zstd/tests/paramgrill.c
George Lu 6f480927af argument parsing cleanup
+ clarifying comment
2018-08-09 10:42:58 -07:00

2341 lines
86 KiB
C

/*
* Copyright (c) 2015-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Dependencies
**************************************/
#include "util.h" /* Compiler options, UTIL_GetFileSize */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <string.h> /* strcmp */
#include <math.h> /* log */
#include <time.h>
#include <assert.h>
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_estimateCCtxSize */
#include "zstd.h"
#include "datagen.h"
#include "xxhash.h"
#include "util.h"
#include "bench.h"
#include "zstd_errors.h"
#include "zstd_internal.h"
/*-************************************
* Constants
**************************************/
#define PROGRAM_DESCRIPTION "ZSTD parameters tester"
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s ***\n", PROGRAM_DESCRIPTION, ZSTD_VERSION_STRING, (int)(sizeof(void*)*8), AUTHOR
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define NBLOOPS 2
#define TIMELOOP (2 * SEC_TO_MICRO)
#define NB_LEVELS_TRACKED 22 /* ensured being >= ZSTD_maxCLevel() in BMK_init_level_constraints() */
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
#define COMPRESSIBILITY_DEFAULT 0.50
static const U64 g_maxVariationTime = 60 * SEC_TO_MICRO;
static const int g_maxNbVariations = 64;
/*-************************************
* Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define TIMED 0
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#undef MIN
#undef MAX
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define MAX(a,b) ( (a) > (b) ? (a) : (b) )
#define CUSTOM_LEVEL 99
/* indices for each of the variables */
typedef enum {
wlog_ind = 0,
clog_ind = 1,
hlog_ind = 2,
slog_ind = 3,
slen_ind = 4,
tlen_ind = 5
} varInds_t;
#define NUM_PARAMS 6
/* just don't use strategy as a param. */
#undef ZSTD_WINDOWLOG_MAX
#define ZSTD_WINDOWLOG_MAX 27 //no long range stuff for now.
#define ZSTD_TARGETLENGTH_MIN 0
#define ZSTD_TARGETLENGTH_MAX 999
#define WLOG_RANGE (ZSTD_WINDOWLOG_MAX - ZSTD_WINDOWLOG_MIN + 1)
#define CLOG_RANGE (ZSTD_CHAINLOG_MAX - ZSTD_CHAINLOG_MIN + 1)
#define HLOG_RANGE (ZSTD_HASHLOG_MAX - ZSTD_HASHLOG_MIN + 1)
#define SLOG_RANGE (ZSTD_SEARCHLOG_MAX - ZSTD_SEARCHLOG_MIN + 1)
#define SLEN_RANGE (ZSTD_SEARCHLENGTH_MAX - ZSTD_SEARCHLENGTH_MIN + 1)
#define TLEN_RANGE 17
/* TLEN_RANGE picked manually */
static const int rangetable[NUM_PARAMS] = { WLOG_RANGE, CLOG_RANGE, HLOG_RANGE, SLOG_RANGE, SLEN_RANGE, TLEN_RANGE };
static const U32 tlen_table[TLEN_RANGE] = { 0, 1, 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 256, 512, 999 };
/*-************************************
* Benchmark Parameters
**************************************/
typedef BYTE U8;
static double g_grillDuration_s = 99999; /* about 27 hours */
static U32 g_nbIterations = NBLOOPS;
static double g_compressibility = COMPRESSIBILITY_DEFAULT;
static U32 g_blockSize = 0;
static U32 g_rand = 1;
static U32 g_singleRun = 0;
static U32 g_target = 0;
static U32 g_noSeed = 0;
static ZSTD_compressionParameters g_params = { 0, 0, 0, 0, 0, 0, ZSTD_greedy };
static UTIL_time_t g_time; /* to be used to compare solution finding speeds to compare to original */
void BMK_SetNbIterations(int nbLoops)
{
g_nbIterations = nbLoops;
DISPLAY("- %u iterations -\n", g_nbIterations);
}
/*-*******************************************************
* Private functions
*********************************************************/
/* accuracy in seconds only, span can be multiple years */
static double BMK_timeSpan(time_t tStart) { return difftime(time(NULL), tStart); }
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
if (requiredMem > maxMemory) requiredMem = maxMemory;
requiredMem += 2*step;
while (!testmem) {
requiredMem -= step;
testmem = malloc ((size_t)requiredMem);
}
free (testmem);
return (size_t) (requiredMem - step);
}
static U32 FUZ_rotl32(U32 x, U32 r)
{
return ((x << r) | (x >> (32 - r)));
}
U32 FUZ_rand(U32* src)
{
const U32 prime1 = 2654435761U;
const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
* from zstdcli.c
*/
static unsigned longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
static U64 g_clockGranularity = 100000000ULL;
static void findClockGranularity(void) {
UTIL_time_t clockStart = UTIL_getTime();
U64 el1 = 0, el2 = 0;
int i = 0;
do {
el1 = el2;
el2 = UTIL_clockSpanNano(clockStart);
if(el1 < el2) {
U64 iv = el2 - el1;
if(g_clockGranularity > iv) {
g_clockGranularity = iv;
i = 0;
} else {
i++;
}
}
} while(i < 10);
DEBUGOUTPUT("Granularity: %llu\n", (unsigned long long)g_clockGranularity);
}
typedef struct {
U32 cSpeed; /* bytes / sec */
U32 dSpeed;
U32 cMem; /* bytes */
} constraint_t;
#define CLAMPCHECK(val,min,max) { \
if (val && (((val)<(min)) | ((val)>(max)))) { \
DISPLAY("INVALID PARAMETER CONSTRAINTS\n"); \
return 0; \
} }
/* Like ZSTD_checkCParams() but allows 0's */
/* no check on targetLen? */
static int cParamValid(ZSTD_compressionParameters paramTarget) {
CLAMPCHECK(paramTarget.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMPCHECK(paramTarget.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMPCHECK(paramTarget.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
CLAMPCHECK(paramTarget.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMPCHECK(paramTarget.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
if(paramTarget.targetLength > ZSTD_TARGETLENGTH_MAX) {
DISPLAY("INVALID PARAMETER CONSTRAINTS\n");
return 0;
}
if(paramTarget.strategy > ZSTD_btultra) {
DISPLAY("INVALID PARAMETER CONSTRAINTS\n");
return 0;
}
return 1;
}
static void cParamZeroMin(ZSTD_compressionParameters* paramTarget) {
paramTarget->windowLog = paramTarget->windowLog ? paramTarget->windowLog : ZSTD_WINDOWLOG_MIN;
paramTarget->searchLog = paramTarget->searchLog ? paramTarget->searchLog : ZSTD_SEARCHLOG_MIN;
paramTarget->chainLog = paramTarget->chainLog ? paramTarget->chainLog : ZSTD_CHAINLOG_MIN;
paramTarget->hashLog = paramTarget->hashLog ? paramTarget->hashLog : ZSTD_HASHLOG_MIN;
paramTarget->searchLength = paramTarget->searchLength ? paramTarget->searchLength : ZSTD_SEARCHLENGTH_MIN;
paramTarget->targetLength = paramTarget->targetLength ? paramTarget->targetLength : 0;
}
static void BMK_translateAdvancedParams(const ZSTD_compressionParameters params)
{
DISPLAY("--zstd=windowLog=%u,chainLog=%u,hashLog=%u,searchLog=%u,searchLength=%u,targetLength=%u,strategy=%u \n",
params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength, params.targetLength, (U32)(params.strategy));
}
/* checks results are feasible */
static int feasible(const BMK_result_t results, const constraint_t target) {
return (results.cSpeed >= target.cSpeed) && (results.dSpeed >= target.dSpeed) && (results.cMem <= target.cMem);
}
/* hill climbing value for part 1 */
/* Scoring here is a linear reward for all set constraints normalized between 0 to 1
* (with 0 at 0 and 1 being fully fulfilling the constraint), summed with a logarithmic
* bonus to exceeding the constraint value. We also give linear ratio for compression ratio.
