableLog = maxTableLog;
|
|
+ U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
|
|
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
|
|
+ if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
|
|
+ if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
|
|
+ if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
|
|
+ if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
|
|
+ return tableLog;
|
|
+}
|
|
+
|
|
+unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
|
|
+{
|
|
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
|
|
+}
|
|
+
|
|
+
|
|
+/* Secondary normalization method.
|
|
+ To be used when primary method fails. */
|
|
+
|
|
+static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue)
|
|
+{
|
|
+ short const NOT_YET_ASSIGNED = -2;
|
|
+ U32 s;
|
|
+ U32 distributed = 0;
|
|
+ U32 ToDistribute;
|
|
+
|
|
+ /* Init */
|
|
+ U32 const lowThreshold = (U32)(total >> tableLog);
|
|
+ U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
|
|
+
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ if (count[s] == 0) {
|
|
+ norm[s]=0;
|
|
+ continue;
|
|
+ }
|
|
+ if (count[s] <= lowThreshold) {
|
|
+ norm[s] = -1;
|
|
+ distributed++;
|
|
+ total -= count[s];
|
|
+ continue;
|
|
+ }
|
|
+ if (count[s] <= lowOne) {
|
|
+ norm[s] = 1;
|
|
+ distributed++;
|
|
+ total -= count[s];
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ norm[s]=NOT_YET_ASSIGNED;
|
|
+ }
|
|
+ ToDistribute = (1 << tableLog) - distributed;
|
|
+
|
|
+ if ((total / ToDistribute) > lowOne) {
|
|
+ /* risk of rounding to zero */
|
|
+ lowOne = (U32)((total * 3) / (ToDistribute * 2));
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
|
|
+ norm[s] = 1;
|
|
+ distributed++;
|
|
+ total -= count[s];
|
|
+ continue;
|
|
+ } }
|
|
+ ToDistribute = (1 << tableLog) - distributed;
|
|
+ }
|
|
+
|
|
+ if (distributed == maxSymbolValue+1) {
|
|
+ /* all values are pretty poor;
|
|
+ probably incompressible data (should have already been detected);
|
|
+ find max, then give all remaining points to max */
|
|
+ U32 maxV = 0, maxC = 0;
|
|
+ for (s=0; s<=maxSymbolValue; s++)
|
|
+ if (count[s] > maxC) maxV=s, maxC=count[s];
|
|
+ norm[maxV] += (short)ToDistribute;
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ if (total == 0) {
|
|
+ /* all of the symbols were low enough for the lowOne or lowThreshold */
|
|
+ for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
|
|
+ if (norm[s] > 0) ToDistribute--, norm[s]++;
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ { U64 const vStepLog = 62 - tableLog;
|
|
+ U64 const mid = (1ULL << (vStepLog-1)) - 1;
|
|
+ U64 const rStep = ((((U64)1<<vStepLog) * ToDistribute) + mid) / total; /* scale on remaining */
|
|
+ U64 tmpTotal = mid;
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ if (norm[s]==NOT_YET_ASSIGNED) {
|
|
+ U64 const end = tmpTotal + (count[s] * rStep);
|
|
+ U32 const sStart = (U32)(tmpTotal >> vStepLog);
|
|
+ U32 const sEnd = (U32)(end >> vStepLog);
|
|
+ U32 const weight = sEnd - sStart;
|
|
+ if (weight < 1)
|
|
+ return ERROR(GENERIC);
|
|
+ norm[s] = (short)weight;
|
|
+ tmpTotal = end;
|
|
+ } } }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
|
|
+ const unsigned* count, size_t total,
|
|
+ unsigned maxSymbolValue)
|
|
+{
|
|
+ /* Sanity checks */
|
|
+ if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
|
|
+ if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
|
|
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
|
|
+ if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
|
|
+
|
|
+ { U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
|
|
+ U64 const scale = 62 - tableLog;
|
|
+ U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */
|
|
+ U64 const vStep = 1ULL<<(scale-20);
|
|
+ int stillToDistribute = 1<<tableLog;
|
|
+ unsigned s;
|
|
+ unsigned largest=0;
|
|
+ short largestP=0;
|
|
+ U32 lowThreshold = (U32)(total >> tableLog);
|
|
+
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ if (count[s] == total) return 0; /* rle special case */
|
|
+ if (count[s] == 0) { normalizedCounter[s]=0; continue; }
|
|
+ if (count[s] <= lowThreshold) {
|
|
+ normalizedCounter[s] = -1;
|
|
+ stillToDistribute--;
|
|
+ } else {
|
|
+ short proba = (short)((count[s]*step) >> scale);
|
|
+ if (proba<8) {
|
|
+ U64 restToBeat = vStep * rtbTable[proba];
|
|
+ proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
|
|
+ }
|
|
+ if (proba > largestP) largestP=proba, largest=s;
|
|
+ normalizedCounter[s] = proba;
|
|
+ stillToDistribute -= proba;
|
|
+ } }
|
|
+ if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
|
|
+ /* corner case, need another normalization method */
|
|
+ size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
|
|
+ if (FSE_isError(errorCode)) return errorCode;
|
|
+ }
|
|
+ else normalizedCounter[largest] += (short)stillToDistribute;
|
|
+ }
|
|
+
|
|
+ return tableLog;
|
|
+}
|
|
+
|
|
+
|
|
+/* fake FSE_CTable, for raw (uncompressed) input */
|
|
+size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits)
|
|
+{
|
|
+ const unsigned tableSize = 1 << nbBits;
|
|
+ const unsigned tableMask = tableSize - 1;
|
|
+ const unsigned maxSymbolValue = tableMask;
|
|
+ void* const ptr = ct;
|
|
+ U16* const tableU16 = ( (U16*) ptr) + 2;
|
|
+ void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableSize>>1); /* assumption : tableLog >= 1 */
|
|
+ FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
|
|
+ unsigned s;
|
|
+
|
|
+ /* Sanity checks */
|
|
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
|
+
|
|
+ /* header */
|
|
+ tableU16[-2] = (U16) nbBits;
|
|
+ tableU16[-1] = (U16) maxSymbolValue;
|
|
+
|
|
+ /* Build table */
|
|
+ for (s=0; s<tableSize; s++)
|
|
+ tableU16[s] = (U16)(tableSize + s);
|
|
+
|
|
+ /* Build Symbol Transformation Table */
|
|
+ { const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
|
|
+ for (s=0; s<=maxSymbolValue; s++) {
|
|
+ symbolTT[s].deltaNbBits = deltaNbBits;
|
|
+ symbolTT[s].deltaFindState = s-1;
|
|
+ } }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/* fake FSE_CTable, for rle input (always same symbol) */
|
|
+size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
|
|
+{
|
|
+ void* ptr = ct;
|
|
+ U16* tableU16 = ( (U16*) ptr) + 2;
|
|
+ void* FSCTptr = (U32*)ptr + 2;
|
|
+ FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
|
|
+
|
|
+ /* header */
|
|
+ tableU16[-2] = (U16) 0;
|
|
+ tableU16[-1] = (U16) symbolValue;
|
|
+
|
|
+ /* Build table */
|
|
+ tableU16[0] = 0;
|
|
+ tableU16[1] = 0; /* just in case */
|
|
+
|
|
+ /* Build Symbol Transformation Table */
|
|
+ symbolTT[symbolValue].deltaNbBits = 0;
|
|
+ symbolTT[symbolValue].deltaFindState = 0;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ const FSE_CTable* ct, const unsigned fast)
|
|
+{
|
|
+ const BYTE* const istart = (const BYTE*) src;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* ip=iend;
|
|
+
|
|
+ BIT_CStream_t bitC;
|
|
+ FSE_CState_t CState1, CState2;
|
|
+
|
|
+ /* init */
|
|
+ if (srcSize <= 2) return 0;
|
|
+ { size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
|
|
+ if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
|
|
+
|
|
+#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
|
|
+
|
|
+ if (srcSize & 1) {
|
|
+ FSE_initCState2(&CState1, ct, *--ip);
|
|
+ FSE_initCState2(&CState2, ct, *--ip);
|
|
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
|
+ FSE_FLUSHBITS(&bitC);
|
|
+ } else {
|
|
+ FSE_initCState2(&CState2, ct, *--ip);
|
|
+ FSE_initCState2(&CState1, ct, *--ip);
|
|
+ }
|
|
+
|
|
+ /* join to mod 4 */
|
|
+ srcSize -= 2;
|
|
+ if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
|
|
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
|
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
|
+ FSE_FLUSHBITS(&bitC);
|
|
+ }
|
|
+
|
|
+ /* 2 or 4 encoding per loop */
|
|
+ while ( ip>istart ) {
|
|
+
|
|
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
|
+
|
|
+ if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
|
|
+ FSE_FLUSHBITS(&bitC);
|
|
+
|
|
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
|
+
|
|
+ if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
|
|
+ FSE_encodeSymbol(&bitC, &CState2, *--ip);
|
|
+ FSE_encodeSymbol(&bitC, &CState1, *--ip);
|
|
+ }
|
|
+
|
|
+ FSE_FLUSHBITS(&bitC);
|
|
+ }
|
|
+
|
|
+ FSE_flushCState(&bitC, &CState2);
|
|
+ FSE_flushCState(&bitC, &CState1);
|
|
+ return BIT_closeCStream(&bitC);
|
|
+}
|
|
+
|
|
+size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ const FSE_CTable* ct)
|
|
+{
|
|
+ unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
|
|
+
|
|
+ if (fast)
|
|
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
|
|
+ else
|
|
+ return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
|
|
+
|
|
+#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return f
|
|
+#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
|
|
+
|
|
+/* FSE_compress_wksp() :
|
|
+ * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
|
|
+ * `wkspSize` size must be `(1<<tableLog)`.
|
|
+ */
|
|
+size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* op = ostart;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+
|
|
+ U32 count[FSE_MAX_SYMBOL_VALUE+1];
|
|
+ S16 norm[FSE_MAX_SYMBOL_VALUE+1];
|
|
+ FSE_CTable* CTable = (FSE_CTable*)workSpace;
|
|
+ size_t const CTableSize = FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue);
|
|
+ void* scratchBuffer = (void*)(CTable + CTableSize);
|
|
+ size_t const scratchBufferSize = wkspSize - (CTableSize * sizeof(FSE_CTable));
|
|
+
|
|
+ /* init conditions */
|
|
+ if (wkspSize < FSE_WKSP_SIZE_U32(tableLog, maxSymbolValue)) return ERROR(tableLog_tooLarge);
|
|
+ if (srcSize <= 1) return 0; /* Not compressible */
|
|
+ if (!maxSymbolValue) maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
|
+ if (!tableLog) tableLog = FSE_DEFAULT_TABLELOG;
|
|
+
|
|
+ /* Scan input and build symbol stats */
|
|
+ { CHECK_V_F(maxCount, FSE_count_wksp(count, &maxSymbolValue, src, srcSize, (unsigned*)scratchBuffer) );
|
|
+ if (maxCount == srcSize) return 1; /* only a single symbol in src : rle */
|
|
+ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
|
+ if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */
|
|
+ }
|
|
+
|
|
+ tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue);
|
|
+ CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue) );
|
|
+
|
|
+ /* Write table description header */
|
|
+ { CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
|
|
+ op += nc_err;
|
|
+ }
|
|
+
|
|
+ /* Compress */
|
|
+ CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) );
|
|
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) );
|
|
+ if (cSize == 0) return 0; /* not enough space for compressed data */
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ /* check compressibility */
|
|
+ if ( (size_t)(op-ostart) >= srcSize-1 ) return 0;
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+#endif /* FSE_COMMONDEFS_ONLY */
|
|
diff --git a/lib/zstd/fse_decompress.c b/lib/zstd/fse_decompress.c
|
|
new file mode 100644
|
|
index 0000000..6d2c367
|
|
--- /dev/null
|
|
+++ b/lib/zstd/fse_decompress.c
|
|
@@ -0,0 +1,297 @@
|
|
+/*
|
|
+ * FSE : Finite State Entropy decoder
|
|
+ * Copyright (C) 2013-2015, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Compiler specifics
|
|
+****************************************************************/
|
|
+#define FORCE_INLINE static __always_inline
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Includes
|
|
+****************************************************************/
|
|
+#include <linux/compiler.h>
|
|
+#include <linux/string.h> /* memcpy, memset */
|
|
+#include "bitstream.h"
|
|
+#include "fse.h"
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Error Management
|
|
+****************************************************************/
|
|
+#define FSE_isError ERR_isError
|
|
+#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
+
|
|
+/* check and forward error code */
|
|
+#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; }
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Templates
|
|
+****************************************************************/
|
|
+/*
|
|
+ designed to be included
|
|
+ for type-specific functions (template emulation in C)
|
|
+ Objective is to write these functions only once, for improved maintenance
|
|
+*/
|
|
+
|
|
+/* safety checks */
|
|
+#ifndef FSE_FUNCTION_EXTENSION
|
|
+# error "FSE_FUNCTION_EXTENSION must be defined"
|
|
+#endif
|
|
+#ifndef FSE_FUNCTION_TYPE
|
|
+# error "FSE_FUNCTION_TYPE must be defined"
|
|
+#endif
|
|
+
|
|
+/* Function names */
|
|
+#define FSE_CAT(X,Y) X##Y
|
|
+#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
|
+#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
|
+
|
|
+
|
|
+/* Function templates */
|
|
+
|
|
+size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
|
+{
|
|
+ void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
|
|
+ FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
|
|
+ U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
|
|
+
|
|
+ U32 const maxSV1 = maxSymbolValue + 1;
|
|
+ U32 const tableSize = 1 << tableLog;
|
|
+ U32 highThreshold = tableSize-1;
|
|
+
|
|
+ /* Sanity Checks */
|
|
+ if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
|
|
+ if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
+
|
|
+ /* Init, lay down lowprob symbols */
|
|
+ { FSE_DTableHeader DTableH;
|
|
+ DTableH.tableLog = (U16)tableLog;
|
|
+ DTableH.fastMode = 1;
|
|
+ { S16 const largeLimit= (S16)(1 << (tableLog-1));
|
|
+ U32 s;
|
|
+ for (s=0; s<maxSV1; s++) {
|
|
+ if (normalizedCounter[s]==-1) {
|
|
+ tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
|
|
+ symbolNext[s] = 1;
|
|
+ } else {
|
|
+ if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
|
|
+ symbolNext[s] = normalizedCounter[s];
|
|
+ } } }
|
|
+ memcpy(dt, &DTableH, sizeof(DTableH));
|
|
+ }
|
|
+
|
|
+ /* Spread symbols */
|
|
+ { U32 const tableMask = tableSize-1;
|
|
+ U32 const step = FSE_TABLESTEP(tableSize);
|
|
+ U32 s, position = 0;
|
|
+ for (s=0; s<maxSV1; s++) {
|
|
+ int i;
|
|
+ for (i=0; i<normalizedCounter[s]; i++) {
|
|
+ tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
|
|
+ position = (position + step) & tableMask;
|
|
+ while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
|
|
+ } }
|
|
+ if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
|
|
+ }
|
|
+
|
|
+ /* Build Decoding table */
|
|
+ { U32 u;
|
|
+ for (u=0; u<tableSize; u++) {
|
|
+ FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
|
|
+ U16 nextState = symbolNext[symbol]++;
|
|
+ tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
|
|
+ tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
|
|
+ } }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+#ifndef FSE_COMMONDEFS_ONLY
|
|
+
|
|
+/*-*******************************************************
|
|
+* Decompression (Byte symbols)
|
|
+*********************************************************/
|
|
+size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
|
|
+{
|
|
+ void* ptr = dt;
|
|
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
|
+ void* dPtr = dt + 1;
|
|
+ FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
|
|
+
|
|
+ DTableH->tableLog = 0;
|
|
+ DTableH->fastMode = 0;
|
|
+
|
|
+ cell->newState = 0;
|
|
+ cell->symbol = symbolValue;
|
|
+ cell->nbBits = 0;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
|
|
+{
|
|
+ void* ptr = dt;
|
|
+ FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
|
|
+ void* dPtr = dt + 1;
|
|
+ FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
|
|
+ const unsigned tableSize = 1 << nbBits;
|
|
+ const unsigned tableMask = tableSize - 1;
|
|
+ const unsigned maxSV1 = tableMask+1;
|
|
+ unsigned s;
|
|
+
|
|
+ /* Sanity checks */
|
|
+ if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
|
+
|
|
+ /* Build Decoding Table */
|
|
+ DTableH->tableLog = (U16)nbBits;
|
|
+ DTableH->fastMode = 1;
|
|
+ for (s=0; s<maxSV1; s++) {
|
|
+ dinfo[s].newState = 0;
|
|
+ dinfo[s].symbol = (BYTE)s;
|
|
+ dinfo[s].nbBits = (BYTE)nbBits;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
|
|
+ void* dst, size_t maxDstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const FSE_DTable* dt, const unsigned fast)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* op = ostart;
|
|
+ BYTE* const omax = op + maxDstSize;
|
|
+ BYTE* const olimit = omax-3;
|
|
+
|
|
+ BIT_DStream_t bitD;
|
|
+ FSE_DState_t state1;
|
|
+ FSE_DState_t state2;
|
|
+
|
|
+ /* Init */
|
|
+ CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
|
|
+
|
|
+ FSE_initDState(&state1, &bitD, dt);
|
|
+ FSE_initDState(&state2, &bitD, dt);
|
|
+
|
|
+#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
|
|
+
|
|
+ /* 4 symbols per loop */
|
|
+ for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
|
|
+ op[0] = FSE_GETSYMBOL(&state1);
|
|
+
|
|
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
+ BIT_reloadDStream(&bitD);
|
|
+
|
|
+ op[1] = FSE_GETSYMBOL(&state2);
|
|
+
|
|
+ if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
+ { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
|
|
+
|
|
+ op[2] = FSE_GETSYMBOL(&state1);
|
|
+
|
|
+ if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
+ BIT_reloadDStream(&bitD);
|
|
+
|
|
+ op[3] = FSE_GETSYMBOL(&state2);
|
|
+ }
|
|
+
|
|
+ /* tail */
|
|
+ /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
|
|
+ while (1) {
|
|
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
|
|
+ *op++ = FSE_GETSYMBOL(&state1);
|
|
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
|
|
+ *op++ = FSE_GETSYMBOL(&state2);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (op>(omax-2)) return ERROR(dstSize_tooSmall);
|
|
+ *op++ = FSE_GETSYMBOL(&state2);
|
|
+ if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
|
|
+ *op++ = FSE_GETSYMBOL(&state1);
|
|
+ break;
|
|
+ } }
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const FSE_DTable* dt)
|
|
+{
|
|
+ const void* ptr = dt;
|
|
+ const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
|
|
+ const U32 fastMode = DTableH->fastMode;
|
|
+
|
|
+ /* select fast mode (static) */
|
|
+ if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
|
|
+ return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
|
|
+}
|
|
+
|
|
+
|
|
+size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog)
|
|
+{
|
|
+ const BYTE* const istart = (const BYTE*)cSrc;
|
|
+ const BYTE* ip = istart;
|
|
+ short counting[FSE_MAX_SYMBOL_VALUE+1];
|
|
+ unsigned tableLog;
|
|
+ unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
|
+
|
|
+ /* normal FSE decoding mode */
|
|
+ size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
|
|
+ if (FSE_isError(NCountLength)) return NCountLength;
|
|
+ //if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining case : NCountLength==cSrcSize */
|
|
+ if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
|
|
+ ip += NCountLength;
|
|
+ cSrcSize -= NCountLength;
|
|
+
|
|
+ CHECK_F( FSE_buildDTable (workSpace, counting, maxSymbolValue, tableLog) );
|
|
+
|
|
+ return FSE_decompress_usingDTable (dst, dstCapacity, ip, cSrcSize, workSpace); /* always return, even if it is an error code */
|
|
+}
|
|
+
|
|
+
|
|
+#endif /* FSE_COMMONDEFS_ONLY */
|
|
diff --git a/lib/zstd/huf.h b/lib/zstd/huf.h
|
|
new file mode 100644
|
|
index 0000000..b157675
|
|
--- /dev/null
|
|
+++ b/lib/zstd/huf.h
|
|
@@ -0,0 +1,209 @@
|
|
+/*
|
|
+ * Huffman coder, part of New Generation Entropy library
|
|
+ * header file
|
|
+ * Copyright (C) 2013-2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+#ifndef HUF_H_298734234
|
|
+#define HUF_H_298734234
|
|
+
|
|
+
|
|
+/* *** Dependencies *** */
|
|
+#include <linux/types.h> /* size_t */
|
|
+
|
|
+
|
|
+/* *** Tool functions *** */
|
|
+#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
|
|
+size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
|
|
+
|
|
+/* Error Management */
|
|
+unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
|
|
+
|
|
+
|
|
+/* *** Advanced function *** */
|
|
+
|
|
+/** HUF_compress4X_wksp() :
|
|
+* Same as HUF_compress2(), but uses externally allocated `workSpace`, which must be a table of >= 1024 unsigned */
|
|
+size_t HUF_compress4X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
|
+
|
|
+
|
|
+
|
|
+/* *** Dependencies *** */
|
|
+#include "mem.h" /* U32 */
|
|
+
|
|
+
|
|
+/* *** Constants *** */
|
|
+#define HUF_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
|
+#define HUF_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */
|
|
+#define HUF_SYMBOLVALUE_MAX 255
|
|
+
|
|
+#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
|
+#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
|
|
+# error "HUF_TABLELOG_MAX is too large !"
