zstd/contrib/adaptive-compression/multi.c

416 lines
14 KiB
C

#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DEBUGLOG(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
#define FILE_CHUNK_SIZE 4 << 20
#define MAX_NUM_JOBS 50;
#define stdinmark "/*stdin*\\"
#define stdoutmark "/*stdout*\\"
#define MAX_PATH 256
#define DEFAULT_DISPLAY_LEVEL 1
typedef unsigned char BYTE;
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free */
#include <pthread.h> /* pthread functions */
#include <string.h> /* memset */
#include "zstd.h"
static int g_displayLevel = DEFAULT_DISPLAY_LEVEL;
typedef struct {
void* start;
size_t size;
} buffer_t;
typedef struct {
buffer_t src;
buffer_t dst;
unsigned compressionLevel;
unsigned jobID;
size_t compressedSize;
} jobDescription;
typedef struct {
unsigned compressionLevel;
unsigned numActiveThreads;
unsigned numJobs;
unsigned lastJobID;
unsigned nextJobID;
unsigned threadError;
unsigned jobReadyID;
unsigned jobCompletedID;
unsigned jobWrittenID;
unsigned allJobsCompleted;
pthread_mutex_t jobCompleted_mutex;
pthread_cond_t jobCompleted_cond;
pthread_mutex_t jobReady_mutex;
pthread_cond_t jobReady_cond;
pthread_mutex_t allJobsCompleted_mutex;
pthread_cond_t allJobsCompleted_cond;
pthread_mutex_t jobWrite_mutex;
pthread_cond_t jobWrite_cond;
jobDescription* jobs;
FILE* dstFile;
} adaptCCtx;
static void freeCompressionJobs(adaptCCtx* ctx)
{
unsigned u;
for (u=0; u<ctx->numJobs; u++) {
jobDescription job = ctx->jobs[u];
free(job.dst.start);
free(job.src.start);
}
}
static int freeCCtx(adaptCCtx* ctx)
{
{
int const completedMutexError = pthread_mutex_destroy(&ctx->jobCompleted_mutex);
int const completedCondError = pthread_cond_destroy(&ctx->jobCompleted_cond);
int const readyMutexError = pthread_mutex_destroy(&ctx->jobReady_mutex);
int const readyCondError = pthread_cond_destroy(&ctx->jobReady_cond);
int const allJobsMutexError = pthread_mutex_destroy(&ctx->allJobsCompleted_mutex);
int const allJobsCondError = pthread_cond_destroy(&ctx->allJobsCompleted_cond);
int const jobWriteMutexError = pthread_mutex_destroy(&ctx->jobWrite_mutex);
int const jobWriteCondError = pthread_cond_destroy(&ctx->jobWrite_cond);
int const fileCloseError = ctx->dstFile != NULL ? fclose(ctx->dstFile) : 0;
if (ctx->jobs){
freeCompressionJobs(ctx);
free(ctx->jobs);
}
return completedMutexError | completedCondError | readyMutexError | readyCondError | fileCloseError | allJobsMutexError | allJobsCondError | jobWriteMutexError | jobWriteCondError;
}
}
static adaptCCtx* createCCtx(unsigned numJobs, const char* const outFilename)
{
adaptCCtx* ctx = malloc(sizeof(adaptCCtx));
if (ctx == NULL) {
DISPLAY("Error: could not allocate space for context\n");
return NULL;
}
memset(ctx, 0, sizeof(adaptCCtx));
ctx->compressionLevel = 6; /* default */
pthread_mutex_init(&ctx->jobCompleted_mutex, NULL); /* TODO: add checks for errors on each mutex */
pthread_cond_init(&ctx->jobCompleted_cond, NULL);
pthread_mutex_init(&ctx->jobReady_mutex, NULL);
pthread_cond_init(&ctx->jobReady_cond, NULL);
pthread_mutex_init(&ctx->allJobsCompleted_mutex, NULL);
pthread_cond_init(&ctx->allJobsCompleted_cond, NULL);
pthread_mutex_init(&ctx->jobWrite_mutex, NULL);
pthread_cond_init(&ctx->jobWrite_cond, NULL);
ctx->numJobs = numJobs;
ctx->jobReadyID = 0;
ctx->jobCompletedID = 0;
ctx->jobWrittenID = 0;
ctx->lastJobID = -1; /* intentional underflow */
ctx->jobs = calloc(1, numJobs*sizeof(jobDescription));
ctx->nextJobID = 0;
ctx->threadError = 0;
ctx->allJobsCompleted = 0;
if (!ctx->jobs) {
DISPLAY("Error: could not allocate space for jobs during context creation\n");
freeCCtx(ctx);
return NULL;
}
{
unsigned const stdoutUsed = !strcmp(outFilename, stdoutmark);
FILE* dstFile = stdoutUsed ? stdout : fopen(outFilename, "wb");
if (dstFile == NULL) {
DISPLAY("Error: could not open output file\n");
freeCCtx(ctx);