* The constant factors are experimental.
*/
static double resultScore(const BMK_result_t res, const size_t srcSize, const constraint_t target) {
double cs = 0., ds = 0., rt, cm = 0.;
const double r1 = 1, r2 = 0.1, rtr = 0.5;
double ret;
if(target.cSpeed) { cs = res.cSpeed / (double)target.cSpeed; }
if(target.dSpeed) { ds = res.dSpeed / (double)target.dSpeed; }
if(target.cMem != (U32)-1) { cm = (double)target.cMem / res.cMem; }
rt = ((double)srcSize / res.cSize);
ret = (MIN(1, cs) + MIN(1, ds) + MIN(1, cm))*r1 + rt * rtr +
(MAX(0, log(cs))+ MAX(0, log(ds))+ MAX(0, log(cm))) * r2;
return ret;
}
/* return true if r2 strictly better than r1 */
static int compareResultLT(const BMK_result_t result1, const BMK_result_t result2, const constraint_t target, size_t srcSize) {
if(feasible(result1, target) && feasible(result2, target)) {
return (result1.cSize > result2.cSize) || (result1.cSize == result2.cSize && result2.cSpeed > result1.cSpeed)
|| (result1.cSize == result2.cSize && result2.cSpeed == result1.cSpeed && result2.dSpeed > result1.dSpeed);
}
return feasible(result2, target) || (!feasible(result1, target) && (resultScore(result1, srcSize, target) < resultScore(result2, srcSize, target)));
}
/* factor sort of arbitrary */
static constraint_t relaxTarget(constraint_t target) {
target.cMem = (U32)-1;
target.cSpeed *= 0.9;
target.dSpeed *= 0.9;
return target;
}
/*-*******************************************************
* Bench functions
*********************************************************/
const char* g_stratName[ZSTD_btultra+1] = {
"(none) ", "ZSTD_fast ", "ZSTD_dfast ",
"ZSTD_greedy ", "ZSTD_lazy ", "ZSTD_lazy2 ",
"ZSTD_btlazy2 ", "ZSTD_btopt ", "ZSTD_btultra "};
/* benchParam but only takes in one input buffer. */
static int
BMK_benchParam1(BMK_result_t* resultPtr,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx, ZSTD_DCtx* dctx,
const ZSTD_compressionParameters cParams) {
BMK_return_t res = BMK_benchMem(srcBuffer,srcSize, &srcSize, 1, 0, &cParams, NULL, 0, ctx, dctx, 0, "File");
*resultPtr = res.result;
return res.error;
}
typedef struct {
BMK_result_t result;
ZSTD_compressionParameters params;
} winnerInfo_t;
static ZSTD_compressionParameters emptyParams(void) {
ZSTD_compressionParameters p = { 0, 0, 0, 0, 0, 0, (ZSTD_strategy)0 };
return p;
}
static winnerInfo_t initWinnerInfo(ZSTD_compressionParameters p) {
winnerInfo_t w1;
w1.result.cSpeed = 0.;
w1.result.dSpeed = 0.;
w1.result.cMem = (size_t)-1;
w1.result.cSize = (size_t)-1;
w1.params = p;
return w1;
}
typedef struct {
void* srcBuffer;
size_t srcSize;
const void** srcPtrs;
size_t* srcSizes;
void** dstPtrs;
size_t* dstCapacities;
size_t* dstSizes;
void** resPtrs;
size_t* resSizes;
size_t nbBlocks;
} buffers_t;
typedef struct {
size_t dictSize;
void* dictBuffer;
ZSTD_CCtx* cctx;
ZSTD_DCtx* dctx;
} contexts_t;
static int
BMK_benchParam(BMK_result_t* resultPtr,
buffers_t buf, contexts_t ctx,
const ZSTD_compressionParameters cParams) {
BMK_return_t res = BMK_benchMem(buf.srcPtrs[0], buf.srcSize, buf.srcSizes, (unsigned)buf.nbBlocks, 0, &cParams, ctx.dictBuffer, ctx.dictSize, ctx.cctx, ctx.dctx, 0, "Files");
*resultPtr = res.result;
return res.error;
}
/*-*******************************************************
* From Paramgrill
*********************************************************/
static void BMK_initCCtx(ZSTD_CCtx* ctx,
const void* dictBuffer, const size_t dictBufferSize, const int cLevel,
const ZSTD_compressionParameters* comprParams, const BMK_advancedParams_t* adv) {
ZSTD_CCtx_reset(ctx);
ZSTD_CCtx_resetParameters(ctx);
if (adv->nbWorkers==1) {
ZSTD_CCtx_setParameter(ctx, ZSTD_p_nbWorkers, 0);
} else {
ZSTD_CCtx_setParameter(ctx, ZSTD_p_nbWorkers, adv->nbWorkers);
}
ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionLevel, cLevel);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_enableLongDistanceMatching, adv->ldmFlag);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmMinMatch, adv->ldmMinMatch);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashLog, adv->ldmHashLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmBucketSizeLog, adv->ldmBucketSizeLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_ldmHashEveryLog, adv->ldmHashEveryLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_windowLog, comprParams->windowLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_hashLog, comprParams->hashLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_chainLog, comprParams->chainLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_searchLog, comprParams->searchLog);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_minMatch, comprParams->searchLength);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_targetLength, comprParams->targetLength);
ZSTD_CCtx_setParameter(ctx, ZSTD_p_compressionStrategy, comprParams->strategy);
ZSTD_CCtx_loadDictionary(ctx, dictBuffer, dictBufferSize);
}
static void BMK_initDCtx(ZSTD_DCtx* dctx,
const void* dictBuffer, const size_t dictBufferSize) {
ZSTD_DCtx_reset(dctx);
ZSTD_DCtx_loadDictionary(dctx, dictBuffer, dictBufferSize);
}
typedef struct {
ZSTD_CCtx* ctx;
const void* dictBuffer;
size_t dictBufferSize;
int cLevel;
const ZSTD_compressionParameters* comprParams;
const BMK_advancedParams_t* adv;
} BMK_initCCtxArgs;
static size_t local_initCCtx(void* payload) {
const BMK_initCCtxArgs* ag = (const BMK_initCCtxArgs*)payload;
BMK_initCCtx(ag->ctx, ag->dictBuffer, ag->dictBufferSize, ag->cLevel, ag->comprParams, ag->adv);
return 0;
}
typedef struct {
ZSTD_DCtx* dctx;
const void* dictBuffer;
size_t dictBufferSize;
} BMK_initDCtxArgs;
static size_t local_initDCtx(void* payload) {
const BMK_initDCtxArgs* ag = (const BMK_initDCtxArgs*)payload;
BMK_initDCtx(ag->dctx, ag->dictBuffer, ag->dictBufferSize);
return 0;
}
/* additional argument is just the context */
static size_t local_defaultCompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs) {
size_t moreToFlush = 1;
ZSTD_CCtx* ctx = (ZSTD_CCtx*)addArgs;
ZSTD_inBuffer in;
ZSTD_outBuffer out;
in.src = srcBuffer;
in.size = srcSize;
in.pos = 0;
out.dst = dstBuffer;
out.size = dstSize;
out.pos = 0;