|
|
+#endif
|
|
+
|
|
+
|
|
+/* ****************************************
|
|
+* Static allocation
|
|
+******************************************/
|
|
+/* HUF buffer bounds */
|
|
+#define HUF_CTABLEBOUND 129
|
|
+#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
|
|
+#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
|
+
|
|
+/* static allocation of HUF's Compression Table */
|
|
+#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
|
|
+ U32 name##hb[maxSymbolValue+1]; \
|
|
+ void* name##hv = &(name##hb); \
|
|
+ HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */
|
|
+
|
|
+/* static allocation of HUF's DTable */
|
|
+typedef U32 HUF_DTable;
|
|
+#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
|
|
+#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
|
+ HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
|
|
+#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
|
|
+ HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
|
|
+
|
|
+/* The workspace must have alignment at least 4 and be at least this large */
|
|
+#define HUF_WORKSPACE_SIZE (6 << 10)
|
|
+#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32))
|
|
+
|
|
+
|
|
+/* ****************************************
|
|
+* Advanced decompression functions
|
|
+******************************************/
|
|
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */
|
|
+size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */
|
|
+size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
|
+size_t HUF_decompress4X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
|
+
|
|
+
|
|
+/* ****************************************
|
|
+* HUF detailed API
|
|
+******************************************/
|
|
+/*!
|
|
+HUF_compress() does the following:
|
|
+1. count symbol occurrence from source[] into table count[] using FSE_count()
|
|
+2. (optional) refine tableLog using HUF_optimalTableLog()
|
|
+3. build Huffman table from count using HUF_buildCTable()
|
|
+4. save Huffman table to memory buffer using HUF_writeCTable()
|
|
+5. encode the data stream using HUF_compress4X_usingCTable()
|
|
+
|
|
+The following API allows targeting specific sub-functions for advanced tasks.
|
|
+For example, it's possible to compress several blocks using the same 'CTable',
|
|
+or to save and regenerate 'CTable' using external methods.
|
|
+*/
|
|
+/* FSE_count() : find it within "fse.h" */
|
|
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
|
|
+typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */
|
|
+size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog);
|
|
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
|
+
|
|
+typedef enum {
|
|
+ HUF_repeat_none, /**< Cannot use the previous table */
|
|
+ HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
|
|
+ HUF_repeat_valid /**< Can use the previous table and it is asumed to be valid */
|
|
+ } HUF_repeat;
|
|
+/** HUF_compress4X_repeat() :
|
|
+* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
|
+* If it uses hufTable it does not modify hufTable or repeat.
|
|
+* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
|
+* If preferRepeat then the old table will always be used if valid. */
|
|
+size_t HUF_compress4X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
|
+
|
|
+/** HUF_buildCTable_wksp() :
|
|
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
|
+ * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
|
|
+ */
|
|
+size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize);
|
|
+
|
|
+/*! HUF_readStats() :
|
|
+ Read compact Huffman tree, saved by HUF_writeCTable().
|
|
+ `huffWeight` is destination buffer.
|
|
+ @return : size read from `src` , or an error Code .
|
|
+ Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
|
|
+size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|
+ U32* nbSymbolsPtr, U32* tableLogPtr,
|
|
+ const void* src, size_t srcSize);
|
|
+
|
|
+/** HUF_readCTable() :
|
|
+* Loading a CTable saved with HUF_writeCTable() */
|
|
+size_t HUF_readCTable (HUF_CElt* CTable, unsigned maxSymbolValue, const void* src, size_t srcSize);
|
|
+
|
|
+
|
|
+/*
|
|
+HUF_decompress() does the following:
|
|
+1. select the decompression algorithm (X2, X4) based on pre-computed heuristics
|
|
+2. build Huffman table from save, using HUF_readDTableXn()
|
|
+3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
|
|
+*/
|
|
+
|
|
+/** HUF_selectDecoder() :
|
|
+* Tells which decoder is likely to decode faster,
|
|
+* based on a set of pre-determined metrics.
|
|
+* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
|
|
+* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
|
|
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
|
|
+
|
|
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
|
+size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize);
|
|
+
|
|
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
|
+size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
|
+size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
|
+
|
|
+
|
|
+/* single stream variants */
|
|
+
|
|
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
|
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable);
|
|
+/** HUF_compress1X_repeat() :
|
|
+* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
|
|
+* If it uses hufTable it does not modify hufTable or repeat.
|
|
+* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
|
|
+* If preferRepeat then the old table will always be used if valid. */
|
|
+size_t HUF_compress1X_repeat(void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize, HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
|
|
+
|
|
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
|
+size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */
|
|
+size_t HUF_decompress1X4_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */
|
|
+
|
|
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */
|
|
+size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
|
+size_t HUF_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable);
|
|
+
|
|
+#endif /* HUF_H_298734234 */
|
|
diff --git a/lib/zstd/huf_compress.c b/lib/zstd/huf_compress.c
|
|
new file mode 100644
|
|
index 0000000..ee03de9
|
|
--- /dev/null
|
|
+++ b/lib/zstd/huf_compress.c
|
|
@@ -0,0 +1,649 @@
|
|
+/*
|
|
+ * Huffman encoder, part of New Generation Entropy library
|
|
+ * Copyright (C) 2013-2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Includes
|
|
+****************************************************************/
|
|
+#include <linux/string.h> /* memcpy, memset */
|
|
+#include "bitstream.h"
|
|
+#include "fse.h" /* header compression */
|
|
+#include "huf.h"
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Error Management
|
|
+****************************************************************/
|
|
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
+#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return f
|
|
+#define CHECK_F(f) { CHECK_V_F(_var_err__, f); }
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Utils
|
|
+****************************************************************/
|
|
+unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
|
|
+{
|
|
+ return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
|
|
+}
|
|
+
|
|
+
|
|
+/* *******************************************************
|
|
+* HUF : Huffman block compression
|
|
+*********************************************************/
|
|
+/* HUF_compressWeights() :
|
|
+ * Same as FSE_compress(), but dedicated to huff0's weights compression.
|
|
+ * The use case needs much less stack memory.
|
|
+ * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
|
|
+ */
|
|
+#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
|
|
+size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* op = ostart;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+
|
|
+ U32 maxSymbolValue = HUF_TABLELOG_MAX;
|
|
+ U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
|
|
+
|
|
+ FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
|
|
+ BYTE scratchBuffer[1<<MAX_FSE_TABLELOG_FOR_HUFF_HEADER];
|
|
+
|
|
+ U32 count[HUF_TABLELOG_MAX+1];
|
|
+ S16 norm[HUF_TABLELOG_MAX+1];
|
|
+
|
|
+ /* init conditions */
|
|
+ if (wtSize <= 1) return 0; /* Not compressible */
|
|
+
|
|
+ /* Scan input and build symbol stats */
|
|
+ { CHECK_V_F(maxCount, FSE_count_simple(count, &maxSymbolValue, weightTable, wtSize) );
|
|
+ if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
|
|
+ if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
|
|
+ }
|
|
+
|
|
+ tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
|
|
+ CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) );
|
|
+
|
|
+ /* Write table description header */
|
|
+ { CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) );
|
|
+ op += hSize;
|
|
+ }
|
|
+
|
|
+ /* Compress */
|
|
+ CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
|
|
+ { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) );
|
|
+ if (cSize == 0) return 0; /* not enough space for compressed data */
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+struct HUF_CElt_s {
|
|
+ U16 val;
|
|
+ BYTE nbBits;
|
|
+}; /* typedef'd to HUF_CElt within "huf.h" */
|
|
+
|
|
+/*! HUF_writeCTable() :
|
|
+ `CTable` : Huffman tree to save, using huf representation.
|
|
+ @return : size of saved CTable */
|
|
+size_t HUF_writeCTable (void* dst, size_t maxDstSize,
|
|
+ const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
|
|
+{
|
|
+ BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
|
|
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
|
|
+ BYTE* op = (BYTE*)dst;
|
|
+ U32 n;
|
|
+
|
|
+ /* check conditions */
|
|
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
|
|
+
|
|
+ /* convert to weight */
|
|
+ bitsToWeight[0] = 0;
|
|
+ for (n=1; n<huffLog+1; n++)
|
|
+ bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
|
|
+ for (n=0; n<maxSymbolValue; n++)
|
|
+ huffWeight[n] = bitsToWeight[CTable[n].nbBits];
|
|
+
|
|
+ /* attempt weights compression by FSE */
|
|
+ { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
|
|
+ if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
|
|
+ op[0] = (BYTE)hSize;
|
|
+ return hSize+1;
|
|
+ } }
|
|
+
|
|
+ /* write raw values as 4-bits (max : 15) */
|
|
+ if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
|
|
+ if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
|
|
+ op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
|
|
+ huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
|
|
+ for (n=0; n<maxSymbolValue; n+=2)
|
|
+ op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
|
|
+ return ((maxSymbolValue+1)/2) + 1;
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
|
|
+{
|
|
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
|
|
+ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
|
|
+ U32 tableLog = 0;
|
|
+ U32 nbSymbols = 0;
|
|
+
|
|
+ /* get symbol weights */
|
|
+ CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
|
|
+
|
|
+ /* check result */
|
|
+ if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
|
+ if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);
|
|
+
|
|
+ /* Prepare base value per rank */
|
|
+ { U32 n, nextRankStart = 0;
|
|
+ for (n=1; n<=tableLog; n++) {
|
|
+ U32 curr = nextRankStart;
|
|
+ nextRankStart += (rankVal[n] << (n-1));
|
|
+ rankVal[n] = curr;
|
|
+ } }
|
|
+
|
|
+ /* fill nbBits */
|
|
+ { U32 n; for (n=0; n<nbSymbols; n++) {
|
|
+ const U32 w = huffWeight[n];
|
|
+ CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
|
|
+ } }
|
|
+
|
|
+ /* fill val */
|
|
+ { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
|
|
+ U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
|
|
+ { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
|
|
+ /* determine stating value per rank */
|
|
+ valPerRank[tableLog+1] = 0; /* for w==0 */
|
|
+ { U16 min = 0;
|
|
+ U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
|
|
+ valPerRank[n] = min; /* get starting value within each rank */
|
|
+ min += nbPerRank[n];
|
|
+ min >>= 1;
|
|
+ } }
|
|
+ /* assign value within rank, symbol order */
|
|
+ { U32 n; for (n=0; n<=maxSymbolValue; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
|
|
+ }
|
|
+
|
|
+ return readSize;
|
|
+}
|
|
+
|
|
+
|
|
+typedef struct nodeElt_s {
|
|
+ U32 count;
|
|
+ U16 parent;
|
|
+ BYTE byte;
|
|
+ BYTE nbBits;
|
|
+} nodeElt;
|
|
+
|
|
+static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|
+{
|
|
+ const U32 largestBits = huffNode[lastNonNull].nbBits;
|
|
+ if (largestBits <= maxNbBits) return largestBits; /* early exit : no elt > maxNbBits */
|
|
+
|
|
+ /* there are several too large elements (at least >= 2) */
|
|
+ { int totalCost = 0;
|
|
+ const U32 baseCost = 1 << (largestBits - maxNbBits);
|
|
+ U32 n = lastNonNull;
|
|
+
|
|
+ while (huffNode[n].nbBits > maxNbBits) {
|
|
+ totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
|
|
+ huffNode[n].nbBits = (BYTE)maxNbBits;
|
|
+ n --;
|
|
+ } /* n stops at huffNode[n].nbBits <= maxNbBits */
|
|
+ while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */
|
|
+
|
|
+ /* renorm totalCost */
|
|
+ totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
|
|
+
|
|
+ /* repay normalized cost */
|
|
+ { U32 const noSymbol = 0xF0F0F0F0;
|
|
+ U32 rankLast[HUF_TABLELOG_MAX+2];
|
|
+ int pos;
|
|
+
|
|
+ /* Get pos of last (smallest) symbol per rank */
|
|
+ memset(rankLast, 0xF0, sizeof(rankLast));
|
|
+ { U32 currNbBits = maxNbBits;
|
|
+ for (pos=n ; pos >= 0; pos--) {
|
|
+ if (huffNode[pos].nbBits >= currNbBits) continue;
|
|
+ currNbBits = huffNode[pos].nbBits; /* < maxNbBits */
|
|
+ rankLast[maxNbBits-currNbBits] = pos;
|
|
+ } }
|
|
+
|
|
+ while (totalCost > 0) {
|
|
+ U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
|
|
+ for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
|
|
+ U32 highPos = rankLast[nBitsToDecrease];
|
|
+ U32 lowPos = rankLast[nBitsToDecrease-1];
|
|
+ if (highPos == noSymbol) continue;
|
|
+ if (lowPos == noSymbol) break;
|
|
+ { U32 const highTotal = huffNode[highPos].count;
|
|
+ U32 const lowTotal = 2 * huffNode[lowPos].count;
|
|
+ if (highTotal <= lowTotal) break;
|
|
+ } }
|
|
+ /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
|
|
+ while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
|
|
+ nBitsToDecrease ++;
|
|
+ totalCost -= 1 << (nBitsToDecrease-1);
|
|
+ if (rankLast[nBitsToDecrease-1] == noSymbol)
|
|
+ rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
|
|
+ huffNode[rankLast[nBitsToDecrease]].nbBits ++;
|
|
+ if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
|
|
+ rankLast[nBitsToDecrease] = noSymbol;
|
|
+ else {
|
|
+ rankLast[nBitsToDecrease]--;
|
|
+ if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
|
|
+ rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
|
|
+ } } /* while (totalCost > 0) */
|
|
+
|
|
+ while (totalCost < 0) { /* Sometimes, cost correction overshoot */
|
|
+ if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
|
|
+ while (huffNode[n].nbBits == maxNbBits) n--;
|
|
+ huffNode[n+1].nbBits--;
|
|
+ rankLast[1] = n+1;
|
|
+ totalCost++;
|
|
+ continue;
|
|
+ }
|
|
+ huffNode[ rankLast[1] + 1 ].nbBits--;
|
|
+ rankLast[1]++;
|
|
+ totalCost ++;
|
|
+ } } } /* there are several too large elements (at least >= 2) */
|
|
+
|
|
+ return maxNbBits;
|
|
+}
|
|
+
|
|
+
|
|
+typedef struct {
|
|
+ U32 base;
|
|
+ U32 curr;
|
|
+} rankPos;
|
|
+
|
|
+static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
|
|
+{
|
|
+ rankPos rank[32];
|
|
+ U32 n;
|
|
+
|
|
+ memset(rank, 0, sizeof(rank));
|
|
+ for (n=0; n<=maxSymbolValue; n++) {
|
|
+ U32 r = BIT_highbit32(count[n] + 1);
|
|
+ rank[r].base ++;
|
|
+ }
|
|
+ for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
|
|
+ for (n=0; n<32; n++) rank[n].curr = rank[n].base;
|
|
+ for (n=0; n<=maxSymbolValue; n++) {
|
|
+ U32 const c = count[n];
|
|
+ U32 const r = BIT_highbit32(c+1) + 1;
|
|
+ U32 pos = rank[r].curr++;
|
|
+ while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
|
|
+ huffNode[pos].count = c;
|
|
+ huffNode[pos].byte = (BYTE)n;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/** HUF_buildCTable_wksp() :
|
|
+ * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
|
|
+ * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of 1024 unsigned.