return NULL;
}
ctx->dstFile = dstFile;
}
return ctx;
}
static void waitUntilAllJobsCompleted(adaptCCtx* ctx)
{
pthread_mutex_lock(&ctx->allJobsCompleted_mutex);
while (ctx->allJobsCompleted == 0) {
pthread_cond_wait(&ctx->allJobsCompleted_cond, &ctx->allJobsCompleted_mutex);
}
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex);
}
static void* compressionThread(void* arg)
{
adaptCCtx* ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
// DEBUGLOG(2, "compressionThread(): waiting on job ready\n");
pthread_mutex_lock(&ctx->jobReady_mutex);
while(currJob + 1 > ctx->jobReadyID) {
pthread_cond_wait(&ctx->jobReady_cond, &ctx->jobReady_mutex);
}
pthread_mutex_unlock(&ctx->jobReady_mutex);
// DEBUGLOG(2, "compressionThread(): continuing after job ready\n");
/* compress the data */
{
size_t const compressedSize = ZSTD_compress(job->dst.start, job->dst.size, job->src.start, job->src.size, job->compressionLevel);
if (ZSTD_isError(compressedSize)) {
ctx->threadError = 1;
DISPLAY("Error: something went wrong during compression: %s\n", ZSTD_getErrorName(compressedSize));
return arg;
}
job->compressedSize = compressedSize;
}
pthread_mutex_lock(&ctx->jobCompleted_mutex);
ctx->jobCompletedID++;
DEBUGLOG(2, "signaling for job %u\n", currJob);
pthread_cond_signal(&ctx->jobCompleted_cond);
pthread_mutex_unlock(&ctx->jobCompleted_mutex);
currJob++;
if (currJob >= ctx->lastJobID || ctx->threadError) {
/* finished compressing all jobs */
DEBUGLOG(2, "all jobs finished compressing\n");
break;
}
}
return arg;
}
static void* outputThread(void* arg)
{
adaptCCtx* ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[currJobIndex];
DEBUGLOG(2, "outputThread(): waiting on job completed\n");
pthread_mutex_lock(&ctx->jobCompleted_mutex);
while (currJob + 1 > ctx->jobCompletedID) {
DEBUGLOG(2, "inside job completed wait loop waiting on %u\n", currJob);
pthread_cond_wait(&ctx->jobCompleted_cond, &ctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&ctx->jobCompleted_mutex);
DEBUGLOG(2, "outputThread(): continuing after job completed\n");
{
size_t const compressedSize = job->compressedSize;
if (ZSTD_isError(compressedSize)) {
DISPLAY("Error: an error occurred during compression\n");
return arg;
}
{
size_t const writeSize = fwrite(job->dst.start, 1, compressedSize, ctx->dstFile);
if (writeSize != compressedSize) {
DISPLAY("Error: an error occurred during file write operation\n");
return arg;
}
}
}
currJob++;
DEBUGLOG(2, "locking job write mutex\n");
pthread_mutex_lock(&ctx->jobWrite_mutex);
ctx->jobWrittenID++;
pthread_cond_signal(&ctx->jobWrite_cond);
pthread_mutex_unlock(&ctx->jobWrite_mutex);
DEBUGLOG(2, "unlocking job write mutex\n");
DEBUGLOG(2, "checking if done: %u/%u\n", currJob, ctx->lastJobID);
if (currJob >= ctx->lastJobID || ctx->threadError) {
/* finished with all jobs */
DEBUGLOG(2, "all jobs finished writing\n");
pthread_mutex_lock(&ctx->allJobsCompleted_mutex);
ctx->allJobsCompleted = 1;
pthread_cond_signal(&ctx->allJobsCompleted_cond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex);
break;
}
}
return arg;
}
static int createCompressionJob(adaptCCtx* ctx, BYTE* data, size_t srcSize)
{
unsigned const nextJob = ctx->nextJobID;
unsigned const nextJobIndex = nextJob % ctx->numJobs;
jobDescription* job = &ctx->jobs[nextJobIndex];
// DEBUGLOG(2, "createCompressionJob(): wait for job write\n");
pthread_mutex_lock(&ctx->jobWrite_mutex);
while (nextJob - ctx->jobWrittenID >= ctx->numJobs) {
pthread_cond_wait(&ctx->jobWrite_cond, &ctx->jobWrite_mutex);
}
pthread_mutex_unlock(&ctx->jobWrite_mutex);
// DEBUGLOG(2, "createCompressionJob(): continuing after job write\n");
job->compressionLevel = ctx->compressionLevel;
job->src.start = malloc(srcSize);
job->src.size = srcSize;
job->dst.size = ZSTD_compressBound(srcSize);
job->dst.start = malloc(job->dst.size);
job->jobID = nextJob;