assert(dstSize == ZSTD_compressBound(srcSize)); /* specific to this version, which is only used in paramgrill */
while (moreToFlush) {
if(out.pos == out.size) {
return (size_t)-ZSTD_error_dstSize_tooSmall;
}
moreToFlush = ZSTD_compress_generic(ctx, &out, &in, ZSTD_e_end);
if (ZSTD_isError(moreToFlush)) {
return moreToFlush;
}
}
return out.pos;
}
/* additional argument is just the context */
static size_t local_defaultDecompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs) {
size_t moreToFlush = 1;
ZSTD_DCtx* dctx = (ZSTD_DCtx*)addArgs;
ZSTD_inBuffer in;
ZSTD_outBuffer out;
in.src = srcBuffer;
in.size = srcSize;
in.pos = 0;
out.dst = dstBuffer;
out.size = dstSize;
out.pos = 0;
while (moreToFlush) {
if(out.pos == out.size) {
return (size_t)-ZSTD_error_dstSize_tooSmall;
}
moreToFlush = ZSTD_decompress_generic(dctx,
&out, &in);
if (ZSTD_isError(moreToFlush)) {
return moreToFlush;
}
}
return out.pos;
}
/*-*******************************************************
* From Paramgrill End
*********************************************************/
/* Replicate function of benchMemAdvanced, but with pre-split src / dst buffers, with relevant info to invert it (compressedSizes) passed out. */
/* BMK_benchMemAdvanced(srcBuffer,srcSize, dstBuffer, dstSize, fileSizes, nbFiles, 0, &cParams, dictBuffer, dictSize, ctx, dctx, 0, "File", &adv); */
/* nbSeconds used in same way as in BMK_advancedParams_t, as nbIters when in iterMode */
/* if in decodeOnly, then srcPtr's will be compressed blocks, and uncompressedBlocks will be written to dstPtrs? */
/* dictionary nullable, nothing else though. */
static BMK_return_t BMK_benchMemInvertible(buffers_t buf, contexts_t ctx,
const int cLevel, const ZSTD_compressionParameters* comprParams,
const BMK_mode_t mode, const BMK_loopMode_t loopMode, const unsigned nbSeconds) {
U32 i;
BMK_return_t results = { { 0, 0., 0., 0 }, 0 } ;
const void *const *const srcPtrs = (const void *const *const)buf.srcPtrs;
size_t const *const srcSizes = buf.srcSizes;
void** dstPtrs = buf.dstPtrs;
size_t* dstCapacities = buf.dstCapacities;
size_t* dstSizes = buf.dstSizes;
void** resPtrs = buf.resPtrs;
size_t* resSizes = buf.resSizes;
const void* dictBuffer = ctx.dictBuffer;
const size_t dictBufferSize = ctx.dictSize;
const size_t nbBlocks = buf.nbBlocks;
const size_t srcSize = buf.srcSize;
ZSTD_CCtx* cctx = ctx.cctx;
ZSTD_DCtx* dctx = ctx.dctx;
BMK_advancedParams_t adv = BMK_initAdvancedParams();
adv.mode = mode;
adv.loopMode = loopMode;
adv.nbSeconds = nbSeconds;
/* warmimg up memory */
/* can't do this if decode only */
for(i = 0; i < buf.nbBlocks; i++) {
if(mode != BMK_decodeOnly) {
RDG_genBuffer(dstPtrs[i], dstCapacities[i], 0.10, 0.50, 1);
} else {
RDG_genBuffer(resPtrs[i], resSizes[i], 0.10, 0.50, 1);
}
}
/* Bench */
{
/* init args */
BMK_initCCtxArgs cctxprep;
BMK_initDCtxArgs dctxprep;
cctxprep.ctx = cctx;
cctxprep.dictBuffer = dictBuffer;
cctxprep.dictBufferSize = dictBufferSize;
cctxprep.cLevel = cLevel;
cctxprep.comprParams = comprParams;
cctxprep.adv = &adv;
dctxprep.dctx = dctx;
dctxprep.dictBuffer = dictBuffer;
dctxprep.dictBufferSize = dictBufferSize;
if(loopMode == BMK_timeMode) {
BMK_customTimedReturn_t intermediateResultCompress;
BMK_customTimedReturn_t intermediateResultDecompress;
BMK_timedFnState_t* timeStateCompress = BMK_createTimeState(nbSeconds);
BMK_timedFnState_t* timeStateDecompress = BMK_createTimeState(nbSeconds);
if(mode == BMK_compressOnly) {
intermediateResultCompress.completed = 0;
intermediateResultDecompress.completed = 1;
} else if (mode == BMK_decodeOnly) {
intermediateResultCompress.completed = 1;
intermediateResultDecompress.completed = 0;
} else { /* both */
intermediateResultCompress.completed = 0;
intermediateResultDecompress.completed = 0;
}
while(!intermediateResultCompress.completed) {
intermediateResultCompress = BMK_benchFunctionTimed(timeStateCompress, &local_defaultCompress, (void*)cctx, &local_initCCtx, (void*)&cctxprep,
nbBlocks, srcPtrs, srcSizes, dstPtrs, dstCapacities, dstSizes);
if(intermediateResultCompress.result.error) {
results.error = intermediateResultCompress.result.error;
BMK_freeTimeState(timeStateCompress);
BMK_freeTimeState(timeStateDecompress);
return results;
}
results.result.cSpeed = (srcSize * TIMELOOP_NANOSEC) / intermediateResultCompress.result.result.nanoSecPerRun;
results.result.cSize = intermediateResultCompress.result.result.sumOfReturn;
}
while(!intermediateResultDecompress.completed) {
intermediateResultDecompress = BMK_benchFunctionTimed(timeStateDecompress, &local_defaultDecompress, (void*)(dctx), &local_initDCtx, (void*)&dctxprep,
nbBlocks, (const void* const*)dstPtrs, dstSizes, resPtrs, resSizes, NULL);
if(intermediateResultDecompress.result.error) {
results.error = intermediateResultDecompress.result.error;
BMK_freeTimeState(timeStateCompress);
BMK_freeTimeState(timeStateDecompress);
return results;
}
results.result.dSpeed = (srcSize * TIMELOOP_NANOSEC) / intermediateResultDecompress.result.result.nanoSecPerRun;
}
BMK_freeTimeState(timeStateCompress);
BMK_freeTimeState(timeStateDecompress);
} else { /* iterMode; */
if(mode != BMK_decodeOnly) {
BMK_customReturn_t compressionResults = BMK_benchFunction(&local_defaultCompress, (void*)cctx, &local_initCCtx, (void*)&cctxprep,
nbBlocks, srcPtrs, srcSizes, dstPtrs, dstCapacities, dstSizes, nbSeconds);
if(compressionResults.error) {
results.error = compressionResults.error;
return results;
}
if(compressionResults.result.nanoSecPerRun == 0) {
results.result.cSpeed = 0;
} else {
results.result.cSpeed = srcSize * TIMELOOP_NANOSEC / compressionResults.result.nanoSecPerRun;
}
results.result.cSize = compressionResults.result.sumOfReturn;
}
if(mode != BMK_compressOnly) {
BMK_customReturn_t decompressionResults;
decompressionResults = BMK_benchFunction(
&local_defaultDecompress, (void*)(dctx),
&local_initDCtx, (void*)&dctxprep, nbBlocks,
(const void* const*)dstPtrs, dstSizes, resPtrs, resSizes, NULL,
nbSeconds);
if(decompressionResults.error) {
results.error = decompressionResults.error;
return results;
}
if(decompressionResults.result.nanoSecPerRun == 0) {
results.result.dSpeed = 0;
} else {