|
|
+ */
|
|
+#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
|
|
+typedef nodeElt huffNodeTable[2*HUF_SYMBOLVALUE_MAX+1 +1];
|
|
+size_t HUF_buildCTable_wksp (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
|
|
+{
|
|
+ nodeElt* const huffNode0 = (nodeElt*)workSpace;
|
|
+ nodeElt* const huffNode = huffNode0+1;
|
|
+ U32 n, nonNullRank;
|
|
+ int lowS, lowN;
|
|
+ U16 nodeNb = STARTNODE;
|
|
+ U32 nodeRoot;
|
|
+
|
|
+ /* safety checks */
|
|
+ if (wkspSize < sizeof(huffNodeTable)) return ERROR(GENERIC); /* workSpace is not large enough */
|
|
+ if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
|
|
+ if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(GENERIC);
|
|
+ memset(huffNode0, 0, sizeof(huffNodeTable));
|
|
+
|
|
+ /* sort, decreasing order */
|
|
+ HUF_sort(huffNode, count, maxSymbolValue);
|
|
+
|
|
+ /* init for parents */
|
|
+ nonNullRank = maxSymbolValue;
|
|
+ while(huffNode[nonNullRank].count == 0) nonNullRank--;
|
|
+ lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
|
|
+ huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
|
|
+ huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
|
|
+ nodeNb++; lowS-=2;
|
|
+ for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
|
|
+ huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
|
|
+
|
|
+ /* create parents */
|
|
+ while (nodeNb <= nodeRoot) {
|
|
+ U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
|
+ U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
|
+ huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
|
|
+ huffNode[n1].parent = huffNode[n2].parent = nodeNb;
|
|
+ nodeNb++;
|
|
+ }
|
|
+
|
|
+ /* distribute weights (unlimited tree height) */
|
|
+ huffNode[nodeRoot].nbBits = 0;
|
|
+ for (n=nodeRoot-1; n>=STARTNODE; n--)
|
|
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
|
+ for (n=0; n<=nonNullRank; n++)
|
|
+ huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
|
+
|
|
+ /* enforce maxTableLog */
|
|
+ maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
|
|
+
|
|
+ /* fill result into tree (val, nbBits) */
|
|
+ { U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
|
|
+ U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
|
|
+ if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
|
|
+ for (n=0; n<=nonNullRank; n++)
|
|
+ nbPerRank[huffNode[n].nbBits]++;
|
|
+ /* determine stating value per rank */
|
|
+ { U16 min = 0;
|
|
+ for (n=maxNbBits; n>0; n--) {
|
|
+ valPerRank[n] = min; /* get starting value within each rank */
|
|
+ min += nbPerRank[n];
|
|
+ min >>= 1;
|
|
+ } }
|
|
+ for (n=0; n<=maxSymbolValue; n++)
|
|
+ tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
|
|
+ for (n=0; n<=maxSymbolValue; n++)
|
|
+ tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
|
|
+ }
|
|
+
|
|
+ return maxNbBits;
|
|
+}
|
|
+
|
|
+static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
|
|
+{
|
|
+ size_t nbBits = 0;
|
|
+ int s;
|
|
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
|
|
+ nbBits += CTable[s].nbBits * count[s];
|
|
+ }
|
|
+ return nbBits >> 3;
|
|
+}
|
|
+
|
|
+static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
|
|
+ int bad = 0;
|
|
+ int s;
|
|
+ for (s = 0; s <= (int)maxSymbolValue; ++s) {
|
|
+ bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
|
|
+ }
|
|
+ return !bad;
|
|
+}
|
|
+
|
|
+static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
|
|
+{
|
|
+ BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
|
|
+}
|
|
+
|
|
+size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
|
+
|
|
+#define HUF_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
|
|
+
|
|
+#define HUF_FLUSHBITS_1(stream) \
|
|
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
|
|
+
|
|
+#define HUF_FLUSHBITS_2(stream) \
|
|
+ if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
|
|
+
|
|
+size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*) src;
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ BYTE* op = ostart;
|
|
+ size_t n;
|
|
+ const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
|
|
+ BIT_CStream_t bitC;
|
|
+
|
|
+ /* init */
|
|
+ if (dstSize < 8) return 0; /* not enough space to compress */
|
|
+ { size_t const initErr = BIT_initCStream(&bitC, op, oend-op);
|
|
+ if (HUF_isError(initErr)) return 0; }
|
|
+
|
|
+ n = srcSize & ~3; /* join to mod 4 */
|
|
+ switch (srcSize & 3)
|
|
+ {
|
|
+ case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
|
|
+ HUF_FLUSHBITS_2(&bitC);
|
|
+ case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
|
|
+ HUF_FLUSHBITS_1(&bitC);
|
|
+ case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
|
|
+ HUF_FLUSHBITS(&bitC);
|
|
+ case 0 :
|
|
+ default: ;
|
|
+ }
|
|
+
|
|
+ for (; n>0; n-=4) { /* note : n&3==0 at this stage */
|
|
+ HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
|
|
+ HUF_FLUSHBITS_1(&bitC);
|
|
+ HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
|
|
+ HUF_FLUSHBITS_2(&bitC);
|
|
+ HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
|
|
+ HUF_FLUSHBITS_1(&bitC);
|
|
+ HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
|
|
+ HUF_FLUSHBITS(&bitC);
|
|
+ }
|
|
+
|
|
+ return BIT_closeCStream(&bitC);
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
|
+{
|
|
+ size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
|
|
+ const BYTE* ip = (const BYTE*) src;
|
|
+ const BYTE* const iend = ip + srcSize;
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ BYTE* op = ostart;
|
|
+
|
|
+ if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
|
|
+ if (srcSize < 12) return 0; /* no saving possible : too small input */
|
|
+ op += 6; /* jumpTable */
|
|
+
|
|
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
|
+ if (cSize==0) return 0;
|
|
+ MEM_writeLE16(ostart, (U16)cSize);
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ ip += segmentSize;
|
|
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
|
+ if (cSize==0) return 0;
|
|
+ MEM_writeLE16(ostart+2, (U16)cSize);
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ ip += segmentSize;
|
|
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable) );
|
|
+ if (cSize==0) return 0;
|
|
+ MEM_writeLE16(ostart+4, (U16)cSize);
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ ip += segmentSize;
|
|
+ { CHECK_V_F(cSize, HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable) );
|
|
+ if (cSize==0) return 0;
|
|
+ op += cSize;
|
|
+ }
|
|
+
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t HUF_compressCTable_internal(
|
|
+ BYTE* const ostart, BYTE* op, BYTE* const oend,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned singleStream, const HUF_CElt* CTable)
|
|
+{
|
|
+ size_t const cSize = singleStream ?
|
|
+ HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable) :
|
|
+ HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
|
|
+ if (HUF_isError(cSize)) { return cSize; }
|
|
+ if (cSize==0) { return 0; } /* uncompressible */
|
|
+ op += cSize;
|
|
+ /* check compressibility */
|
|
+ if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
|
|
+ return op-ostart;
|
|
+}
|
|
+
|
|
+
|
|
+/* `workSpace` must a table of at least 1024 unsigned */
|
|
+static size_t HUF_compress_internal (
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned maxSymbolValue, unsigned huffLog,
|
|
+ unsigned singleStream,
|
|
+ void* workSpace, size_t wkspSize,
|
|
+ HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat)
|
|
+{
|
|
+ BYTE* const ostart = (BYTE*)dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ BYTE* op = ostart;
|
|
+
|
|
+ U32* count;
|
|
+ size_t const countSize = sizeof(U32) * (HUF_SYMBOLVALUE_MAX + 1);
|
|
+ HUF_CElt* CTable;
|
|
+ size_t const CTableSize = sizeof(HUF_CElt) * (HUF_SYMBOLVALUE_MAX + 1);
|
|
+
|
|
+ /* checks & inits */
|
|
+ if (wkspSize < sizeof(huffNodeTable) + countSize + CTableSize) return ERROR(GENERIC);
|
|
+ if (!srcSize) return 0; /* Uncompressed (note : 1 means rle, so first byte must be correct) */
|
|
+ if (!dstSize) return 0; /* cannot fit within dst budget */
|
|
+ if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* curr block size limit */
|
|
+ if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
|
+ if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
|
|
+ if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
|
|
+
|
|
+ count = (U32*)workSpace;
|
|
+ workSpace = (BYTE*)workSpace + countSize;
|
|
+ wkspSize -= countSize;
|
|
+ CTable = (HUF_CElt*)workSpace;
|
|
+ workSpace = (BYTE*)workSpace + CTableSize;
|
|
+ wkspSize -= CTableSize;
|
|
+
|
|
+ /* Heuristic : If we don't need to check the validity of the old table use the old table for small inputs */
|
|
+ if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
|
|
+ return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
|
+ }
|
|
+
|
|
+ /* Scan input and build symbol stats */
|
|
+ { CHECK_V_F(largest, FSE_count_wksp (count, &maxSymbolValue, (const BYTE*)src, srcSize, (U32*)workSpace) );
|
|
+ if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
|
|
+ if (largest <= (srcSize >> 7)+1) return 0; /* Fast heuristic : not compressible enough */
|
|
+ }
|
|
+
|
|
+ /* Check validity of previous table */
|
|
+ if (repeat && *repeat == HUF_repeat_check && !HUF_validateCTable(oldHufTable, count, maxSymbolValue)) {
|
|
+ *repeat = HUF_repeat_none;
|
|
+ }
|
|
+ /* Heuristic : use existing table for small inputs */
|
|
+ if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
|
|
+ return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
|
+ }
|
|
+
|
|
+ /* Build Huffman Tree */
|
|
+ huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
|
|
+ { CHECK_V_F(maxBits, HUF_buildCTable_wksp (CTable, count, maxSymbolValue, huffLog, workSpace, wkspSize) );
|
|
+ huffLog = (U32)maxBits;
|
|
+ /* Zero the unused symbols so we can check it for validity */
|
|
+ memset(CTable + maxSymbolValue + 1, 0, CTableSize - (maxSymbolValue + 1) * sizeof(HUF_CElt));
|
|
+ }
|
|
+
|
|
+ /* Write table description header */
|
|
+ { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog) );
|
|
+ /* Check if using the previous table will be beneficial */
|
|
+ if (repeat && *repeat != HUF_repeat_none) {
|
|
+ size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, count, maxSymbolValue);
|
|
+ size_t const newSize = HUF_estimateCompressedSize(CTable, count, maxSymbolValue);
|
|
+ if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
|
|
+ return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, oldHufTable);
|
|
+ }
|
|
+ }
|
|
+ /* Use the new table */
|
|
+ if (hSize + 12ul >= srcSize) { return 0; }
|
|
+ op += hSize;
|
|
+ if (repeat) { *repeat = HUF_repeat_none; }
|
|
+ if (oldHufTable) { memcpy(oldHufTable, CTable, CTableSize); } /* Save the new table */
|
|
+ }
|
|
+ return HUF_compressCTable_internal(ostart, op, oend, src, srcSize, singleStream, CTable);
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned maxSymbolValue, unsigned huffLog,
|
|
+ void* workSpace, size_t wkspSize)
|
|
+{
|
|
+ return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, NULL, NULL, 0);
|
|
+}
|
|
+
|
|
+size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned maxSymbolValue, unsigned huffLog,
|
|
+ void* workSpace, size_t wkspSize,
|
|
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
|
|
+{
|
|
+ return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1 /* single stream */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
|
|
+}
|
|
+
|
|
+size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned maxSymbolValue, unsigned huffLog,
|
|
+ void* workSpace, size_t wkspSize)
|
|
+{
|
|
+ return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, NULL, NULL, 0);
|
|
+}
|
|
+
|
|
+size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
|
|
+ const void* src, size_t srcSize,
|
|
+ unsigned maxSymbolValue, unsigned huffLog,
|
|
+ void* workSpace, size_t wkspSize,
|
|
+ HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat)
|
|
+{
|
|
+ return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0 /* 4 streams */, workSpace, wkspSize, hufTable, repeat, preferRepeat);
|
|
+}
|
|
diff --git a/lib/zstd/huf_decompress.c b/lib/zstd/huf_decompress.c
|
|
new file mode 100644
|
|
index 0000000..1ed6826
|
|
--- /dev/null
|
|
+++ b/lib/zstd/huf_decompress.c
|
|
@@ -0,0 +1,840 @@
|
|
+/*
|
|
+ * Huffman decoder, part of New Generation Entropy library
|
|
+ * Copyright (C) 2013-2016, Yann Collet.
|
|
+ *
|
|
+ * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
+ *
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
+ * modification, are permitted provided that the following conditions are
|
|
+ * met:
|
|
+ *
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
+ * * Redistributions in binary form must reproduce the above
|
|
+ * copyright notice, this list of conditions and the following disclaimer
|
|
+ * in the documentation and/or other materials provided with the
|
|
+ * distribution.