if (!job->src.start || !job->dst.start) {
/* problem occurred, free things then return */
DISPLAY("Error: problem occurred during job creation\n");
free(job->src.start);
free(job->dst.start);
return 1;
}
memcpy(job->src.start, data, srcSize);
pthread_mutex_lock(&ctx->jobReady_mutex);
ctx->jobReadyID++;
pthread_cond_signal(&ctx->jobReady_cond);
pthread_mutex_unlock(&ctx->jobReady_mutex);
ctx->nextJobID++;
return 0;
}
static int compressFilename(const char* const srcFilename, const char* const dstFilename)
{
BYTE* const src = malloc(FILE_CHUNK_SIZE);
unsigned const stdinUsed = !strcmp(srcFilename, stdinmark);
FILE* const srcFile = stdinUsed ? stdin : fopen(srcFilename, "rb");
size_t const numJobs = MAX_NUM_JOBS;
int ret = 0;
adaptCCtx* ctx = NULL;
/* checking for errors */
if (!srcFilename || !dstFilename || !src || !srcFile) {
DISPLAY("Error: initial variables could not be allocated\n");
ret = 1;
goto cleanup;
}
/* creating context */
ctx = createCCtx(numJobs, dstFilename);
if (ctx == NULL) {
ret = 1;
goto cleanup;
}
/* create output thread */
{
pthread_t out;
if (pthread_create(&out, NULL, &outputThread, ctx)) {
DISPLAY("Error: could not create output thread\n");
ret = 1;
goto cleanup;
}
}
/* create compression thread */
{
pthread_t compression;
if (pthread_create(&compression, NULL, &compressionThread, ctx)) {
DISPLAY("Error: could not create compression thread\n");
ret = 1;
goto cleanup;
}
}
/* creating jobs */
for ( ; ; ) {
size_t const readSize = fread(src, 1, FILE_CHUNK_SIZE, srcFile);
if (readSize != FILE_CHUNK_SIZE && !feof(srcFile)) {
DISPLAY("Error: problem occurred during read from src file\n");
ret = 1;
goto cleanup;
}
/* reading was fine, now create the compression job */
{
int const error = createCompressionJob(ctx, src, readSize);
if (error != 0) {
ret = error;
goto cleanup;
}
}
if (feof(srcFile)) {
DEBUGLOG(2, "THE STREAM OF DATA ENDED %u\n", ctx->nextJobID);
ctx->lastJobID = ctx->nextJobID;
break;
}
}
cleanup:
waitUntilAllJobsCompleted(ctx);
/* file compression completed */
ret |= (srcFile != NULL) ? fclose(srcFile) : 0;
ret |= (ctx != NULL) ? freeCCtx(ctx) : 0;
free(src);
return ret;
}
static int compressFilenames(const char** filenameTable, unsigned numFiles)
{
int ret = 0;
unsigned fileNum;
char outFile[MAX_PATH];
for (fileNum=0; fileNum<numFiles; fileNum++) {
const char* filename = filenameTable[fileNum];
if (snprintf(outFile, MAX_PATH, "%s.zst", filename) + 1 > MAX_PATH) {
DISPLAY("Error: output filename is too long\n");
return 1;
}
ret |= compressFilename(filename, outFile);
}
return ret;
}
/* return 0 if successful, else return error */
int main(int argCount, const char* argv[])
{
const char* outFilename = NULL;
const char** filenameTable = (const char**)malloc(argCount*sizeof(const char*));
unsigned filenameIdx = 0;
filenameTable[0] = stdinmark;
int ret = 0;
int argNum;
if (filenameTable == NULL) {
DISPLAY("Error: could not allocate sapce for filename table.\n");
return 1;
}
for (argNum=1; argNum<argCount; argNum++) {
const char* argument = argv[argNum];
/* output filename designated with "-o" */
if (argument[0]=='-') {
if (strlen(argument) > 1 && argument[1] == 'o') {
argument += 2;
outFilename = argument;
continue;
}
else if (strlen(argument) > 1 && argument[1] == 'v') {
g_displayLevel++;
continue;
}
else {
DISPLAY("Error: invalid argument provided\n");
ret = 1;
goto _main_exit;
}
}
/* regular files to be compressed */
filenameTable[filenameIdx++] = argument;
}
/* error checking with number of files */
if (filenameIdx > 1 && outFilename != NULL) {
DISPLAY("Error: multiple input files provided, cannot use specified output file\n");
ret = 1;
goto _main_exit;
}
/* compress files */
if (filenameIdx <= 1) {
ret |= compressFilename(filenameTable[0], outFilename);
}
else {
ret |= compressFilenames(filenameTable, filenameIdx);
}
_main_exit:
free(filenameTable);
return ret;
}