results.result.dSpeed = srcSize * TIMELOOP_NANOSEC / decompressionResults.result.nanoSecPerRun;
}
}
}
}
/* Bench */
results.result.cMem = (1 << (comprParams->windowLog)) + ZSTD_sizeof_CCtx(cctx);
return results;
}
static void BMK_printWinner(FILE* f, const U32 cLevel, const BMK_result_t result, const ZSTD_compressionParameters params, const size_t srcSize)
{
char lvlstr[15] = "Custom Level";
const U64 time = UTIL_clockSpanNano(g_time);
const U64 minutes = time / (60ULL * TIMELOOP_NANOSEC);
DISPLAY("\r%79s\r", "");
fprintf(f," {%3u,%3u,%3u,%3u,%3u,%3u, %s }, ",
params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength,
params.targetLength, g_stratName[(U32)(params.strategy)]);
if(cLevel != CUSTOM_LEVEL) {
snprintf(lvlstr, 15, " Level %2u ", cLevel);
}
fprintf(f,
"/* %s */ /* R:%5.3f at %5.1f MB/s - %5.1f MB/s */",
lvlstr, (double)srcSize / result.cSize, (double)result.cSpeed / (1 << 20), (double)result.dSpeed / (1 << 20));
if(TIMED) { fprintf(f, " - %1lu:%2lu:%05.2f", (unsigned long) minutes / 60,(unsigned long) minutes % 60, (double)(time - minutes * TIMELOOP_NANOSEC * 60ULL)/TIMELOOP_NANOSEC); }
fprintf(f, "\n");
}
static void BMK_printWinnerOpt(FILE* f, const U32 cLevel, const BMK_result_t result, const ZSTD_compressionParameters params, const constraint_t targetConstraints, const size_t srcSize)
{
/* global winner used for constraints */
static winnerInfo_t g_winner = { { 0, 0, (size_t)-1, (size_t)-1 } , { 0, 0, 0, 0, 0, 0, ZSTD_fast } };
if(DEBUG || compareResultLT(g_winner.result, result, targetConstraints, srcSize)) {
if(DEBUG && compareResultLT(g_winner.result, result, targetConstraints, srcSize)) {
DISPLAY("New Winner: \n");
}
BMK_printWinner(f, cLevel, result, params, srcSize);
if(compareResultLT(g_winner.result, result, targetConstraints, srcSize)) {
BMK_translateAdvancedParams(params);
g_winner.result = result;
g_winner.params = params;
}
}
}
static void BMK_printWinners2(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
int cLevel;
fprintf(f, "\n /* Proposed configurations : */ \n");
fprintf(f, " /* W, C, H, S, L, T, strat */ \n");
for (cLevel=0; cLevel <= NB_LEVELS_TRACKED; cLevel++)
BMK_printWinner(f, cLevel, winners[cLevel].result, winners[cLevel].params, srcSize);
}
static void BMK_printWinners(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
fseek(f, 0, SEEK_SET);
BMK_printWinners2(f, winners, srcSize);
fflush(f);
BMK_printWinners2(stdout, winners, srcSize);
}
typedef struct {
U64 cSpeed_min;
U64 dSpeed_min;
U32 windowLog_max;
ZSTD_strategy strategy_max;
} level_constraints_t;
static level_constraints_t g_level_constraint[NB_LEVELS_TRACKED+1];
static void BMK_init_level_constraints(int bytePerSec_level1)
{
assert(NB_LEVELS_TRACKED >= ZSTD_maxCLevel());
memset(g_level_constraint, 0, sizeof(g_level_constraint));
g_level_constraint[1].cSpeed_min = bytePerSec_level1;
g_level_constraint[1].dSpeed_min = 0.;
g_level_constraint[1].windowLog_max = 19;
g_level_constraint[1].strategy_max = ZSTD_fast;
/* establish speed objectives (relative to level 1) */
{ int l;
for (l=2; l<=NB_LEVELS_TRACKED; l++) {
g_level_constraint[l].cSpeed_min = (g_level_constraint[l-1].cSpeed_min * 49) / 64;
g_level_constraint[l].dSpeed_min = 0.;
g_level_constraint[l].windowLog_max = (l<20) ? 23 : l+5; /* only --ultra levels >= 20 can use windowlog > 23 */
g_level_constraint[l].strategy_max = (l<19) ? ZSTD_btopt : ZSTD_btultra; /* level 19 is allowed to use btultra */
} }
}
static int BMK_seed(winnerInfo_t* winners, const ZSTD_compressionParameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx, ZSTD_DCtx* dctx)
{
BMK_result_t testResult;
int better = 0;
int cLevel;
BMK_benchParam1(&testResult, srcBuffer, srcSize, ctx, dctx, params);
for (cLevel = 1; cLevel <= NB_LEVELS_TRACKED; cLevel++) {
if (testResult.cSpeed < g_level_constraint[cLevel].cSpeed_min)
continue; /* not fast enough for this level */
if (testResult.dSpeed < g_level_constraint[cLevel].dSpeed_min)
continue; /* not fast enough for this level */
if (params.windowLog > g_level_constraint[cLevel].windowLog_max)
continue; /* too much memory for this level */
if (params.strategy > g_level_constraint[cLevel].strategy_max)
continue; /* forbidden strategy for this level */
if (winners[cLevel].result.cSize==0) {
/* first solution for this cLevel */
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
continue;
}
if ((double)testResult.cSize <= ((double)winners[cLevel].result.cSize * (1. + (0.02 / cLevel))) ) {
/* Validate solution is "good enough" */
double W_ratio = (double)srcSize / testResult.cSize;
double O_ratio = (double)srcSize / winners[cLevel].result.cSize;
double W_ratioNote = log (W_ratio);
double O_ratioNote = log (O_ratio);
size_t W_DMemUsed = (1 << params.windowLog) + (16 KB);
size_t O_DMemUsed = (1 << winners[cLevel].params.windowLog) + (16 KB);
double W_DMemUsed_note = W_ratioNote * ( 40 + 9*cLevel) - log((double)W_DMemUsed);
double O_DMemUsed_note = O_ratioNote * ( 40 + 9*cLevel) - log((double)O_DMemUsed);
size_t W_CMemUsed = (1 << params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(params);
size_t O_CMemUsed = (1 << winners[cLevel].params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(winners[cLevel].params);
double W_CMemUsed_note = W_ratioNote * ( 50 + 13*cLevel) - log((double)W_CMemUsed);
double O_CMemUsed_note = O_ratioNote * ( 50 + 13*cLevel) - log((double)O_CMemUsed);
double W_CSpeed_note = W_ratioNote * ( 30 + 10*cLevel) + log(testResult.cSpeed);
double O_CSpeed_note = O_ratioNote * ( 30 + 10*cLevel) + log(winners[cLevel].result.cSpeed);
double W_DSpeed_note = W_ratioNote * ( 20 + 2*cLevel) + log(testResult.dSpeed);
double O_DSpeed_note = O_ratioNote * ( 20 + 2*cLevel) + log(winners[cLevel].result.dSpeed);
if (W_DMemUsed_note < O_DMemUsed_note) {
/* uses too much Decompression memory for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_DMemUsed) / 1024 / 1024,
O_ratio, (double)(O_DMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CMemUsed_note < O_CMemUsed_note) {
/* uses too much memory for compression for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_CMemUsed) / 1024 / 1024,