|
|
+ *
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ *
|
|
+ * You can contact the author at :
|
|
+ * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
+ */
|
|
+
|
|
+/* **************************************************************
|
|
+* Compiler specifics
|
|
+****************************************************************/
|
|
+#define FORCE_INLINE static __always_inline
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Dependencies
|
|
+****************************************************************/
|
|
+#include <linux/compiler.h>
|
|
+#include <linux/string.h> /* memcpy, memset */
|
|
+#include "bitstream.h" /* BIT_* */
|
|
+#include "fse.h" /* header compression */
|
|
+#include "huf.h"
|
|
+
|
|
+
|
|
+/* **************************************************************
|
|
+* Error Management
|
|
+****************************************************************/
|
|
+#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
+
|
|
+
|
|
+/*-***************************/
|
|
+/* generic DTableDesc */
|
|
+/*-***************************/
|
|
+
|
|
+typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
|
|
+
|
|
+static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
|
|
+{
|
|
+ DTableDesc dtd;
|
|
+ memcpy(&dtd, table, sizeof(dtd));
|
|
+ return dtd;
|
|
+}
|
|
+
|
|
+
|
|
+/*-***************************/
|
|
+/* single-symbol decoding */
|
|
+/*-***************************/
|
|
+
|
|
+typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
|
|
+
|
|
+size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize)
|
|
+{
|
|
+ BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
|
|
+ U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
|
|
+ U32 tableLog = 0;
|
|
+ U32 nbSymbols = 0;
|
|
+ size_t iSize;
|
|
+ void* const dtPtr = DTable + 1;
|
|
+ HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
|
|
+
|
|
+ HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
|
|
+ /* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
|
|
+
|
|
+ iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
|
+ if (HUF_isError(iSize)) return iSize;
|
|
+
|
|
+ /* Table header */
|
|
+ { DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
|
|
+ dtd.tableType = 0;
|
|
+ dtd.tableLog = (BYTE)tableLog;
|
|
+ memcpy(DTable, &dtd, sizeof(dtd));
|
|
+ }
|
|
+
|
|
+ /* Calculate starting value for each rank */
|
|
+ { U32 n, nextRankStart = 0;
|
|
+ for (n=1; n<tableLog+1; n++) {
|
|
+ U32 const curr = nextRankStart;
|
|
+ nextRankStart += (rankVal[n] << (n-1));
|
|
+ rankVal[n] = curr;
|
|
+ } }
|
|
+
|
|
+ /* fill DTable */
|
|
+ { U32 n;
|
|
+ for (n=0; n<nbSymbols; n++) {
|
|
+ U32 const w = huffWeight[n];
|
|
+ U32 const length = (1 << w) >> 1;
|
|
+ U32 u;
|
|
+ HUF_DEltX2 D;
|
|
+ D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
|
|
+ for (u = rankVal[w]; u < rankVal[w] + length; u++)
|
|
+ dt[u] = D;
|
|
+ rankVal[w] += length;
|
|
+ } }
|
|
+
|
|
+ return iSize;
|
|
+}
|
|
+
|
|
+
|
|
+static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
|
|
+{
|
|
+ size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
|
|
+ BYTE const c = dt[val].byte;
|
|
+ BIT_skipBits(Dstream, dt[val].nbBits);
|
|
+ return c;
|
|
+}
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
|
|
+ *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
|
|
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
|
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
|
|
+ if (MEM_64bits()) \
|
|
+ HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
+
|
|
+FORCE_INLINE size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
|
|
+{
|
|
+ BYTE* const pStart = p;
|
|
+
|
|
+ /* up to 4 symbols at a time */
|
|
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
|
|
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
+ }
|
|
+
|
|
+ /* closer to the end */
|
|
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
|
|
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
+
|
|
+ /* no more data to retrieve from bitstream, hence no need to reload */
|
|
+ while (p < pEnd)
|
|
+ HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
+
|
|
+ return pEnd-pStart;
|
|
+}
|
|
+
|
|
+static size_t HUF_decompress1X2_usingDTable_internal(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ BYTE* op = (BYTE*)dst;
|
|
+ BYTE* const oend = op + dstSize;
|
|
+ const void* dtPtr = DTable + 1;
|
|
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
|
+ BIT_DStream_t bitD;
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ U32 const dtLog = dtd.tableLog;
|
|
+
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+
|
|
+ HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
|
|
+
|
|
+ /* check */
|
|
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
|
+
|
|
+ return dstSize;
|
|
+}
|
|
+
|
|
+size_t HUF_decompress1X2_usingDTable(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ if (dtd.tableType != 0) return ERROR(GENERIC);
|
|
+ return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+size_t HUF_decompress1X2_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*) cSrc;
|
|
+
|
|
+ size_t const hSize = HUF_readDTableX2 (DCtx, cSrc, cSrcSize);
|
|
+ if (HUF_isError(hSize)) return hSize;
|
|
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
+ ip += hSize; cSrcSize -= hSize;
|
|
+
|
|
+ return HUF_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
|
|
+}
|
|
+
|
|
+
|
|
+static size_t HUF_decompress4X2_usingDTable_internal(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ /* Check */
|
|
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
+
|
|
+ { const BYTE* const istart = (const BYTE*) cSrc;
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ const void* const dtPtr = DTable + 1;
|
|
+ const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
|
|
+
|
|
+ /* Init */
|
|
+ BIT_DStream_t bitD1;
|
|
+ BIT_DStream_t bitD2;
|
|
+ BIT_DStream_t bitD3;
|
|
+ BIT_DStream_t bitD4;
|
|
+ size_t const length1 = MEM_readLE16(istart);
|
|
+ size_t const length2 = MEM_readLE16(istart+2);
|
|
+ size_t const length3 = MEM_readLE16(istart+4);
|
|
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
+ const BYTE* const istart2 = istart1 + length1;
|
|
+ const BYTE* const istart3 = istart2 + length2;
|
|
+ const BYTE* const istart4 = istart3 + length3;
|
|
+ const size_t segmentSize = (dstSize+3) / 4;
|
|
+ BYTE* const opStart2 = ostart + segmentSize;
|
|
+ BYTE* const opStart3 = opStart2 + segmentSize;
|
|
+ BYTE* const opStart4 = opStart3 + segmentSize;
|
|
+ BYTE* op1 = ostart;
|
|
+ BYTE* op2 = opStart2;
|
|
+ BYTE* op3 = opStart3;
|
|
+ BYTE* op4 = opStart4;
|
|
+ U32 endSignal;
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ U32 const dtLog = dtd.tableLog;
|
|
+
|
|
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+
|
|
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
+ for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
|
|
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
|
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
+ }
|
|
+
|
|
+ /* check corruption */
|
|
+ if (op1 > opStart2) return ERROR(corruption_detected);
|
|
+ if (op2 > opStart3) return ERROR(corruption_detected);
|
|
+ if (op3 > opStart4) return ERROR(corruption_detected);
|
|
+ /* note : op4 supposed already verified within main loop */
|
|
+
|
|
+ /* finish bitStreams one by one */
|
|
+ HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
|
|
+ HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
|
|
+ HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
|
|
+ HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
|
|
+
|
|
+ /* check */
|
|
+ endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
+ if (!endSignal) return ERROR(corruption_detected);
|
|
+
|
|
+ /* decoded size */
|
|
+ return dstSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_decompress4X2_usingDTable(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ if (dtd.tableType != 0) return ERROR(GENERIC);
|
|
+ return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_decompress4X2_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*) cSrc;
|
|
+
|
|
+ size_t const hSize = HUF_readDTableX2 (dctx, cSrc, cSrcSize);
|
|
+ if (HUF_isError(hSize)) return hSize;
|
|
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
+ ip += hSize; cSrcSize -= hSize;
|
|
+
|
|
+ return HUF_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx);
|
|
+}
|
|
+
|
|
+/* *************************/
|
|
+/* double-symbols decoding */
|
|
+/* *************************/
|
|
+typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
|
|
+
|
|
+typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
|
|
+
|
|
+/* HUF_fillDTableX4Level2() :
|
|
+ * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
|
|
+static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
|
|
+ const U32* rankValOrigin, const int minWeight,
|
|
+ const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
|
|
+ U32 nbBitsBaseline, U16 baseSeq)
|
|
+{
|
|
+ HUF_DEltX4 DElt;
|
|
+ U32 rankVal[HUF_TABLELOG_MAX + 1];
|
|
+
|
|
+ /* get pre-calculated rankVal */
|
|
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
+
|
|
+ /* fill skipped values */
|
|
+ if (minWeight>1) {
|
|
+ U32 i, skipSize = rankVal[minWeight];
|
|
+ MEM_writeLE16(&(DElt.sequence), baseSeq);
|
|
+ DElt.nbBits = (BYTE)(consumed);
|
|
+ DElt.length = 1;
|
|
+ for (i = 0; i < skipSize; i++)
|
|
+ DTable[i] = DElt;
|
|
+ }
|
|
+
|
|
+ /* fill DTable */
|
|
+ { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
|
|
+ const U32 symbol = sortedSymbols[s].symbol;
|
|
+ const U32 weight = sortedSymbols[s].weight;
|
|
+ const U32 nbBits = nbBitsBaseline - weight;
|
|
+ const U32 length = 1 << (sizeLog-nbBits);
|
|
+ const U32 start = rankVal[weight];
|
|
+ U32 i = start;
|
|
+ const U32 end = start + length;
|
|
+
|
|
+ MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
|
|
+ DElt.nbBits = (BYTE)(nbBits + consumed);
|
|
+ DElt.length = 2;
|
|
+ do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
|
|
+
|
|
+ rankVal[weight] += length;
|
|
+ } }
|
|
+}
|
|
+
|
|
+typedef U32 rankVal_t[HUF_TABLELOG_MAX][HUF_TABLELOG_MAX + 1];
|
|
+
|
|
+static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
|
|
+ const sortedSymbol_t* sortedList, const U32 sortedListSize,
|
|
+ const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
|
|
+ const U32 nbBitsBaseline)
|
|
+{
|
|
+ U32 rankVal[HUF_TABLELOG_MAX + 1];
|
|
+ const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
|
|
+ const U32 minBits = nbBitsBaseline - maxWeight;
|
|
+ U32 s;
|
|
+
|
|
+ memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
+
|
|
+ /* fill DTable */
|
|
+ for (s=0; s<sortedListSize; s++) {
|
|
+ const U16 symbol = sortedList[s].symbol;
|
|
+ const U32 weight = sortedList[s].weight;
|
|
+ const U32 nbBits = nbBitsBaseline - weight;
|
|
+ const U32 start = rankVal[weight];
|
|
+ const U32 length = 1 << (targetLog-nbBits);
|
|
+
|
|
+ if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
|
|
+ U32 sortedRank;
|
|
+ int minWeight = nbBits + scaleLog;
|
|
+ if (minWeight < 1) minWeight = 1;
|
|
+ sortedRank = rankStart[minWeight];
|
|
+ HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
|
|
+ rankValOrigin[nbBits], minWeight,
|
|
+ sortedList+sortedRank, sortedListSize-sortedRank,
|
|
+ nbBitsBaseline, symbol);
|
|
+ } else {
|
|
+ HUF_DEltX4 DElt;
|
|
+ MEM_writeLE16(&(DElt.sequence), symbol);
|
|
+ DElt.nbBits = (BYTE)(nbBits);
|
|
+ DElt.length = 1;
|
|
+ { U32 const end = start + length;
|
|
+ U32 u;
|
|
+ for (u = start; u < end; u++) DTable[u] = DElt;
|
|
+ } }
|
|
+ rankVal[weight] += length;
|
|
+ }
|
|
+}
|
|
+
|
|
+size_t HUF_readDTableX4 (HUF_DTable* DTable, const void* src, size_t srcSize)
|
|
+{
|
|
+ BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
|
|
+ sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
|
|
+ U32 rankStats[HUF_TABLELOG_MAX + 1] = { 0 };
|
|
+ U32 rankStart0[HUF_TABLELOG_MAX + 2] = { 0 };
|
|
+ U32* const rankStart = rankStart0+1;
|
|
+ rankVal_t rankVal;
|
|
+ U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
|
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ U32 const maxTableLog = dtd.maxTableLog;
|
|
+ size_t iSize;
|
|
+ void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
|
|
+ HUF_DEltX4* const dt = (HUF_DEltX4*)dtPtr;
|
|
+
|
|
+ HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
|
|
+ if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
|
|
+ /* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
|
|
+
|
|
+ iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
|
+ if (HUF_isError(iSize)) return iSize;
|
|
+
|
|
+ /* check result */
|
|
+ if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
|
|
+
|
|
+ /* find maxWeight */
|
|
+ for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
|
+
|
|
+ /* Get start index of each weight */
|
|
+ { U32 w, nextRankStart = 0;
|
|
+ for (w=1; w<maxW+1; w++) {
|
|
+ U32 curr = nextRankStart;
|
|
+ nextRankStart += rankStats[w];
|
|
+ rankStart[w] = curr;
|
|
+ }
|
|
+ rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
|
+ sizeOfSort = nextRankStart;
|
|
+ }
|
|
+
|
|
+ /* sort symbols by weight */
|
|
+ { U32 s;
|
|
+ for (s=0; s<nbSymbols; s++) {
|
|
+ U32 const w = weightList[s];
|
|
+ U32 const r = rankStart[w]++;
|
|
+ sortedSymbol[r].symbol = (BYTE)s;
|
|
+ sortedSymbol[r].weight = (BYTE)w;
|
|
+ }
|
|
+ rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
|
+ }
|
|
+
|
|
+ /* Build rankVal */
|
|
+ { U32* const rankVal0 = rankVal[0];
|
|
+ { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
|
|
+ U32 nextRankVal = 0;
|
|
+ U32 w;
|
|
+ for (w=1; w<maxW+1; w++) {
|
|
+ U32 curr = nextRankVal;
|
|
+ nextRankVal += rankStats[w] << (w+rescale);
|
|
+ rankVal0[w] = curr;
|
|
+ } }
|
|
+ { U32 const minBits = tableLog+1 - maxW;
|
|
+ U32 consumed;
|
|
+ for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
|
|
+ U32* const rankValPtr = rankVal[consumed];
|
|
+ U32 w;
|
|
+ for (w = 1; w < maxW+1; w++) {
|
|
+ rankValPtr[w] = rankVal0[w] >> consumed;
|
|
+ } } } }
|
|
+
|
|
+ HUF_fillDTableX4(dt, maxTableLog,
|
|
+ sortedSymbol, sizeOfSort,
|
|
+ rankStart0, rankVal, maxW,
|
|
+ tableLog+1);
|
|
+
|
|
+ dtd.tableLog = (BYTE)maxTableLog;
|
|
+ dtd.tableType = 1;
|
|
+ memcpy(DTable, &dtd, sizeof(dtd));
|
|
+ return iSize;
|
|
+}
|
|
+
|
|
+
|
|
+static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
+{
|
|
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
+ memcpy(op, dt+val, 2);
|
|
+ BIT_skipBits(DStream, dt[val].nbBits);
|
|
+ return dt[val].length;
|
|
+}
|
|
+
|
|
+static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
+{
|
|
+ size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
+ memcpy(op, dt+val, 1);
|
|
+ if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
|
|
+ else {
|
|
+ if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
|
|
+ BIT_skipBits(DStream, dt[val].nbBits);
|
|
+ if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
|
+ DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
|
+ } }
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
|
|
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
|
|
+ if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
|
|
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
+
|
|
+#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
|
|
+ if (MEM_64bits()) \
|
|
+ ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
+
|
|
+FORCE_INLINE size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
|
|
+{
|
|
+ BYTE* const pStart = p;
|
|
+
|
|
+ /* up to 8 symbols at a time */
|
|
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
|
|
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
+ }
|
|
+
|
|
+ /* closer to end : up to 2 symbols at a time */
|
|
+ while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
|
|
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
+
|
|
+ while (p <= pEnd-2)
|
|
+ HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
|
+
|
|
+ if (p < pEnd)
|
|
+ p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
|
|
+
|
|
+ return p-pStart;
|
|
+}
|
|
+
|
|
+
|
|
+static size_t HUF_decompress1X4_usingDTable_internal(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ BIT_DStream_t bitD;
|
|
+
|
|
+ /* Init */
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
|
|
+ if (HUF_isError(errorCode)) return errorCode;
|
|
+ }
|
|
+
|
|
+ /* decode */
|
|
+ { BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
|
|
+ const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
|
|
+ }
|
|
+
|
|
+ /* check */
|
|
+ if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
|
+
|
|
+ /* decoded size */
|
|
+ return dstSize;
|
|
+}
|
|
+
|
|
+size_t HUF_decompress1X4_usingDTable(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ if (dtd.tableType != 1) return ERROR(GENERIC);
|
|
+ return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+size_t HUF_decompress1X4_DCtx (HUF_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*) cSrc;
|
|
+
|
|
+ size_t const hSize = HUF_readDTableX4 (DCtx, cSrc, cSrcSize);
|
|
+ if (HUF_isError(hSize)) return hSize;
|
|
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
+ ip += hSize; cSrcSize -= hSize;
|
|
+
|
|
+ return HUF_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx);
|
|
+}
|
|
+
|
|
+static size_t HUF_decompress4X4_usingDTable_internal(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
+
|
|
+ { const BYTE* const istart = (const BYTE*) cSrc;
|
|
+ BYTE* const ostart = (BYTE*) dst;
|
|
+ BYTE* const oend = ostart + dstSize;
|
|
+ const void* const dtPtr = DTable+1;
|
|
+ const HUF_DEltX4* const dt = (const HUF_DEltX4*)dtPtr;
|
|
+
|
|
+ /* Init */
|
|
+ BIT_DStream_t bitD1;
|
|
+ BIT_DStream_t bitD2;
|
|
+ BIT_DStream_t bitD3;
|
|
+ BIT_DStream_t bitD4;
|
|
+ size_t const length1 = MEM_readLE16(istart);
|
|
+ size_t const length2 = MEM_readLE16(istart+2);
|
|
+ size_t const length3 = MEM_readLE16(istart+4);
|
|
+ size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
+ const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
+ const BYTE* const istart2 = istart1 + length1;
|
|
+ const BYTE* const istart3 = istart2 + length2;
|
|
+ const BYTE* const istart4 = istart3 + length3;
|
|
+ size_t const segmentSize = (dstSize+3) / 4;
|
|
+ BYTE* const opStart2 = ostart + segmentSize;
|
|
+ BYTE* const opStart3 = opStart2 + segmentSize;
|
|
+ BYTE* const opStart4 = opStart3 + segmentSize;
|
|
+ BYTE* op1 = ostart;
|
|
+ BYTE* op2 = opStart2;
|
|
+ BYTE* op3 = opStart3;
|
|
+ BYTE* op4 = opStart4;
|
|
+ U32 endSignal;
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ U32 const dtLog = dtd.tableLog;
|
|
+
|
|
+ if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+ { size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
+ if (HUF_isError(errorCode)) return errorCode; }
|
|
+
|
|
+ /* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
+ for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) {
|
|
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
+ HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
|
|
+ HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
|
|
+ HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
|
|
+ HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
|
|
+
|
|
+ endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
+ }
|
|
+
|
|
+ /* check corruption */
|
|
+ if (op1 > opStart2) return ERROR(corruption_detected);
|
|
+ if (op2 > opStart3) return ERROR(corruption_detected);
|
|
+ if (op3 > opStart4) return ERROR(corruption_detected);
|
|
+ /* note : op4 already verified within main loop */
|
|
+
|
|
+ /* finish bitStreams one by one */
|
|
+ HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
|
|
+ HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
|
|
+ HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
|
|
+ HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
|
|
+
|
|
+ /* check */
|
|
+ { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
+ if (!endCheck) return ERROR(corruption_detected); }
|
|
+
|
|
+ /* decoded size */
|
|
+ return dstSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_decompress4X4_usingDTable(
|
|
+ void* dst, size_t dstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc dtd = HUF_getDTableDesc(DTable);
|
|
+ if (dtd.tableType != 1) return ERROR(GENERIC);
|
|
+ return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+
|
|
+size_t HUF_decompress4X4_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*) cSrc;
|
|
+
|
|
+ size_t hSize = HUF_readDTableX4 (dctx, cSrc, cSrcSize);
|
|
+ if (HUF_isError(hSize)) return hSize;
|
|
+ if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
+ ip += hSize; cSrcSize -= hSize;
|
|
+
|
|
+ return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
|
|
+}
|
|
+
|
|
+
|
|
+/* ********************************/
|
|
+/* Generic decompression selector */
|
|
+/* ********************************/
|
|
+
|
|
+size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
|
|
+ HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
|
|
+ const void* cSrc, size_t cSrcSize,
|
|
+ const HUF_DTable* DTable)
|
|
+{
|
|
+ DTableDesc const dtd = HUF_getDTableDesc(DTable);
|
|
+ return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) :
|
|
+ HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
|
|
+}
|
|
+
|
|
+
|
|
+typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
|
|
+static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
|
|
+{
|
|
+ /* single, double, quad */
|
|
+ {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
|
|
+ {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
|
|
+ {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
|
|
+ {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
|
|
+ {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
|
|
+ {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
|
|
+ {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
|
|
+ {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
|
|
+ {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
|
|
+ {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
|
|
+ {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
|
|
+ {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
|
|
+ {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
|
|
+ {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
|
|
+ {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
|
|
+ {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
|
|
+};
|
|
+
|
|
+/** HUF_selectDecoder() :
|
|
+* Tells which decoder is likely to decode faster,
|
|
+* based on a set of pre-determined metrics.
|
|
+* @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
|
|
+* Assumption : 0 < cSrcSize < dstSize <= 128 KB */
|
|
+U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
|
|
+{
|
|
+ /* decoder timing evaluation */
|
|
+ U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
|
|
+ U32 const D256 = (U32)(dstSize >> 8);
|
|
+ U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
|
|
+ U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
|
|
+ DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */
|
|
+
|
|
+ return DTime1 < DTime0;
|
|
+}
|
|
+
|
|
+
|
|
+typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
|
+
|
|
+size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ /* validation checks */
|
|
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
|
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
|
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
|
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
|
+
|
|
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
|
+ return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
|
+ HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
|
+ }
|
|
+}
|
|
+
|
|
+size_t HUF_decompress4X_hufOnly (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ /* validation checks */
|
|
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
|
+ if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */
|
|
+
|
|
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
|
+ return algoNb ? HUF_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
|
+ HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
|
+ }
|
|
+}
|
|
+
|
|
+size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
+{
|
|
+ /* validation checks */
|
|
+ if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
|
+ if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
|
+ if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
|
+ if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
|
+
|
|
+ { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
|
|
+ return algoNb ? HUF_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
|
|
+ HUF_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
|
|
+ }
|
|
+}
|
|
diff --git a/lib/zstd/mem.h b/lib/zstd/mem.h
|
|
new file mode 100644
|
|
index 0000000..e656a0e
|
|
--- /dev/null
|
|
+++ b/lib/zstd/mem.h
|
|
@@ -0,0 +1,216 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+#ifndef MEM_H_MODULE
|
|
+#define MEM_H_MODULE
|
|
+
|
|
+/*-****************************************
|
|
+* Dependencies
|
|
+******************************************/
|
|
+#include <asm/unaligned.h>
|
|
+#include <linux/types.h> /* size_t, ptrdiff_t */
|
|
+#include <linux/string.h> /* memcpy */
|
|
+
|
|
+
|
|
+/*-****************************************
|
|
+* Compiler specifics
|
|
+******************************************/
|
|
+#define MEM_STATIC static __inline __attribute__((unused))
|
|
+
|
|
+/* code only tested on 32 and 64 bits systems */
|
|
+#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
|
|
+MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* Basic Types
|
|
+*****************************************************************/
|
|
+typedef uint8_t BYTE;
|
|
+typedef uint16_t U16;
|
|
+typedef int16_t S16;
|
|
+typedef uint32_t U32;
|
|
+typedef int32_t S32;
|
|
+typedef uint64_t U64;
|
|
+typedef int64_t S64;
|
|
+typedef ptrdiff_t iPtrDiff;
|
|
+typedef uintptr_t uPtrDiff;
|
|
+
|
|
+
|
|
+/*-**************************************************************
|
|
+* Memory I/O
|
|
+*****************************************************************/
|
|
+MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
|
|
+MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
|
|
+
|
|
+#if defined(__LITTLE_ENDIAN)
|
|
+# define MEM_LITTLE_ENDIAN 1
|
|
+#else
|
|
+# define MEM_LITTLE_ENDIAN 0
|
|
+#endif
|
|
+
|
|
+MEM_STATIC unsigned MEM_isLittleEndian(void)
|
|
+{
|
|
+ return MEM_LITTLE_ENDIAN;
|
|
+}
|
|
+
|
|
+MEM_STATIC U16 MEM_read16(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned((const U16*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC U32 MEM_read32(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned((const U32*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC U64 MEM_read64(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned((const U64*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t MEM_readST(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned((const size_t*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_write16(void* memPtr, U16 value)
|
|
+{
|
|
+ put_unaligned(value, (U16*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_write32(void* memPtr, U32 value)
|
|
+{
|
|
+ put_unaligned(value, (U32*)memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_write64(void* memPtr, U64 value)
|
|
+{
|
|
+ put_unaligned(value, (U64*)memPtr);
|
|
+}
|
|
+
|
|
+/*=== Little endian r/w ===*/
|
|
+
|
|
+MEM_STATIC U16 MEM_readLE16(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned_le16(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
|
|
+{
|
|
+ put_unaligned_le16(val, memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC U32 MEM_readLE24(const void* memPtr)
|
|
+{
|
|
+ return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
|
|
+{
|
|
+ MEM_writeLE16(memPtr, (U16)val);
|
|
+ ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
|
|
+}
|
|
+
|
|
+MEM_STATIC U32 MEM_readLE32(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned_le32(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
|
|
+{
|
|
+ put_unaligned_le32(val32, memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC U64 MEM_readLE64(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned_le64(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
|
|
+{
|
|
+ put_unaligned_le64(val64, memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t MEM_readLEST(const void* memPtr)
|
|
+{
|
|
+ if (MEM_32bits())
|
|
+ return (size_t)MEM_readLE32(memPtr);
|
|
+ else
|
|
+ return (size_t)MEM_readLE64(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
|
|
+{
|
|
+ if (MEM_32bits())
|
|
+ MEM_writeLE32(memPtr, (U32)val);
|
|
+ else
|
|
+ MEM_writeLE64(memPtr, (U64)val);
|
|
+}
|
|
+
|
|
+/*=== Big endian r/w ===*/
|
|
+
|
|
+MEM_STATIC U32 MEM_readBE32(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned_be32(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
|
|
+{
|
|
+ put_unaligned_be32(val32, memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC U64 MEM_readBE64(const void* memPtr)
|
|
+{
|
|
+ return get_unaligned_be64(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
|
|
+{
|
|
+ put_unaligned_be64(val64, memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC size_t MEM_readBEST(const void* memPtr)
|
|
+{
|
|
+ if (MEM_32bits())
|
|
+ return (size_t)MEM_readBE32(memPtr);
|
|
+ else
|
|
+ return (size_t)MEM_readBE64(memPtr);
|
|
+}
|
|
+
|
|
+MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
|
|
+{
|
|
+ if (MEM_32bits())
|
|
+ MEM_writeBE32(memPtr, (U32)val);
|
|
+ else
|
|
+ MEM_writeBE64(memPtr, (U64)val);
|
|
+}
|
|
+
|
|
+
|
|
+/* function safe only for comparisons */
|
|
+MEM_STATIC U32 MEM_readMINMATCH(const void* memPtr, U32 length)
|
|
+{
|
|
+ switch (length)
|
|
+ {
|
|
+ default :
|
|
+ case 4 : return MEM_read32(memPtr);
|
|
+ case 3 : if (MEM_isLittleEndian())
|
|
+ return MEM_read32(memPtr)<<8;
|
|
+ else
|
|
+ return MEM_read32(memPtr)>>8;
|
|
+ }
|
|
+}
|
|
+
|
|
+#endif /* MEM_H_MODULE */
|
|
diff --git a/lib/zstd/zstd_common.c b/lib/zstd/zstd_common.c
|
|
new file mode 100644
|
|
index 0000000..4ff3cc8
|
|
--- /dev/null
|
|
+++ b/lib/zstd/zstd_common.c
|
|
@@ -0,0 +1,76 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Dependencies
|
|
+***************************************/
|
|
+#include "error_private.h"
|
|
+#include "zstd_internal.h" /* declaration of ZSTD_isError, ZSTD_getErrorName, ZSTD_getErrorCode, ZSTD_getErrorString, ZSTD_versionNumber */
|
|
+#include <linux/kernel.h>
|
|
+
|
|
+
|
|
+/*=**************************************************************
|
|
+* Custom allocator
|
|
+****************************************************************/
|
|
+
|
|
+#define stack_push(stack, size) ({ \
|
|
+ void* const ptr = ZSTD_PTR_ALIGN((stack)->ptr); \
|
|
+ (stack)->ptr = (char*)ptr + (size); \
|
|
+ (stack)->ptr <= (stack)->end ? ptr : NULL; \
|
|
+ })
|
|
+
|
|
+ZSTD_customMem ZSTD_initStack(void* workspace, size_t workspaceSize) {
|
|
+ ZSTD_customMem stackMem = { ZSTD_stackAlloc, ZSTD_stackFree, workspace };
|
|
+ ZSTD_stack* stack = (ZSTD_stack*) workspace;
|
|
+ /* Verify preconditions */
|
|
+ if (!workspace || workspaceSize < sizeof(ZSTD_stack) || workspace != ZSTD_PTR_ALIGN(workspace)) {
|
|
+ ZSTD_customMem error = {NULL, NULL, NULL};
|
|
+ return error;
|
|
+ }
|
|
+ /* Initialize the stack */
|
|
+ stack->ptr = workspace;
|
|
+ stack->end = (char*)workspace + workspaceSize;
|
|
+ stack_push(stack, sizeof(ZSTD_stack));
|
|
+ return stackMem;
|
|
+}
|
|
+
|
|
+void* ZSTD_stackAllocAll(void* opaque, size_t* size) {
|
|
+ ZSTD_stack* stack = (ZSTD_stack*)opaque;
|
|
+ *size = stack->end - ZSTD_PTR_ALIGN(stack->ptr);
|
|
+ return stack_push(stack, *size);
|
|
+}
|
|
+
|
|
+void* ZSTD_stackAlloc(void* opaque, size_t size) {
|
|
+ ZSTD_stack* stack = (ZSTD_stack*)opaque;
|
|
+ return stack_push(stack, size);
|
|
+}
|
|
+void ZSTD_stackFree(void* opaque, void* address) {
|
|
+ (void)opaque;
|
|
+ (void)address;
|
|
+}
|
|
+
|
|
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem)
|
|
+{
|
|
+ return customMem.customAlloc(customMem.opaque, size);
|
|
+}
|
|
+
|
|
+void ZSTD_free(void* ptr, ZSTD_customMem customMem)
|
|
+{
|
|
+ if (ptr!=NULL)
|
|
+ customMem.customFree(customMem.opaque, ptr);
|
|
+}
|
|
diff --git a/lib/zstd/zstd_internal.h b/lib/zstd/zstd_internal.h
|
|
new file mode 100644
|
|
index 0000000..91365ea
|
|
--- /dev/null
|
|
+++ b/lib/zstd/zstd_internal.h
|
|
@@ -0,0 +1,268 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+#ifndef ZSTD_CCOMMON_H_MODULE
|
|
+#define ZSTD_CCOMMON_H_MODULE
|
|
+
|
|
+/*-*******************************************************
|
|
+* Compiler specifics
|
|
+*********************************************************/
|
|
+#define FORCE_INLINE static __always_inline
|
|
+#define FORCE_NOINLINE static noinline
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Dependencies
|
|
+***************************************/
|
|
+#include <linux/compiler.h>
|
|
+#include <linux/kernel.h>
|
|
+#include <linux/xxhash.h>
|
|
+#include <linux/zstd.h>
|
|
+#include "mem.h"
|
|
+#include "error_private.h"
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* shared macros
|
|
+***************************************/
|
|
+#define MIN(a,b) ((a)<(b) ? (a) : (b))
|
|
+#define MAX(a,b) ((a)>(b) ? (a) : (b))
|
|
+#define CHECK_F(f) { size_t const errcod = f; if (ERR_isError(errcod)) return errcod; } /* check and Forward error code */
|
|
+#define CHECK_E(f, e) { size_t const errcod = f; if (ERR_isError(errcod)) return ERROR(e); } /* check and send Error code */
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Common constants
|
|
+***************************************/
|
|
+#define ZSTD_OPT_NUM (1<<12)
|
|
+#define ZSTD_DICT_MAGIC 0xEC30A437 /* v0.7+ */
|
|
+
|
|
+#define ZSTD_REP_NUM 3 /* number of repcodes */
|
|
+#define ZSTD_REP_CHECK (ZSTD_REP_NUM) /* number of repcodes to check by the optimal parser */
|
|
+#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
|
|
+#define ZSTD_REP_MOVE_OPT (ZSTD_REP_NUM)
|
|
+static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
|
|
+
|
|
+#define KB *(1 <<10)
|
|
+#define MB *(1 <<20)
|
|
+#define GB *(1U<<30)
|
|
+
|
|
+#define BIT7 128
|
|
+#define BIT6 64
|
|
+#define BIT5 32
|
|
+#define BIT4 16
|
|
+#define BIT1 2
|
|
+#define BIT0 1
|
|
+
|
|
+#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
|
|
+static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
|
|
+static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
|
|
+
|
|
+#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
|
|
+static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
|
|
+typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
|
|
+
|
|
+#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
|
|
+#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */
|
|
+
|
|
+#define HufLog 12
|
|
+typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
|
|
+
|
|
+#define LONGNBSEQ 0x7F00
|
|
+
|
|
+#define MINMATCH 3
|
|
+#define EQUAL_READ32 4
|
|
+
|
|
+#define Litbits 8
|
|
+#define MaxLit ((1<<Litbits) - 1)
|
|
+#define MaxML 52
|
|
+#define MaxLL 35
|
|
+#define MaxOff 28
|
|
+#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
|
|
+#define MLFSELog 9
|
|
+#define LLFSELog 9
|
|
+#define OffFSELog 8
|
|
+
|
|
+static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12,
|
|
+ 13,14,15,16 };
|
|
+static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
|
|