O_ratio, (double)(O_CMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CSpeed_note < O_CSpeed_note ) {
/* too large compression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)testResult.cSpeed / 1000000,
O_ratio, (double)winners[cLevel].result.cSpeed / 1000000., cLevel);
continue;
}
if (W_DSpeed_note < O_DSpeed_note ) {
/* too large decompression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)testResult.dSpeed / 1000000.,
O_ratio, (double)winners[cLevel].result.dSpeed / 1000000., cLevel);
continue;
}
if (W_ratio < O_ratio)
DISPLAY("Solution %4.3f selected over %4.3f at level %i, due to better secondary statistics \n", W_ratio, O_ratio, cLevel);
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
} }
return better;
}
/* bounds check in sanitize too? */
#define CLAMP(var, lo, hi) { \
var = MAX(MIN(var, hi), lo); \
}
/* nullified useless params, to ensure count stats */
/* no point in windowLog < chainLog (no point 2x chainLog for bt) */
/* now with built in bounds-checking */
/* no longer does anything with sanitizeVarArray + clampcheck */
static ZSTD_compressionParameters sanitizeParams(ZSTD_compressionParameters params)
{
if (params.strategy == ZSTD_fast)
params.chainLog = 0, params.searchLog = 0;
if (params.strategy == ZSTD_dfast)
params.searchLog = 0;
if (params.strategy != ZSTD_btopt && params.strategy != ZSTD_btultra && params.strategy != ZSTD_fast)
params.targetLength = 0;
return params;
}
/* new length */
/* keep old array, will need if iter over strategy. */
static int sanitizeVarArray(varInds_t* varNew, const int varLength, const varInds_t* varArray, const ZSTD_strategy strat) {
int i, j = 0;
for(i = 0; i < varLength; i++) {
if( !((varArray[i] == clog_ind && strat == ZSTD_fast)
|| (varArray[i] == slog_ind && strat == ZSTD_dfast)
|| (varArray[i] == tlen_ind && strat != ZSTD_btopt && strat != ZSTD_btultra && strat != ZSTD_fast))) {
varNew[j] = varArray[i];
j++;
}
}
return j;
}
/* res should be NUM_PARAMS size */
/* constructs varArray from ZSTD_compressionParameters style parameter */
static int variableParams(const ZSTD_compressionParameters paramConstraints, varInds_t* res) {
int j = 0;
if(!paramConstraints.windowLog) {
res[j] = wlog_ind;
j++;
}
if(!paramConstraints.chainLog) {
res[j] = clog_ind;
j++;
}
if(!paramConstraints.hashLog) {
res[j] = hlog_ind;
j++;
}
if(!paramConstraints.searchLog) {
res[j] = slog_ind;
j++;
}
if(!paramConstraints.searchLength) {
res[j] = slen_ind;
j++;
}
if(!paramConstraints.targetLength) {
res[j] = tlen_ind;
j++;
}
return j;
}
/* bin-search on tlen_table for correct index. */
static int tlen_inv(U32 x) {
int lo = 0;
int hi = TLEN_RANGE;
while(lo < hi) {
int mid = (lo + hi) / 2;
if(tlen_table[mid] < x) {
lo = mid + 1;
} if(tlen_table[mid] == x) {
return mid;
} else {
hi = mid;
}
}
return lo;
}
/* amt will probably always be \pm 1? */
/* slight change from old paramVariation, targetLength can only take on powers of 2 now (999 ~= 1024?) */
/* take max/min bounds into account as well? */
static void paramVaryOnce(const varInds_t paramIndex, const int amt, ZSTD_compressionParameters* ptr) {
switch(paramIndex)
{
case wlog_ind: ptr->windowLog += amt; break;
case clog_ind: ptr->chainLog += amt; break;
case hlog_ind: ptr->hashLog += amt; break;
case slog_ind: ptr->searchLog += amt; break;
case slen_ind: ptr->searchLength += amt; break;
case tlen_ind:
ptr->targetLength = tlen_table[MAX(0, MIN(TLEN_RANGE - 1, tlen_inv(ptr->targetLength) + amt))];
break;
default: break;
}
}
/* varies ptr by nbChanges respecting varyParams*/
static void paramVariation(ZSTD_compressionParameters* ptr, const varInds_t* varyParams, const int varyLen, const U32 nbChanges)
{
ZSTD_compressionParameters p;
U32 validated = 0;
while (!validated) {
U32 i;
p = *ptr;
for (i = 0 ; i < nbChanges ; i++) {
const U32 changeID = FUZ_rand(&g_rand) % (varyLen << 1);
paramVaryOnce(varyParams[changeID >> 1], ((changeID & 1) << 1) - 1, &p);
}
validated = !ZSTD_isError(ZSTD_checkCParams(p));
}
*ptr = p;
}
/* length of memo table given free variables */
static size_t memoTableLen(const varInds_t* varyParams, const int varyLen) {
size_t arrayLen = 1;
int i;
for(i = 0; i < varyLen; i++) {
arrayLen *= rangetable[varyParams[i]];
}
return arrayLen;
}
/* returns unique index in memotable of compression parameters */
static unsigned memoTableInd(const ZSTD_compressionParameters* ptr, const varInds_t* varyParams, const int varyLen) {
int i;
unsigned ind = 0;
for(i = 0; i < varyLen; i++) {
switch(varyParams[i]) {
case wlog_ind: ind *= WLOG_RANGE; ind += ptr->windowLog
- ZSTD_WINDOWLOG_MIN ; break;
case clog_ind: ind *= CLOG_RANGE; ind += ptr->chainLog
- ZSTD_CHAINLOG_MIN ; break;
case hlog_ind: ind *= HLOG_RANGE; ind += ptr->hashLog
- ZSTD_HASHLOG_MIN ; break;
case slog_ind: ind *= SLOG_RANGE; ind += ptr->searchLog
- ZSTD_SEARCHLOG_MIN ; break;
case slen_ind: ind *= SLEN_RANGE; ind += ptr->searchLength
- ZSTD_SEARCHLENGTH_MIN; break;
case tlen_ind: ind *= TLEN_RANGE; ind += tlen_inv(ptr->targetLength)
- ZSTD_TARGETLENGTH_MIN; break;
}
}
return ind;
}
/* inverse of above function (from index to parameters) */
static void memoTableIndInv(ZSTD_compressionParameters* ptr, const varInds_t* varyParams, const int varyLen, size_t ind) {
int i;
for(i = varyLen - 1; i >= 0; i--) {
switch(varyParams[i]) {
case wlog_ind: ptr->windowLog = ind % WLOG_RANGE + ZSTD_WINDOWLOG_MIN;
ind /= WLOG_RANGE; break;
case clog_ind: ptr->chainLog = ind % CLOG_RANGE + ZSTD_CHAINLOG_MIN;
ind /= CLOG_RANGE; break;
case hlog_ind: ptr->hashLog = ind % HLOG_RANGE + ZSTD_HASHLOG_MIN;
ind /= HLOG_RANGE; break;
case slog_ind: ptr->searchLog = ind % SLOG_RANGE + ZSTD_SEARCHLOG_MIN;
ind /= SLOG_RANGE; break;
case slen_ind: ptr->searchLength = ind % SLEN_RANGE + ZSTD_SEARCHLENGTH_MIN;
ind /= SLEN_RANGE; break;
case tlen_ind: ptr->targetLength = tlen_table[(ind % TLEN_RANGE)];
ind /= TLEN_RANGE; break;
}
}
}
/* Initialize memoization table, which tracks and prevents repeated benchmarking
* of the same set of parameters. In addition, it is also used to immediately mark
* redundant / obviously non-optimal parameter configurations (e.g. wlog - 1 larger)
* than srcSize, clog > wlog, ...
*/
static void initMemoTable(U8* memoTable, ZSTD_compressionParameters paramConstraints, const constraint_t target, const varInds_t* varyParams, const int varyLen, const size_t srcSize) {
size_t i;
size_t arrayLen = memoTableLen(varyParams, varyLen);
int cwFixed = !paramConstraints.chainLog || !paramConstraints.windowLog;
int scFixed = !paramConstraints.searchLog || !paramConstraints.chainLog;
int whFixed = !paramConstraints.windowLog || !paramConstraints.hashLog;
int wFixed = !paramConstraints.windowLog;
int j = 0;
assert(memoTable != NULL);
memset(memoTable, 0, arrayLen);
cParamZeroMin(&paramConstraints);
for(i = 0; i < arrayLen; i++) {
memoTableIndInv(&paramConstraints, varyParams, varyLen, i);
if(ZSTD_estimateCStreamSize_usingCParams(paramConstraints) > (size_t)target.cMem) {
memoTable[i] = 255;
j++;
}
if(wFixed && (1ULL << (paramConstraints.windowLog - 1)) > srcSize) {
memoTable[i] = 255;
}
/* nil out parameter sets equivalent to others. */
if(cwFixed/* at most least 1 param fixed. */) {
if(paramConstraints.strategy == ZSTD_btlazy2 || paramConstraints.strategy == ZSTD_btopt || paramConstraints.strategy == ZSTD_btultra) {
if(paramConstraints.chainLog > paramConstraints.windowLog + 1) {
if(memoTable[i] != 255) { j++; }
memoTable[i] = 255;
}
} else {
if(paramConstraints.chainLog > paramConstraints.windowLog) {
if(memoTable[i] != 255) { j++; }
memoTable[i] = 255;
}
}
}
if(scFixed) {
if(paramConstraints.searchLog > paramConstraints.chainLog) {
if(memoTable[i] != 255) { j++; }
memoTable[i] = 255;
}
}
if(whFixed) {
if(paramConstraints.hashLog > paramConstraints.windowLog + 1) {
if(memoTable[i] != 255) { j++; }
memoTable[i] = 255;
}
}
}
DEBUGOUTPUT("%d / %d Invalid\n", j, (int)i);
if((int)i == j) {
DEBUGOUTPUT("!!!Strategy %d totally infeasible\n", (int)paramConstraints.strategy)
}
}
/* frees all allocated memotables */
static void freeMemoTableArray(U8** mtAll) {
int i;
if(mtAll == NULL) { return; }
for(i = 1; i <= (int)ZSTD_btultra; i++) {
free(mtAll[i]);
}
free(mtAll);
}
/* inits memotables for all (including mallocs), all strategies */
/* takes unsanitized varyParams */
static U8** createMemoTableArray(ZSTD_compressionParameters paramConstraints, constraint_t target, const varInds_t* varyParams, const int varyLen, const size_t srcSize) {
varInds_t varNew[NUM_PARAMS];
U8** mtAll = calloc(sizeof(U8*),(ZSTD_btultra + 1));
int i;
if(mtAll == NULL) {
return NULL;
}
for(i = 1; i <= (int)ZSTD_btultra; i++) {
const int varLenNew = sanitizeVarArray(varNew, varyLen, varyParams, i);
mtAll[i] = malloc(sizeof(U8) * memoTableLen(varNew, varLenNew));
if(mtAll[i] == NULL) {
freeMemoTableArray(mtAll);
return NULL;
}
initMemoTable(mtAll[i], paramConstraints, target, varNew, varLenNew, srcSize);
}
return mtAll;
}
#define PARAMTABLELOG 25
#define PARAMTABLESIZE (1<<PARAMTABLELOG)
#define PARAMTABLEMASK (PARAMTABLESIZE-1)
static BYTE g_alreadyTested[PARAMTABLESIZE] = {0}; /* init to zero */
/*
#define NB_TESTS_PLAYED(p) \
g_alreadyTested[(XXH64(((void*)&sanitizeParams(p), sizeof(p), 0) >> 3) & PARAMTABLEMASK] */
static BYTE* NB_TESTS_PLAYED(ZSTD_compressionParameters p) {
ZSTD_compressionParameters p2 = sanitizeParams(p);
return &g_alreadyTested[(XXH64((void*)&p2, sizeof(p2), 0) >> 3) & PARAMTABLEMASK];
}
static void playAround(FILE* f, winnerInfo_t* winners,
ZSTD_compressionParameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx, ZSTD_DCtx* dctx)
{
int nbVariations = 0;
UTIL_time_t const clockStart = UTIL_getTime();
const U32 unconstrained[NUM_PARAMS] = { 0, 1, 2, 3, 4, 5 };
while (UTIL_clockSpanMicro(clockStart) < g_maxVariationTime) {
ZSTD_compressionParameters p = params;
BYTE* b;
if (nbVariations++ > g_maxNbVariations) break;
paramVariation(&p, unconstrained, 7, 4);
/* exclude faster if already played params */
if (FUZ_rand(&g_rand) & ((1 << *NB_TESTS_PLAYED(p))-1))
continue;
/* test */
b = NB_TESTS_PLAYED(p);
(*b)++;
if (!BMK_seed(winners, p, srcBuffer, srcSize, ctx, dctx)) continue;
/* improvement found => search more */
BMK_printWinners(f, winners, srcSize);
playAround(f, winners, p, srcBuffer, srcSize, ctx, dctx);
}
}
/* Completely random parameter selection */
static ZSTD_compressionParameters randomParams(void)
{
ZSTD_compressionParameters p;
U32 validated = 0;
while (!validated) {
/* totally random entry */
p.chainLog = (FUZ_rand(&g_rand) % (ZSTD_CHAINLOG_MAX+1 - ZSTD_CHAINLOG_MIN))
+ ZSTD_CHAINLOG_MIN;
p.hashLog = (FUZ_rand(&g_rand) % (ZSTD_HASHLOG_MAX+1 - ZSTD_HASHLOG_MIN))
+ ZSTD_HASHLOG_MIN;
p.searchLog = (FUZ_rand(&g_rand) % (ZSTD_SEARCHLOG_MAX+1 - ZSTD_SEARCHLOG_MIN))
+ ZSTD_SEARCHLOG_MIN;
p.windowLog = (FUZ_rand(&g_rand) % (ZSTD_WINDOWLOG_MAX+1 - ZSTD_WINDOWLOG_MIN))
+ ZSTD_WINDOWLOG_MIN;
p.searchLength=(FUZ_rand(&g_rand) % (ZSTD_SEARCHLENGTH_MAX+1 - ZSTD_SEARCHLENGTH_MIN))
+ ZSTD_SEARCHLENGTH_MIN;
p.targetLength=(FUZ_rand(&g_rand) % (512));
p.strategy = (ZSTD_strategy) (FUZ_rand(&g_rand) % (ZSTD_btultra +1));
validated = !ZSTD_isError(ZSTD_checkCParams(p));
}
return p;
}
/* Sets pc to random unmeasured set of parameters */
static void randomConstrainedParams(ZSTD_compressionParameters* pc, varInds_t* varArray, int varLen, U8* memoTable)
{
size_t tries = memoTableLen(varArray, varLen);
const size_t maxSize = memoTableLen(varArray, varLen);
size_t ind;
do {
ind = (FUZ_rand(&g_rand)) % maxSize;
tries--;
} while(memoTable[ind] > 0 && tries > 0);
memoTableIndInv(pc, varArray, varLen, (unsigned)ind);
}
static void BMK_selectRandomStart(
FILE* f, winnerInfo_t* winners,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx, ZSTD_DCtx* dctx)
{
U32 const id = FUZ_rand(&g_rand) % (NB_LEVELS_TRACKED+1);
if ((id==0) || (winners[id].params.windowLog==0)) {
/* use some random entry */
ZSTD_compressionParameters const p = ZSTD_adjustCParams(randomParams(), srcSize, 0);
playAround(f, winners, p, srcBuffer, srcSize, ctx, dctx);
} else {
playAround(f, winners, winners[id].params, srcBuffer, srcSize, ctx, dctx);
}
}
static void BMK_benchOnce(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx, const void* srcBuffer, size_t srcSize)
{
BMK_result_t testResult;
g_params = ZSTD_adjustCParams(g_params, srcSize, 0);
BMK_benchParam1(&testResult, srcBuffer, srcSize, cctx, dctx, g_params);
DISPLAY("Compression Ratio: %.3f Compress Speed: %.1f MB/s Decompress Speed: %.1f MB/s\n", (double)srcSize / testResult.cSize,
(double)testResult.cSpeed / 1000000, (double)testResult.dSpeed / 1000000);
return;
}
static void BMK_benchFullTable(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx, const void* srcBuffer, size_t srcSize)
{
ZSTD_compressionParameters params;
winnerInfo_t winners[NB_LEVELS_TRACKED+1];
const char* const rfName = "grillResults.txt";
FILE* const f = fopen(rfName, "w");
const size_t blockSize = g_blockSize ? g_blockSize : srcSize; /* cut by block or not ? */
/* init */
assert(g_singleRun==0);
memset(winners, 0, sizeof(winners));
if (f==NULL) { DISPLAY("error opening %s \n", rfName); exit(1); }
if (g_target) {
BMK_init_level_constraints(g_target*1000000);
} else {
/* baseline config for level 1 */
ZSTD_compressionParameters const l1params = ZSTD_getCParams(1, blockSize, 0);
BMK_result_t testResult;
BMK_benchParam1(&testResult, srcBuffer, srcSize, cctx, dctx, l1params);
BMK_init_level_constraints((int)((testResult.cSpeed * 31) / 32));
}
/* populate initial solution */
{ const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
int i;
for (i=0; i<=maxSeeds; i++) {
params = ZSTD_getCParams(i, blockSize, 0);
BMK_seed(winners, params, srcBuffer, srcSize, cctx, dctx);
} }
BMK_printWinners(f, winners, srcSize);