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
|
|
+ -1,-1,-1,-1 };
|
|
+#define LL_DEFAULTNORMLOG 6 /* for static allocation */
|
|
+static const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
|
|
+
|
|
+static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
+ 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11,
|
|
+ 12,13,14,15,16 };
|
|
+static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
|
|
+ -1,-1,-1,-1,-1 };
|
|
+#define ML_DEFAULTNORMLOG 6 /* for static allocation */
|
|
+static const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
|
|
+
|
|
+static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
|
|
+ 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 };
|
|
+#define OF_DEFAULTNORMLOG 5 /* for static allocation */
|
|
+static const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
|
|
+
|
|
+
|
|
+/*-*******************************************
|
|
+* Shared functions to include for inlining
|
|
+*********************************************/
|
|
+static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
|
|
+#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
|
|
+
|
|
+/*! ZSTD_wildcopy() :
|
|
+* custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */
|
|
+#define WILDCOPY_OVERLENGTH 8
|
|
+MEM_STATIC void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+ BYTE* op = (BYTE*)dst;
|
|
+ BYTE* const oend = op + length;
|
|
+ do
|
|
+ COPY8(op, ip)
|
|
+ while (op < oend);
|
|
+}
|
|
+
|
|
+MEM_STATIC void ZSTD_wildcopy_e(void* dst, const void* src, void* dstEnd) /* should be faster for decoding, but strangely, not verified on all platform */
|
|
+{
|
|
+ const BYTE* ip = (const BYTE*)src;
|
|
+ BYTE* op = (BYTE*)dst;
|
|
+ BYTE* const oend = (BYTE*)dstEnd;
|
|
+ do
|
|
+ COPY8(op, ip)
|
|
+ while (op < oend);
|
|
+}
|
|
+
|
|
+
|
|
+/*-*******************************************
|
|
+* Private interfaces
|
|
+*********************************************/
|
|
+typedef struct ZSTD_stats_s ZSTD_stats_t;
|
|
+
|
|
+typedef struct {
|
|
+ U32 off;
|
|
+ U32 len;
|
|
+} ZSTD_match_t;
|
|
+
|
|
+typedef struct {
|
|
+ U32 price;
|
|
+ U32 off;
|
|
+ U32 mlen;
|
|
+ U32 litlen;
|
|
+ U32 rep[ZSTD_REP_NUM];
|
|
+} ZSTD_optimal_t;
|
|
+
|
|
+
|
|
+typedef struct seqDef_s {
|
|
+ U32 offset;
|
|
+ U16 litLength;
|
|
+ U16 matchLength;
|
|
+} seqDef;
|
|
+
|
|
+
|
|
+typedef struct {
|
|
+ seqDef* sequencesStart;
|
|
+ seqDef* sequences;
|
|
+ BYTE* litStart;
|
|
+ BYTE* lit;
|
|
+ BYTE* llCode;
|
|
+ BYTE* mlCode;
|
|
+ BYTE* ofCode;
|
|
+ U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */
|
|
+ U32 longLengthPos;
|
|
+ /* opt */
|
|
+ ZSTD_optimal_t* priceTable;
|
|
+ ZSTD_match_t* matchTable;
|
|
+ U32* matchLengthFreq;
|
|
+ U32* litLengthFreq;
|
|
+ U32* litFreq;
|
|
+ U32* offCodeFreq;
|
|
+ U32 matchLengthSum;
|
|
+ U32 matchSum;
|
|
+ U32 litLengthSum;
|
|
+ U32 litSum;
|
|
+ U32 offCodeSum;
|
|
+ U32 log2matchLengthSum;
|
|
+ U32 log2matchSum;
|
|
+ U32 log2litLengthSum;
|
|
+ U32 log2litSum;
|
|
+ U32 log2offCodeSum;
|
|
+ U32 factor;
|
|
+ U32 staticPrices;
|
|
+ U32 cachedPrice;
|
|
+ U32 cachedLitLength;
|
|
+ const BYTE* cachedLiterals;
|
|
+} seqStore_t;
|
|
+
|
|
+const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx);
|
|
+void ZSTD_seqToCodes(const seqStore_t* seqStorePtr);
|
|
+int ZSTD_isSkipFrame(ZSTD_DCtx* dctx);
|
|
+
|
|
+/*= Custom memory allocation functions */
|
|
+typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size);
|
|
+typedef void (*ZSTD_freeFunction) (void* opaque, void* address);
|
|
+typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem;
|
|
+
|
|
+void* ZSTD_malloc(size_t size, ZSTD_customMem customMem);
|
|
+void ZSTD_free(void* ptr, ZSTD_customMem customMem);
|
|
+
|
|
+/*====== stack allocation ======*/
|
|
+
|
|
+typedef struct {
|
|
+ void* ptr;
|
|
+ const void* end;
|
|
+} ZSTD_stack;
|
|
+
|
|
+#define ZSTD_ALIGN(x) ALIGN(x, sizeof(size_t))
|
|
+#define ZSTD_PTR_ALIGN(p) PTR_ALIGN(p, sizeof(size_t))
|
|
+
|
|
+ZSTD_customMem ZSTD_initStack(void* workspace, size_t workspaceSize);
|
|
+
|
|
+void* ZSTD_stackAllocAll(void* opaque, size_t* size);
|
|
+void* ZSTD_stackAlloc(void* opaque, size_t size);
|
|
+void ZSTD_stackFree(void* opaque, void* address);
|
|
+
|
|
+
|
|
+/*====== common function ======*/
|
|
+
|
|
+MEM_STATIC U32 ZSTD_highbit32(U32 val)
|
|
+{
|
|
+ return 31 - __builtin_clz(val);
|
|
+}
|
|
+
|
|
+
|
|
+/* hidden functions */
|
|
+
|
|
+/* ZSTD_invalidateRepCodes() :
|
|
+ * ensures next compression will not use repcodes from previous block.
|
|
+ * Note : only works with regular variant;
|
|
+ * do not use with extDict variant ! */
|
|
+void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx);
|
|
+
|
|
+size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx);
|
|
+size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx);
|
|
+size_t ZSTD_freeCDict(ZSTD_CDict* cdict);
|
|
+size_t ZSTD_freeDDict(ZSTD_DDict* cdict);
|
|
+size_t ZSTD_freeCStream(ZSTD_CStream* zcs);
|
|
+size_t ZSTD_freeDStream(ZSTD_DStream* zds);
|
|
+
|
|
+
|
|
+#endif /* ZSTD_CCOMMON_H_MODULE */
|
|
diff --git a/lib/zstd/zstd_opt.h b/lib/zstd/zstd_opt.h
|
|
new file mode 100644
|
|
index 0000000..6855e3c
|
|
--- /dev/null
|
|
+++ b/lib/zstd/zstd_opt.h
|
|
@@ -0,0 +1,928 @@
|
|
+/**
|
|
+ * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
|
|
+ * All rights reserved.
|
|
+ *
|
|
+ * This source code is licensed under the BSD-style license found in the
|
|
+ * LICENSE file in the root directory of https://github.com/facebook/zstd.
|
|
+ * An additional grant of patent rights can be found in the PATENTS file in the
|
|
+ * same directory.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify it under
|
|
+ * the terms of the GNU General Public License version 2 as published by the
|
|
+ * Free Software Foundation. This program is dual-licensed; you may select
|
|
+ * either version 2 of the GNU General Public License ("GPL") or BSD license
|
|
+ * ("BSD").
|
|
+ */
|
|
+
|
|
+
|
|
+/* Note : this file is intended to be included within zstd_compress.c */
|
|
+
|
|
+
|
|
+#ifndef ZSTD_OPT_H_91842398743
|
|
+#define ZSTD_OPT_H_91842398743
|
|
+
|
|
+
|
|
+#define ZSTD_LITFREQ_ADD 2
|
|
+#define ZSTD_FREQ_DIV 4
|
|
+#define ZSTD_MAX_PRICE (1<<30)
|
|
+
|
|
+/*-*************************************
|
|
+* Price functions for optimal parser
|
|
+***************************************/
|
|
+FORCE_INLINE void ZSTD_setLog2Prices(seqStore_t* ssPtr)
|
|
+{
|
|
+ ssPtr->log2matchLengthSum = ZSTD_highbit32(ssPtr->matchLengthSum+1);
|
|
+ ssPtr->log2litLengthSum = ZSTD_highbit32(ssPtr->litLengthSum+1);
|
|
+ ssPtr->log2litSum = ZSTD_highbit32(ssPtr->litSum+1);
|
|
+ ssPtr->log2offCodeSum = ZSTD_highbit32(ssPtr->offCodeSum+1);
|
|
+ ssPtr->factor = 1 + ((ssPtr->litSum>>5) / ssPtr->litLengthSum) + ((ssPtr->litSum<<1) / (ssPtr->litSum + ssPtr->matchSum));
|
|
+}
|
|
+
|
|
+
|
|
+MEM_STATIC void ZSTD_rescaleFreqs(seqStore_t* ssPtr, const BYTE* src, size_t srcSize)
|
|
+{
|
|
+ unsigned u;
|
|
+
|
|
+ ssPtr->cachedLiterals = NULL;
|
|
+ ssPtr->cachedPrice = ssPtr->cachedLitLength = 0;
|
|
+ ssPtr->staticPrices = 0;
|
|
+
|
|
+ if (ssPtr->litLengthSum == 0) {
|
|
+ if (srcSize <= 1024) ssPtr->staticPrices = 1;
|
|
+
|
|
+ for (u=0; u<=MaxLit; u++)
|
|
+ ssPtr->litFreq[u] = 0;
|
|
+ for (u=0; u<srcSize; u++)
|
|
+ ssPtr->litFreq[src[u]]++;
|
|
+
|
|
+ ssPtr->litSum = 0;
|
|
+ ssPtr->litLengthSum = MaxLL+1;
|
|
+ ssPtr->matchLengthSum = MaxML+1;
|
|
+ ssPtr->offCodeSum = (MaxOff+1);
|
|
+ ssPtr->matchSum = (ZSTD_LITFREQ_ADD<<Litbits);
|
|
+
|
|
+ for (u=0; u<=MaxLit; u++) {
|
|
+ ssPtr->litFreq[u] = 1 + (ssPtr->litFreq[u]>>ZSTD_FREQ_DIV);
|
|
+ ssPtr->litSum += ssPtr->litFreq[u];
|
|
+ }
|
|
+ for (u=0; u<=MaxLL; u++)
|
|
+ ssPtr->litLengthFreq[u] = 1;
|
|
+ for (u=0; u<=MaxML; u++)
|
|
+ ssPtr->matchLengthFreq[u] = 1;
|
|
+ for (u=0; u<=MaxOff; u++)
|
|
+ ssPtr->offCodeFreq[u] = 1;
|
|
+ } else {
|
|
+ ssPtr->matchLengthSum = 0;
|
|
+ ssPtr->litLengthSum = 0;
|
|
+ ssPtr->offCodeSum = 0;
|
|
+ ssPtr->matchSum = 0;
|
|
+ ssPtr->litSum = 0;
|
|
+
|
|
+ for (u=0; u<=MaxLit; u++) {
|
|
+ ssPtr->litFreq[u] = 1 + (ssPtr->litFreq[u]>>(ZSTD_FREQ_DIV+1));
|
|
+ ssPtr->litSum += ssPtr->litFreq[u];
|
|
+ }
|
|
+ for (u=0; u<=MaxLL; u++) {
|
|
+ ssPtr->litLengthFreq[u] = 1 + (ssPtr->litLengthFreq[u]>>(ZSTD_FREQ_DIV+1));
|
|
+ ssPtr->litLengthSum += ssPtr->litLengthFreq[u];
|
|
+ }
|
|
+ for (u=0; u<=MaxML; u++) {
|
|
+ ssPtr->matchLengthFreq[u] = 1 + (ssPtr->matchLengthFreq[u]>>ZSTD_FREQ_DIV);
|
|
+ ssPtr->matchLengthSum += ssPtr->matchLengthFreq[u];
|
|
+ ssPtr->matchSum += ssPtr->matchLengthFreq[u] * (u + 3);
|
|
+ }
|
|
+ ssPtr->matchSum *= ZSTD_LITFREQ_ADD;
|
|
+ for (u=0; u<=MaxOff; u++) {
|
|
+ ssPtr->offCodeFreq[u] = 1 + (ssPtr->offCodeFreq[u]>>ZSTD_FREQ_DIV);
|
|
+ ssPtr->offCodeSum += ssPtr->offCodeFreq[u];
|
|
+ }
|
|
+ }
|
|
+
|
|
+ ZSTD_setLog2Prices(ssPtr);
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE U32 ZSTD_getLiteralPrice(seqStore_t* ssPtr, U32 litLength, const BYTE* literals)
|
|
+{
|
|
+ U32 price, u;
|
|
+
|
|
+ if (ssPtr->staticPrices)
|
|
+ return ZSTD_highbit32((U32)litLength+1) + (litLength*6);
|
|
+
|
|
+ if (litLength == 0)
|
|
+ return ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[0]+1);
|
|
+
|
|
+ /* literals */
|
|
+ if (ssPtr->cachedLiterals == literals) {
|
|
+ U32 const additional = litLength - ssPtr->cachedLitLength;
|
|
+ const BYTE* literals2 = ssPtr->cachedLiterals + ssPtr->cachedLitLength;
|
|
+ price = ssPtr->cachedPrice + additional * ssPtr->log2litSum;
|
|
+ for (u=0; u < additional; u++)
|
|
+ price -= ZSTD_highbit32(ssPtr->litFreq[literals2[u]]+1);
|
|
+ ssPtr->cachedPrice = price;
|
|
+ ssPtr->cachedLitLength = litLength;
|
|
+ } else {
|
|
+ price = litLength * ssPtr->log2litSum;
|
|
+ for (u=0; u < litLength; u++)
|
|
+ price -= ZSTD_highbit32(ssPtr->litFreq[literals[u]]+1);
|
|
+
|
|
+ if (litLength >= 12) {
|
|
+ ssPtr->cachedLiterals = literals;
|
|
+ ssPtr->cachedPrice = price;
|
|
+ ssPtr->cachedLitLength = litLength;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /* literal Length */
|
|
+ { const BYTE LL_deltaCode = 19;
|
|
+ const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
|
|
+ price += LL_bits[llCode] + ssPtr->log2litLengthSum - ZSTD_highbit32(ssPtr->litLengthFreq[llCode]+1);
|
|
+ }
|
|
+
|
|
+ return price;
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE U32 ZSTD_getPrice(seqStore_t* seqStorePtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength, const int ultra)
|
|
+{
|
|
+ /* offset */
|
|
+ U32 price;
|
|
+ BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
|
|
+
|
|
+ if (seqStorePtr->staticPrices)
|
|
+ return ZSTD_getLiteralPrice(seqStorePtr, litLength, literals) + ZSTD_highbit32((U32)matchLength+1) + 16 + offCode;
|
|
+
|
|
+ price = offCode + seqStorePtr->log2offCodeSum - ZSTD_highbit32(seqStorePtr->offCodeFreq[offCode]+1);
|
|
+ if (!ultra && offCode >= 20) price += (offCode-19)*2;
|
|
+
|
|
+ /* match Length */
|
|
+ { const BYTE ML_deltaCode = 36;
|
|
+ const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
|
|
+ price += ML_bits[mlCode] + seqStorePtr->log2matchLengthSum - ZSTD_highbit32(seqStorePtr->matchLengthFreq[mlCode]+1);
|
|
+ }
|
|
+
|
|
+ return price + ZSTD_getLiteralPrice(seqStorePtr, litLength, literals) + seqStorePtr->factor;
|
|
+}
|
|
+
|
|
+
|
|
+MEM_STATIC void ZSTD_updatePrice(seqStore_t* seqStorePtr, U32 litLength, const BYTE* literals, U32 offset, U32 matchLength)
|
|
+{
|
|
+ U32 u;
|
|
+
|
|
+ /* literals */
|
|
+ seqStorePtr->litSum += litLength*ZSTD_LITFREQ_ADD;
|
|
+ for (u=0; u < litLength; u++)
|
|
+ seqStorePtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
|
|
+
|
|
+ /* literal Length */
|
|
+ { const BYTE LL_deltaCode = 19;
|
|
+ const BYTE llCode = (litLength>63) ? (BYTE)ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
|
|
+ seqStorePtr->litLengthFreq[llCode]++;
|
|
+ seqStorePtr->litLengthSum++;
|
|
+ }
|
|
+
|
|
+ /* match offset */
|
|
+ { BYTE const offCode = (BYTE)ZSTD_highbit32(offset+1);
|
|
+ seqStorePtr->offCodeSum++;
|
|
+ seqStorePtr->offCodeFreq[offCode]++;
|
|
+ }
|
|
+
|
|
+ /* match Length */
|
|
+ { const BYTE ML_deltaCode = 36;
|
|
+ const BYTE mlCode = (matchLength>127) ? (BYTE)ZSTD_highbit32(matchLength) + ML_deltaCode : ML_Code[matchLength];
|
|
+ seqStorePtr->matchLengthFreq[mlCode]++;
|
|
+ seqStorePtr->matchLengthSum++;
|
|
+ }
|
|
+
|
|
+ ZSTD_setLog2Prices(seqStorePtr);
|
|
+}
|
|
+
|
|
+
|
|
+#define SET_PRICE(pos, mlen_, offset_, litlen_, price_) \
|
|
+ { \
|
|
+ while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } \
|
|
+ opt[pos].mlen = mlen_; \
|
|
+ opt[pos].off = offset_; \
|
|
+ opt[pos].litlen = litlen_; \
|
|
+ opt[pos].price = price_; \
|
|
+ }
|
|
+
|
|
+
|
|
+
|
|
+/* Update hashTable3 up to ip (excluded)
|
|
+ Assumption : always within prefix (i.e. not within extDict) */
|
|
+FORCE_INLINE