/* start tests */
{ const time_t grillStart = time(NULL);
do {
BMK_selectRandomStart(f, winners, srcBuffer, srcSize, cctx, dctx);
} while (BMK_timeSpan(grillStart) < g_grillDuration_s);
}
/* end summary */
BMK_printWinners(f, winners, srcSize);
DISPLAY("grillParams operations completed \n");
/* clean up*/
fclose(f);
}
static void BMK_benchMem_usingCCtx(ZSTD_CCtx* const cctx, ZSTD_DCtx* const dctx, const void* srcBuffer, size_t srcSize)
{
if (g_singleRun)
return BMK_benchOnce(cctx, dctx, srcBuffer, srcSize);
else
return BMK_benchFullTable(cctx, dctx, srcBuffer, srcSize);
}
static void BMK_benchMemCCtxInit(const void* srcBuffer, size_t srcSize)
{
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
if (cctx==NULL || dctx==NULL) { DISPLAY("Context Creation failed \n"); exit(1); }
BMK_benchMem_usingCCtx(cctx, dctx, srcBuffer, srcSize);
ZSTD_freeCCtx(cctx);
}
static int benchSample(void)
{
const char* const name = "Sample 10MB";
size_t const benchedSize = 10000000;
void* origBuff = malloc(benchedSize);
if (!origBuff) { perror("not enough memory"); return 12; }
/* Fill buffer */
RDG_genBuffer(origBuff, benchedSize, g_compressibility, 0.0, 0);
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s %i%%: \n", name, (int)(g_compressibility*100));
BMK_benchMemCCtxInit(origBuff, benchedSize);
free(origBuff);
return 0;
}
/* benchFiles() :
* note: while this function takes a table of filenames,
* in practice, only the first filename will be used */
int benchFiles(const char** fileNamesTable, int nbFiles)
{
int fileIdx=0;
/* Loop for each file */
while (fileIdx<nbFiles) {
const char* const inFileName = fileNamesTable[fileIdx++];
FILE* const inFile = fopen( inFileName, "rb" );
U64 const inFileSize = UTIL_getFileSize(inFileName);
size_t benchedSize;
void* origBuff;
/* Check file existence */
if (inFile==NULL) {
DISPLAY( "Pb opening %s\n", inFileName);
return 11;
}
if (inFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Pb evaluating size of %s \n", inFileName);
fclose(inFile);
return 11;
}
/* Memory allocation */
benchedSize = BMK_findMaxMem(inFileSize*3) / 3;
if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize)
DISPLAY("Not enough memory for '%s' full size; testing %i MB only...\n", inFileName, (int)(benchedSize>>20));
origBuff = malloc(benchedSize);
if (origBuff==NULL) {
DISPLAY("\nError: not enough memory!\n");
fclose(inFile);
return 12;
}
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
{ size_t const readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize) {
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
} }
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s : \n", inFileName);
BMK_benchMemCCtxInit(origBuff, benchedSize);
/* clean */
free(origBuff);
}
return 0;
}
#define WORSE_RESULT 0
#define BETTER_RESULT 1
#define ERROR_RESULT 2
/* Benchmarking which stops when we are sufficiently sure the solution is infeasible / worse than the winner */
#define VARIANCE 1.1
static int allBench(BMK_result_t* resultPtr,
buffers_t buf, contexts_t ctx,
const ZSTD_compressionParameters cParams,
const constraint_t target,
BMK_result_t* winnerResult, int feas) {
BMK_return_t benchres;
BMK_result_t resultMax;
U64 loopDurationC = 0, loopDurationD = 0;
double uncertaintyConstantC, uncertaintyConstantD;
double winnerRS;
/* initial benchmarking, gives exact ratio and memory, warms up future runs */
benchres = BMK_benchMemInvertible(buf, ctx, 0, &cParams, BMK_both, BMK_iterMode, 1);
winnerRS = resultScore(*winnerResult, buf.srcSize, target);
DEBUGOUTPUT("WinnerScore: %f\n ", winnerRS);
if(benchres.error) {
DEBUGOUTPUT("Benchmarking failed\n");
return ERROR_RESULT;
}
*resultPtr = benchres.result;
/* calculate uncertainty in compression / decompression runs */
if(benchres.result.cSpeed) {
loopDurationC = ((buf.srcSize * TIMELOOP_NANOSEC) / benchres.result.cSpeed);
uncertaintyConstantC = ((loopDurationC + (double)(2 * g_clockGranularity))/loopDurationC) * VARIANCE;
} else {
loopDurationC = 0;
uncertaintyConstantC = 3;
}
if(benchres.result.dSpeed) {
loopDurationD = ((buf.srcSize * TIMELOOP_NANOSEC) / benchres.result.dSpeed);
uncertaintyConstantD = ((loopDurationD + (double)(2 * g_clockGranularity))/loopDurationD) * VARIANCE;
} else {
loopDurationD = 0;
uncertaintyConstantD = 3;
}
/* anything with worse ratio in feas is definitely worse, discard */
if(feas && benchres.result.cSize < winnerResult->cSize) {
return WORSE_RESULT;
}
/* second run, if first run is too short, gives approximate cSpeed + dSpeed */
if(loopDurationC < TIMELOOP_NANOSEC / 10) {
BMK_return_t benchres2 = BMK_benchMemInvertible(buf, ctx, 0, &cParams, BMK_compressOnly, BMK_iterMode, 1);
if(benchres2.error) {
return ERROR_RESULT;
}
benchres = benchres2;
}
if(loopDurationD < TIMELOOP_NANOSEC / 10) {
BMK_return_t benchres2 = BMK_benchMemInvertible(buf, ctx, 0, &cParams, BMK_decodeOnly, BMK_iterMode, 1);
if(benchres2.error) {
return ERROR_RESULT;
}
benchres.result.dSpeed = benchres2.result.dSpeed;
}
*resultPtr = benchres.result;
/* optimistic assumption of benchres.result */
resultMax = benchres.result;
resultMax.cSpeed *= uncertaintyConstantC;
resultMax.dSpeed *= uncertaintyConstantD;
/* disregard infeasible results in feas mode */
/* disregard if resultMax < winner in infeas mode */
if((feas && !feasible(resultMax, target)) ||
(!feas && (winnerRS > resultScore(resultMax, buf.srcSize, target)))) {
return WORSE_RESULT;
}
/* Final full run if estimates are unclear */
if(loopDurationC < TIMELOOP_NANOSEC) {
BMK_return_t benchres2 = BMK_benchMemInvertible(buf, ctx, 0, &cParams, BMK_compressOnly, BMK_timeMode, 1);
if(benchres2.error) {
return ERROR_RESULT;
}
benchres.result.cSpeed = benchres2.result.cSpeed;
}
if(loopDurationD < TIMELOOP_NANOSEC) {
BMK_return_t benchres2 = BMK_benchMemInvertible(buf, ctx, 0, &cParams, BMK_decodeOnly, BMK_timeMode, 1);
if(benchres2.error) {
return ERROR_RESULT;
}
benchres.result.dSpeed = benchres2.result.dSpeed;
}
*resultPtr = benchres.result;
/* compare by resultScore when in infeas */
/* compare by compareResultLT when in feas */
if((!feas && (resultScore(benchres.result, buf.srcSize, target) > resultScore(*winnerResult, buf.srcSize, target))) ||
(feas && (compareResultLT(*winnerResult, benchres.result, target, buf.srcSize))) ) {
return BETTER_RESULT;
} else {
return WORSE_RESULT;
}
}
#define INFEASIBLE_THRESHOLD 200
/* Memoized benchmarking, won't benchmark anything which has already been benchmarked before. */
static int benchMemo(BMK_result_t* resultPtr,
buffers_t buf, contexts_t ctx,
const ZSTD_compressionParameters cParams,
const constraint_t target,
BMK_result_t* winnerResult, U8* memoTable,
const varInds_t* varyParams, const int varyLen, int feas) {
static int bmcount = 0;
size_t memind = memoTableInd(&cParams, varyParams, varyLen);
int res;
if(memoTable[memind] >= INFEASIBLE_THRESHOLD) { return WORSE_RESULT; }
res = allBench(resultPtr, buf, ctx, cParams, target, winnerResult, feas);
if(DEBUG && !(bmcount % 250)) {
DISPLAY("Count: %d\n", bmcount);
bmcount++;
}
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, *resultPtr, cParams, target, buf.srcSize);
if(res == BETTER_RESULT || feas) {
memoTable[memind] = 255;
}
return res;
}
/* One iteration of hill climbing. Specifically, it first tries all
* valid parameter configurations w/ manhattan distance 1 and picks the best one
* failing that, it progressively tries candidates further and further away (up to #dim + 2)
* if it finds a candidate exceeding winnerInfo, it will repeat. Otherwise, it will stop the
* current stage of hill climbing.