|
|
+U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_CCtx* zc, const BYTE* ip)
|
|
+{
|
|
+ U32* const hashTable3 = zc->hashTable3;
|
|
+ U32 const hashLog3 = zc->hashLog3;
|
|
+ const BYTE* const base = zc->base;
|
|
+ U32 idx = zc->nextToUpdate3;
|
|
+ const U32 target = zc->nextToUpdate3 = (U32)(ip - base);
|
|
+ const size_t hash3 = ZSTD_hash3Ptr(ip, hashLog3);
|
|
+
|
|
+ while(idx < target) {
|
|
+ hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
|
|
+ idx++;
|
|
+ }
|
|
+
|
|
+ return hashTable3[hash3];
|
|
+}
|
|
+
|
|
+
|
|
+/*-*************************************
|
|
+* Binary Tree search
|
|
+***************************************/
|
|
+static U32 ZSTD_insertBtAndGetAllMatches (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ U32 nbCompares, const U32 mls,
|
|
+ U32 extDict, ZSTD_match_t* matches, const U32 minMatchLen)
|
|
+{
|
|
+ const BYTE* const base = zc->base;
|
|
+ const U32 curr = (U32)(ip-base);
|
|
+ const U32 hashLog = zc->params.cParams.hashLog;
|
|
+ const size_t h = ZSTD_hashPtr(ip, hashLog, mls);
|
|
+ U32* const hashTable = zc->hashTable;
|
|
+ U32 matchIndex = hashTable[h];
|
|
+ U32* const bt = zc->chainTable;
|
|
+ const U32 btLog = zc->params.cParams.chainLog - 1;
|
|
+ const U32 btMask= (1U << btLog) - 1;
|
|
+ size_t commonLengthSmaller=0, commonLengthLarger=0;
|
|
+ const BYTE* const dictBase = zc->dictBase;
|
|
+ const U32 dictLimit = zc->dictLimit;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const U32 btLow = btMask >= curr ? 0 : curr - btMask;
|
|
+ const U32 windowLow = zc->lowLimit;
|
|
+ U32* smallerPtr = bt + 2*(curr&btMask);
|
|
+ U32* largerPtr = bt + 2*(curr&btMask) + 1;
|
|
+ U32 matchEndIdx = curr+8;
|
|
+ U32 dummy32; /* to be nullified at the end */
|
|
+ U32 mnum = 0;
|
|
+
|
|
+ const U32 minMatch = (mls == 3) ? 3 : 4;
|
|
+ size_t bestLength = minMatchLen-1;
|
|
+
|
|
+ if (minMatch == 3) { /* HC3 match finder */
|
|
+ U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3 (zc, ip);
|
|
+ if (matchIndex3>windowLow && (curr - matchIndex3 < (1<<18))) {
|
|
+ const BYTE* match;
|
|
+ size_t currMl=0;
|
|
+ if ((!extDict) || matchIndex3 >= dictLimit) {
|
|
+ match = base + matchIndex3;
|
|
+ if (match[bestLength] == ip[bestLength]) currMl = ZSTD_count(ip, match, iLimit);
|
|
+ } else {
|
|
+ match = dictBase + matchIndex3;
|
|
+ if (MEM_readMINMATCH(match, MINMATCH) == MEM_readMINMATCH(ip, MINMATCH)) /* assumption : matchIndex3 <= dictLimit-4 (by table construction) */
|
|
+ currMl = ZSTD_count_2segments(ip+MINMATCH, match+MINMATCH, iLimit, dictEnd, prefixStart) + MINMATCH;
|
|
+ }
|
|
+
|
|
+ /* save best solution */
|
|
+ if (currMl > bestLength) {
|
|
+ bestLength = currMl;
|
|
+ matches[mnum].off = ZSTD_REP_MOVE_OPT + curr - matchIndex3;
|
|
+ matches[mnum].len = (U32)currMl;
|
|
+ mnum++;
|
|
+ if (currMl > ZSTD_OPT_NUM) goto update;
|
|
+ if (ip+currMl == iLimit) goto update; /* best possible, and avoid read overflow*/
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ hashTable[h] = curr; /* Update Hash Table */
|
|
+
|
|
+ while (nbCompares-- && (matchIndex > windowLow)) {
|
|
+ U32* nextPtr = bt + 2*(matchIndex & btMask);
|
|
+ size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
|
|
+ const BYTE* match;
|
|
+
|
|
+ if ((!extDict) || (matchIndex+matchLength >= dictLimit)) {
|
|
+ match = base + matchIndex;
|
|
+ if (match[matchLength] == ip[matchLength]) {
|
|
+ matchLength += ZSTD_count(ip+matchLength+1, match+matchLength+1, iLimit) +1;
|
|
+ }
|
|
+ } else {
|
|
+ match = dictBase + matchIndex;
|
|
+ matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
|
|
+ if (matchIndex+matchLength >= dictLimit)
|
|
+ match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
|
|
+ }
|
|
+
|
|
+ if (matchLength > bestLength) {
|
|
+ if (matchLength > matchEndIdx - matchIndex) matchEndIdx = matchIndex + (U32)matchLength;
|
|
+ bestLength = matchLength;
|
|
+ matches[mnum].off = ZSTD_REP_MOVE_OPT + curr - matchIndex;
|
|
+ matches[mnum].len = (U32)matchLength;
|
|
+ mnum++;
|
|
+ if (matchLength > ZSTD_OPT_NUM) break;
|
|
+ if (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */
|
|
+ break; /* drop, to guarantee consistency (miss a little bit of compression) */
|
|
+ }
|
|
+
|
|
+ if (match[matchLength] < ip[matchLength]) {
|
|
+ /* match is smaller than curr */
|
|
+ *smallerPtr = matchIndex; /* update smaller idx */
|
|
+ commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
|
|
+ if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
|
|
+ matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to curr) */
|
|
+ } else {
|
|
+ /* match is larger than curr */
|
|
+ *largerPtr = matchIndex;
|
|
+ commonLengthLarger = matchLength;
|
|
+ if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
|
|
+ largerPtr = nextPtr;
|
|
+ matchIndex = nextPtr[0];
|
|
+ } }
|
|
+
|
|
+ *smallerPtr = *largerPtr = 0;
|
|
+
|
|
+update:
|
|
+ zc->nextToUpdate = (matchEndIdx > curr + 8) ? matchEndIdx - 8 : curr+1;
|
|
+ return mnum;
|
|
+}
|
|
+
|
|
+
|
|
+/** Tree updater, providing best match */
|
|
+static U32 ZSTD_BtGetAllMatches (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
|
|
+{
|
|
+ if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
|
|
+ ZSTD_updateTree(zc, ip, iLimit, maxNbAttempts, mls);
|
|
+ return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 0, matches, minMatchLen);
|
|
+}
|
|
+
|
|
+
|
|
+static U32 ZSTD_BtGetAllMatches_selectMLS (
|
|
+ ZSTD_CCtx* zc, /* Index table will be updated */
|
|
+ const BYTE* ip, const BYTE* const iHighLimit,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ case 3 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
|
|
+ default :
|
|
+ case 4 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
|
|
+ case 5 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_BtGetAllMatches(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
|
|
+ }
|
|
+}
|
|
+
|
|
+/** Tree updater, providing best match */
|
|
+static U32 ZSTD_BtGetAllMatches_extDict (
|
|
+ ZSTD_CCtx* zc,
|
|
+ const BYTE* const ip, const BYTE* const iLimit,
|
|
+ const U32 maxNbAttempts, const U32 mls, ZSTD_match_t* matches, const U32 minMatchLen)
|
|
+{
|
|
+ if (ip < zc->base + zc->nextToUpdate) return 0; /* skipped area */
|
|
+ ZSTD_updateTree_extDict(zc, ip, iLimit, maxNbAttempts, mls);
|
|
+ return ZSTD_insertBtAndGetAllMatches(zc, ip, iLimit, maxNbAttempts, mls, 1, matches, minMatchLen);
|
|
+}
|
|
+
|
|
+
|
|
+static U32 ZSTD_BtGetAllMatches_selectMLS_extDict (
|
|
+ ZSTD_CCtx* zc, /* Index table will be updated */
|
|
+ const BYTE* ip, const BYTE* const iHighLimit,
|
|
+ const U32 maxNbAttempts, const U32 matchLengthSearch, ZSTD_match_t* matches, const U32 minMatchLen)
|
|
+{
|
|
+ switch(matchLengthSearch)
|
|
+ {
|
|
+ case 3 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 3, matches, minMatchLen);
|
|
+ default :
|
|
+ case 4 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 4, matches, minMatchLen);
|
|
+ case 5 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 5, matches, minMatchLen);
|
|
+ case 7 :
|
|
+ case 6 : return ZSTD_BtGetAllMatches_extDict(zc, ip, iHighLimit, maxNbAttempts, 6, matches, minMatchLen);
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+/*-*******************************
|
|
+* Optimal parser
|
|
+*********************************/
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_opt_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize, const int ultra)
|
|
+{
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ const BYTE* const base = ctx->base;
|
|
+ const BYTE* const prefixStart = base + ctx->dictLimit;
|
|
+
|
|
+ const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
|
|
+ const U32 sufficient_len = ctx->params.cParams.targetLength;
|
|
+ const U32 mls = ctx->params.cParams.searchLength;
|
|
+ const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
|
|
+
|
|
+ ZSTD_optimal_t* opt = seqStorePtr->priceTable;
|
|
+ ZSTD_match_t* matches = seqStorePtr->matchTable;
|
|
+ const BYTE* inr;
|
|
+ U32 offset, rep[ZSTD_REP_NUM];
|
|
+
|
|
+ /* init */
|
|
+ ctx->nextToUpdate3 = ctx->nextToUpdate;
|
|
+ ZSTD_rescaleFreqs(seqStorePtr, (const BYTE*)src, srcSize);
|
|
+ ip += (ip==prefixStart);
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=ctx->rep[i]; }
|
|
+
|
|
+ /* Match Loop */
|
|
+ while (ip < ilimit) {
|
|
+ U32 cur, match_num, last_pos, litlen, price;
|
|
+ U32 u, mlen, best_mlen, best_off, litLength;
|
|
+ memset(opt, 0, sizeof(ZSTD_optimal_t));
|
|
+ last_pos = 0;
|
|
+ litlen = (U32)(ip - anchor);
|
|
+
|
|
+ /* check repCode */
|
|
+ { U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
|
|
+ for (i=(ip == anchor); i<last_i; i++) {
|
|
+ const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
|
|
+ if ( (repCur > 0) && (repCur < (S32)(ip-prefixStart))
|
|
+ && (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(ip - repCur, minMatch))) {
|
|
+ mlen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repCur, iend) + minMatch;
|
|
+ if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
|
|
+ best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+ best_off = i - (ip == anchor);
|
|
+ do {
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
|
|
+ if (mlen > last_pos || price < opt[mlen].price)
|
|
+ SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
|
|
+ mlen--;
|
|
+ } while (mlen >= minMatch);
|
|
+ } } }
|
|
+
|
|
+ match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, ip, iend, maxSearches, mls, matches, minMatch);
|
|
+
|
|
+ if (!last_pos && !match_num) { ip++; continue; }
|
|
+
|
|
+ if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
|
|
+ best_mlen = matches[match_num-1].len;
|
|
+ best_off = matches[match_num-1].off;
|
|
+ cur = 0;
|
|
+ last_pos = 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ /* set prices using matches at position = 0 */
|
|
+ best_mlen = (last_pos) ? last_pos : minMatch;
|
|
+ for (u = 0; u < match_num; u++) {
|
|
+ mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
|
|
+ best_mlen = matches[u].len;
|
|
+ while (mlen <= best_mlen) {
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ if (mlen > last_pos || price < opt[mlen].price)
|
|
+ SET_PRICE(mlen, mlen, matches[u].off, litlen, price); /* note : macro modifies last_pos */
|
|
+ mlen++;
|
|
+ } }
|
|
+
|
|
+ if (last_pos < minMatch) { ip++; continue; }
|
|
+
|
|
+ /* initialize opt[0] */
|
|
+ { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
|
|
+ opt[0].mlen = 1;
|
|
+ opt[0].litlen = litlen;
|
|
+
|
|
+ /* check further positions */
|
|
+ for (cur = 1; cur <= last_pos; cur++) {
|
|
+ inr = ip + cur;
|
|
+
|
|
+ if (opt[cur-1].mlen == 1) {
|
|
+ litlen = opt[cur-1].litlen + 1;
|
|
+ if (cur > litlen) {
|
|
+ price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-litlen);
|
|
+ } else
|
|
+ price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
|
|
+ } else {
|
|
+ litlen = 1;
|
|
+ price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-1);
|
|
+ }
|
|
+
|
|
+ if (cur > last_pos || price <= opt[cur].price)
|
|
+ SET_PRICE(cur, 1, 0, litlen, price);
|
|
+
|
|
+ if (cur == last_pos) break;
|
|
+
|
|
+ if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
|
|
+ continue;
|
|
+
|
|
+ mlen = opt[cur].mlen;
|
|
+ if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
|
|
+ opt[cur].rep[2] = opt[cur-mlen].rep[1];
|
|
+ opt[cur].rep[1] = opt[cur-mlen].rep[0];
|
|
+ opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
|
|
+ } else {
|
|
+ opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
|
|
+ opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
|
|
+ opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
|
|
+ }
|
|
+
|
|
+ best_mlen = minMatch;
|
|
+ { U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
|
|
+ for (i=(opt[cur].mlen != 1); i<last_i; i++) { /* check rep */
|
|
+ const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
|
|
+ if ( (repCur > 0) && (repCur < (S32)(inr-prefixStart))
|
|
+ && (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(inr - repCur, minMatch))) {
|
|
+ mlen = (U32)ZSTD_count(inr+minMatch, inr+minMatch - repCur, iend) + minMatch;
|
|
+
|
|
+ if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
|
|
+ best_mlen = mlen; best_off = i; last_pos = cur + 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ best_off = i - (opt[cur].mlen != 1);
|
|
+ if (mlen > best_mlen) best_mlen = mlen;
|
|
+
|
|
+ do {
|
|
+ if (opt[cur].mlen == 1) {
|
|
+ litlen = opt[cur].litlen;
|
|
+ if (cur > litlen) {
|
|
+ price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
|
|
+ } else
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
|
|
+ } else {
|
|
+ litlen = 0;
|
|
+ price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
|
|
+ }
|
|
+
|
|
+ if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
|
|
+ SET_PRICE(cur + mlen, mlen, i, litlen, price);
|
|
+ mlen--;
|
|
+ } while (mlen >= minMatch);
|
|
+ } } }
|
|
+
|
|
+ match_num = ZSTD_BtGetAllMatches_selectMLS(ctx, inr, iend, maxSearches, mls, matches, best_mlen);
|
|
+
|
|
+ if (match_num > 0 && (matches[match_num-1].len > sufficient_len || cur + matches[match_num-1].len >= ZSTD_OPT_NUM)) {
|
|
+ best_mlen = matches[match_num-1].len;
|
|
+ best_off = matches[match_num-1].off;
|
|
+ last_pos = cur + 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ /* set prices using matches at position = cur */
|
|
+ for (u = 0; u < match_num; u++) {
|
|
+ mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
|
|
+ best_mlen = matches[u].len;
|
|
+
|
|
+ while (mlen <= best_mlen) {
|
|
+ if (opt[cur].mlen == 1) {
|
|
+ litlen = opt[cur].litlen;
|
|
+ if (cur > litlen)
|
|
+ price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ else
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ } else {
|
|
+ litlen = 0;
|
|
+ price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ }
|
|
+
|
|
+ if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
|
|
+ SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
|
|
+
|
|
+ mlen++;
|
|
+ } } }
|
|
+
|
|
+ best_mlen = opt[last_pos].mlen;
|
|
+ best_off = opt[last_pos].off;
|
|
+ cur = last_pos - best_mlen;
|
|
+
|
|
+ /* store sequence */
|
|
+_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
|
|
+ opt[0].mlen = 1;
|
|
+
|
|
+ while (1) {
|
|
+ mlen = opt[cur].mlen;
|
|
+ offset = opt[cur].off;
|
|
+ opt[cur].mlen = best_mlen;
|
|
+ opt[cur].off = best_off;
|
|
+ best_mlen = mlen;
|
|
+ best_off = offset;
|
|
+ if (mlen > cur) break;
|
|
+ cur -= mlen;
|
|
+ }
|
|
+
|
|
+ for (u = 0; u <= last_pos;) {
|
|
+ u += opt[u].mlen;
|
|
+ }
|
|
+
|
|
+ for (cur=0; cur < last_pos; ) {
|
|
+ mlen = opt[cur].mlen;
|
|
+ if (mlen == 1) { ip++; cur++; continue; }
|
|
+ offset = opt[cur].off;
|
|
+ cur += mlen;
|
|
+ litLength = (U32)(ip - anchor);
|
|
+
|
|
+ if (offset > ZSTD_REP_MOVE_OPT) {
|
|
+ rep[2] = rep[1];
|
|
+ rep[1] = rep[0];
|
|
+ rep[0] = offset - ZSTD_REP_MOVE_OPT;
|
|
+ offset--;
|
|
+ } else {
|
|
+ if (offset != 0) {
|
|
+ best_off = (offset==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
|
|
+ if (offset != 1) rep[2] = rep[1];
|
|
+ rep[1] = rep[0];
|
|
+ rep[0] = best_off;
|
|
+ }
|
|
+ if (litLength==0) offset--;
|
|
+ }
|
|
+
|
|
+ ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
|
|
+ ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
|
|
+ anchor = ip = ip + mlen;
|
|
+ } } /* for (cur=0; cur < last_pos; ) */
|
|
+
|
|
+ /* Save reps for next block */
|
|
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) ctx->repToConfirm[i] = rep[i]; }
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t const lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+
|
|
+FORCE_INLINE
|
|
+void ZSTD_compressBlock_opt_extDict_generic(ZSTD_CCtx* ctx,
|
|
+ const void* src, size_t srcSize, const int ultra)
|
|
+{
|
|
+ seqStore_t* seqStorePtr = &(ctx->seqStore);
|
|
+ const BYTE* const istart = (const BYTE*)src;
|
|
+ const BYTE* ip = istart;
|
|
+ const BYTE* anchor = istart;
|
|
+ const BYTE* const iend = istart + srcSize;
|
|
+ const BYTE* const ilimit = iend - 8;
|
|
+ const BYTE* const base = ctx->base;
|
|
+ const U32 lowestIndex = ctx->lowLimit;
|
|
+ const U32 dictLimit = ctx->dictLimit;
|
|
+ const BYTE* const prefixStart = base + dictLimit;
|
|
+ const BYTE* const dictBase = ctx->dictBase;
|
|
+ const BYTE* const dictEnd = dictBase + dictLimit;
|
|
+
|
|
+ const U32 maxSearches = 1U << ctx->params.cParams.searchLog;
|
|
+ const U32 sufficient_len = ctx->params.cParams.targetLength;
|
|
+ const U32 mls = ctx->params.cParams.searchLength;
|
|
+ const U32 minMatch = (ctx->params.cParams.searchLength == 3) ? 3 : 4;
|
|
+
|
|
+ ZSTD_optimal_t* opt = seqStorePtr->priceTable;
|
|
+ ZSTD_match_t* matches = seqStorePtr->matchTable;
|
|
+ const BYTE* inr;
|
|
+
|
|
+ /* init */
|
|
+ U32 offset, rep[ZSTD_REP_NUM];
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) rep[i]=ctx->rep[i]; }
|
|
+
|
|
+ ctx->nextToUpdate3 = ctx->nextToUpdate;
|
|
+ ZSTD_rescaleFreqs(seqStorePtr, (const BYTE*)src, srcSize);
|
|
+ ip += (ip==prefixStart);
|
|
+
|
|
+ /* Match Loop */
|
|
+ while (ip < ilimit) {
|
|
+ U32 cur, match_num, last_pos, litlen, price;
|
|
+ U32 u, mlen, best_mlen, best_off, litLength;
|
|
+ U32 curr = (U32)(ip-base);
|
|
+ memset(opt, 0, sizeof(ZSTD_optimal_t));
|
|
+ last_pos = 0;
|
|
+ opt[0].litlen = (U32)(ip - anchor);
|
|
+
|
|
+ /* check repCode */
|
|
+ { U32 i, last_i = ZSTD_REP_CHECK + (ip==anchor);
|
|
+ for (i = (ip==anchor); i<last_i; i++) {
|
|
+ const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : rep[i];
|
|
+ const U32 repIndex = (U32)(curr - repCur);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if ( (repCur > 0 && repCur <= (S32)curr)
|
|
+ && (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
|
|
+ && (MEM_readMINMATCH(ip, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
|
|
+ /* repcode detected we should take it */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ mlen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
|
|
+
|
|
+ if (mlen > sufficient_len || mlen >= ZSTD_OPT_NUM) {
|
|
+ best_mlen = mlen; best_off = i; cur = 0; last_pos = 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ best_off = i - (ip==anchor);
|
|
+ litlen = opt[0].litlen;
|
|
+ do {
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
|
|
+ if (mlen > last_pos || price < opt[mlen].price)
|
|
+ SET_PRICE(mlen, mlen, i, litlen, price); /* note : macro modifies last_pos */
|
|
+ mlen--;
|
|
+ } while (mlen >= minMatch);
|
|
+ } } }
|
|
+
|
|
+ match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, ip, iend, maxSearches, mls, matches, minMatch); /* first search (depth 0) */
|
|
+
|
|
+ if (!last_pos && !match_num) { ip++; continue; }
|
|
+
|
|
+ { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
|
|
+ opt[0].mlen = 1;
|
|
+
|
|
+ if (match_num && (matches[match_num-1].len > sufficient_len || matches[match_num-1].len >= ZSTD_OPT_NUM)) {
|
|
+ best_mlen = matches[match_num-1].len;
|
|
+ best_off = matches[match_num-1].off;
|
|
+ cur = 0;
|
|
+ last_pos = 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ best_mlen = (last_pos) ? last_pos : minMatch;
|
|
+
|
|
+ /* set prices using matches at position = 0 */
|
|
+ for (u = 0; u < match_num; u++) {
|
|
+ mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
|
|
+ best_mlen = matches[u].len;
|
|
+ litlen = opt[0].litlen;
|
|
+ while (mlen <= best_mlen) {
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ if (mlen > last_pos || price < opt[mlen].price)
|
|
+ SET_PRICE(mlen, mlen, matches[u].off, litlen, price);
|
|
+ mlen++;
|
|
+ } }
|
|
+
|
|
+ if (last_pos < minMatch) {
|
|
+ ip++; continue;
|
|
+ }
|
|
+
|
|
+ /* check further positions */
|
|
+ for (cur = 1; cur <= last_pos; cur++) {
|
|
+ inr = ip + cur;
|
|
+
|
|
+ if (opt[cur-1].mlen == 1) {
|
|
+ litlen = opt[cur-1].litlen + 1;
|
|
+ if (cur > litlen) {
|
|
+ price = opt[cur - litlen].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-litlen);
|
|
+ } else
|
|
+ price = ZSTD_getLiteralPrice(seqStorePtr, litlen, anchor);
|
|
+ } else {
|
|
+ litlen = 1;
|
|
+ price = opt[cur - 1].price + ZSTD_getLiteralPrice(seqStorePtr, litlen, inr-1);
|
|
+ }
|
|
+
|
|
+ if (cur > last_pos || price <= opt[cur].price)
|
|
+ SET_PRICE(cur, 1, 0, litlen, price);
|
|
+
|
|
+ if (cur == last_pos) break;
|
|
+
|
|
+ if (inr > ilimit) /* last match must start at a minimum distance of 8 from oend */
|
|
+ continue;
|
|
+
|
|
+ mlen = opt[cur].mlen;
|
|
+ if (opt[cur].off > ZSTD_REP_MOVE_OPT) {
|
|
+ opt[cur].rep[2] = opt[cur-mlen].rep[1];
|
|
+ opt[cur].rep[1] = opt[cur-mlen].rep[0];
|
|
+ opt[cur].rep[0] = opt[cur].off - ZSTD_REP_MOVE_OPT;
|
|
+ } else {
|
|
+ opt[cur].rep[2] = (opt[cur].off > 1) ? opt[cur-mlen].rep[1] : opt[cur-mlen].rep[2];
|
|
+ opt[cur].rep[1] = (opt[cur].off > 0) ? opt[cur-mlen].rep[0] : opt[cur-mlen].rep[1];
|
|
+ opt[cur].rep[0] = ((opt[cur].off==ZSTD_REP_MOVE_OPT) && (mlen != 1)) ? (opt[cur-mlen].rep[0] - 1) : (opt[cur-mlen].rep[opt[cur].off]);
|
|
+ }
|
|
+
|
|
+ best_mlen = minMatch;
|
|
+ { U32 i, last_i = ZSTD_REP_CHECK + (mlen != 1);
|
|
+ for (i = (mlen != 1); i<last_i; i++) {
|
|
+ const S32 repCur = (i==ZSTD_REP_MOVE_OPT) ? (opt[cur].rep[0] - 1) : opt[cur].rep[i];
|
|
+ const U32 repIndex = (U32)(curr+cur - repCur);
|
|
+ const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
|
|
+ const BYTE* const repMatch = repBase + repIndex;
|
|
+ if ( (repCur > 0 && repCur <= (S32)(curr+cur))
|
|
+ && (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex>lowestIndex)) /* intentional overflow */
|
|
+ && (MEM_readMINMATCH(inr, minMatch) == MEM_readMINMATCH(repMatch, minMatch)) ) {
|
|
+ /* repcode detected */
|
|
+ const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
|
|
+ mlen = (U32)ZSTD_count_2segments(inr+minMatch, repMatch+minMatch, iend, repEnd, prefixStart) + minMatch;
|
|
+
|
|
+ if (mlen > sufficient_len || cur + mlen >= ZSTD_OPT_NUM) {
|
|
+ best_mlen = mlen; best_off = i; last_pos = cur + 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ best_off = i - (opt[cur].mlen != 1);
|
|
+ if (mlen > best_mlen) best_mlen = mlen;
|
|
+
|
|
+ do {
|
|
+ if (opt[cur].mlen == 1) {
|
|
+ litlen = opt[cur].litlen;
|
|
+ if (cur > litlen) {
|
|
+ price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, inr-litlen, best_off, mlen - MINMATCH, ultra);
|
|
+ } else
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, best_off, mlen - MINMATCH, ultra);
|
|
+ } else {
|
|
+ litlen = 0;
|
|
+ price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, best_off, mlen - MINMATCH, ultra);
|
|
+ }
|
|
+
|
|
+ if (cur + mlen > last_pos || price <= opt[cur + mlen].price)
|
|
+ SET_PRICE(cur + mlen, mlen, i, litlen, price);
|
|
+ mlen--;
|
|
+ } while (mlen >= minMatch);
|
|
+ } } }
|
|
+
|
|
+ match_num = ZSTD_BtGetAllMatches_selectMLS_extDict(ctx, inr, iend, maxSearches, mls, matches, minMatch);
|
|
+
|
|
+ if (match_num > 0 && (matches[match_num-1].len > sufficient_len || cur + matches[match_num-1].len >= ZSTD_OPT_NUM)) {
|
|
+ best_mlen = matches[match_num-1].len;
|
|
+ best_off = matches[match_num-1].off;
|
|
+ last_pos = cur + 1;
|
|
+ goto _storeSequence;
|
|
+ }
|
|
+
|
|
+ /* set prices using matches at position = cur */
|
|
+ for (u = 0; u < match_num; u++) {
|
|
+ mlen = (u>0) ? matches[u-1].len+1 : best_mlen;
|
|
+ best_mlen = matches[u].len;
|
|
+
|
|
+ while (mlen <= best_mlen) {
|
|
+ if (opt[cur].mlen == 1) {
|
|
+ litlen = opt[cur].litlen;
|
|
+ if (cur > litlen)
|
|
+ price = opt[cur - litlen].price + ZSTD_getPrice(seqStorePtr, litlen, ip+cur-litlen, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ else
|
|
+ price = ZSTD_getPrice(seqStorePtr, litlen, anchor, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ } else {
|
|
+ litlen = 0;
|
|
+ price = opt[cur].price + ZSTD_getPrice(seqStorePtr, 0, NULL, matches[u].off-1, mlen - MINMATCH, ultra);
|
|
+ }
|
|
+
|
|
+ if (cur + mlen > last_pos || (price < opt[cur + mlen].price))
|
|
+ SET_PRICE(cur + mlen, mlen, matches[u].off, litlen, price);
|
|
+
|
|
+ mlen++;
|
|
+ } } } /* for (cur = 1; cur <= last_pos; cur++) */
|
|
+
|
|
+ best_mlen = opt[last_pos].mlen;
|
|
+ best_off = opt[last_pos].off;
|
|
+ cur = last_pos - best_mlen;
|
|
+
|
|
+ /* store sequence */
|
|
+_storeSequence: /* cur, last_pos, best_mlen, best_off have to be set */
|
|
+ opt[0].mlen = 1;
|
|
+
|
|
+ while (1) {
|
|
+ mlen = opt[cur].mlen;
|
|
+ offset = opt[cur].off;
|
|
+ opt[cur].mlen = best_mlen;
|
|
+ opt[cur].off = best_off;
|
|
+ best_mlen = mlen;
|
|
+ best_off = offset;
|
|
+ if (mlen > cur) break;
|
|
+ cur -= mlen;
|
|
+ }
|
|
+
|
|
+ for (u = 0; u <= last_pos; ) {
|
|
+ u += opt[u].mlen;
|
|
+ }
|
|
+
|
|
+ for (cur=0; cur < last_pos; ) {
|
|
+ mlen = opt[cur].mlen;
|
|
+ if (mlen == 1) { ip++; cur++; continue; }
|
|
+ offset = opt[cur].off;
|
|
+ cur += mlen;
|
|
+ litLength = (U32)(ip - anchor);
|
|
+
|
|
+ if (offset > ZSTD_REP_MOVE_OPT) {
|
|
+ rep[2] = rep[1];
|
|
+ rep[1] = rep[0];
|
|
+ rep[0] = offset - ZSTD_REP_MOVE_OPT;
|
|
+ offset--;
|
|
+ } else {
|
|
+ if (offset != 0) {
|
|
+ best_off = (offset==ZSTD_REP_MOVE_OPT) ? (rep[0] - 1) : (rep[offset]);
|
|
+ if (offset != 1) rep[2] = rep[1];
|
|
+ rep[1] = rep[0];
|
|
+ rep[0] = best_off;
|
|
+ }
|
|
+
|
|
+ if (litLength==0) offset--;
|
|
+ }
|
|
+
|
|
+ ZSTD_updatePrice(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
|
|
+ ZSTD_storeSeq(seqStorePtr, litLength, anchor, offset, mlen-MINMATCH);
|
|
+ anchor = ip = ip + mlen;
|
|
+ } } /* for (cur=0; cur < last_pos; ) */
|
|
+
|
|
+ /* Save reps for next block */
|
|
+ { int i; for (i=0; i<ZSTD_REP_NUM; i++) ctx->repToConfirm[i] = rep[i]; }
|
|
+
|
|
+ /* Last Literals */
|
|
+ { size_t lastLLSize = iend - anchor;
|
|
+ memcpy(seqStorePtr->lit, anchor, lastLLSize);
|
|
+ seqStorePtr->lit += lastLLSize;
|
|
+ }
|
|
+}
|
|
+
|
|
+#endif /* ZSTD_OPT_H_91842398743 */
|