* Each iteration of hill climbing proceeds in 2 'phases'. Phase 1 climbs according to
* the resultScore function, which is effectively a linear increase in reward until it reaches
* the constraint-satisfying value, it which point any excess results in only logarithmic reward.
* This aims to find some constraint-satisfying point.
* Phase 2 optimizes in accordance with what the original function sets out to maximize, with
* all feasible solutions valued over all infeasible solutions.
*/
static winnerInfo_t climbOnce(const constraint_t target,
const varInds_t* varArray, const int varLen,
U8* memoTable,
buffers_t buf, contexts_t ctx,
const ZSTD_compressionParameters init) {
/*
* cparam - currently considered 'center'
* candidate - params to benchmark/results
* winner - best option found so far.
*/
ZSTD_compressionParameters cparam = init;
winnerInfo_t candidateInfo, winnerInfo;
int better = 1;
int feas = 0;
winnerInfo = initWinnerInfo(init);
candidateInfo = winnerInfo;
{
winnerInfo_t bestFeasible1 = initWinnerInfo(cparam);
DISPLAY("Climb Part 1\n");
while(better) {
int i, dist, offset;
better = 0;
DEBUGOUTPUT("Start\n");
cparam = winnerInfo.params;
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winnerInfo.result, winnerInfo.params, target, buf.srcSize);
candidateInfo.params = cparam;
/* all dist-1 candidates */
for(i = 0; i < varLen; i++) {
for(offset = -1; offset <= 1; offset += 2) {
candidateInfo.params = cparam;
paramVaryOnce(varArray[i], offset, &candidateInfo.params);
candidateInfo.params = sanitizeParams(candidateInfo.params);
if(!ZSTD_isError(ZSTD_checkCParams(candidateInfo.params))) {
int res = benchMemo(&candidateInfo.result,
buf, ctx,
candidateInfo.params, target, &winnerInfo.result, memoTable,
varArray, varLen, feas);
if(res == BETTER_RESULT) { /* synonymous with better when called w/ infeasibleBM */
winnerInfo = candidateInfo;
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winnerInfo.result, winnerInfo.params, target, buf.srcSize);
better = 1;
if(compareResultLT(bestFeasible1.result, winnerInfo.result, target, buf.srcSize)) {
bestFeasible1 = winnerInfo;
}
}
}
}
}
if(better) {
continue;
}
for(dist = 2; dist < varLen + 2; dist++) { /* varLen is # dimensions */
for(i = 0; i < 2 * varLen + 2; i++) {
int res;
candidateInfo.params = cparam;
/* param error checking already done here */
paramVariation(&candidateInfo.params, varArray, varLen, dist);
res = benchMemo(&candidateInfo.result,
buf, ctx,
candidateInfo.params, target, &winnerInfo.result, memoTable,
varArray, varLen, feas);
if(res == BETTER_RESULT) { /* synonymous with better in this case*/
winnerInfo = candidateInfo;
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winnerInfo.result, winnerInfo.params, target, buf.srcSize);
better = 1;
if(compareResultLT(bestFeasible1.result, winnerInfo.result, target, buf.srcSize)) {
bestFeasible1 = winnerInfo;
}
}
}
if(better) {
break;
}
}
if(!better) { /* infeas -> feas -> stop */
if(feas) { return winnerInfo; }
feas = 1;
better = 1;
winnerInfo = bestFeasible1; /* note with change, bestFeasible may not necessarily be feasible, but if one has been benchmarked, it will be. */
DISPLAY("Climb Part 2\n");
}
}
winnerInfo = bestFeasible1;
}
return winnerInfo;
}
/* Optimizes for a fixed strategy */
/* flexible parameters: iterations of (failed?) climbing (or if we do non-random, maybe this is when everything is close to visitied)
weight more on visit for bad results, less on good results/more on later results / ones with more failures.
allocate memoTable here.
only real use for paramTarget is to get the fixed values, right?
maybe allow giving it a first init?
*/
static winnerInfo_t optimizeFixedStrategy(
buffers_t buf, contexts_t ctx,
const constraint_t target, ZSTD_compressionParameters paramTarget,
const ZSTD_strategy strat,
const varInds_t* varArray, const int varLen,
U8* memoTable, const int tries) {
int i = 0;
varInds_t varNew[NUM_PARAMS];
int varLenNew = sanitizeVarArray(varNew, varLen, varArray, strat);
ZSTD_compressionParameters init;
winnerInfo_t winnerInfo, candidateInfo;
winnerInfo = initWinnerInfo(emptyParams());
/* so climb is given the right fixed strategy */
paramTarget.strategy = strat;
/* to pass ZSTD_checkCParams */
cParamZeroMin(&paramTarget);
init = paramTarget;
while(i < tries) {
DEBUGOUTPUT("Restart\n");
randomConstrainedParams(&init, varNew, varLenNew, memoTable);
candidateInfo = climbOnce(target, varNew, varLenNew, memoTable, buf, ctx, init);
if(compareResultLT(winnerInfo.result, candidateInfo.result, target, buf.srcSize)) {
winnerInfo = candidateInfo;
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winnerInfo.result, winnerInfo.params, target, buf.srcSize);
i = 0;
}
i++;
}
return winnerInfo;
}
static void freeBuffers(buffers_t b) {
if(b.srcPtrs != NULL) {
free(b.srcBuffer);
}
free(b.srcPtrs);
free(b.srcSizes);
if(b.dstPtrs != NULL) {
free(b.dstPtrs[0]);
}
free(b.dstPtrs);
free(b.dstCapacities);
free(b.dstSizes);
if(b.resPtrs != NULL) {
free(b.resPtrs[0]);
}
free(b.resPtrs);
}
/* allocates buffer's arguments. returns 0 = success / 1 = failuere */
static int createBuffers(buffers_t* buff, const char* const * const fileNamesTable,
size_t nbFiles)
{
size_t pos = 0;
size_t n;
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, (U32)nbFiles);
size_t benchedSize = MIN(BMK_findMaxMem(totalSizeToLoad * 3) / 3, totalSizeToLoad);
const size_t blockSize = g_blockSize ? g_blockSize : totalSizeToLoad; //(largest fileSize or total fileSize)
U32 const maxNbBlocks = (U32) ((totalSizeToLoad + (blockSize-1)) / blockSize) + (U32)nbFiles;
U32 blockNb = 0;
memset(buff, 0, sizeof(buffers_t));
buff->srcPtrs = (const void**)calloc(maxNbBlocks, sizeof(void*));
buff->srcSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->dstPtrs = (void**)calloc(maxNbBlocks, sizeof(void*));
buff->dstCapacities = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->dstSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->resPtrs = (void**)calloc(maxNbBlocks, sizeof(void*));
buff->resSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
if(!buff->srcPtrs || !buff->srcSizes || !buff->dstPtrs || !buff->dstCapacities || !buff->dstSizes || !buff->resPtrs || !buff->resSizes) {
DISPLAY("alloc error\n");
freeBuffers(*buff);
return 1;
}
buff->srcBuffer = malloc(benchedSize);
buff->srcPtrs[0] = (const void*)buff->srcBuffer;
buff->dstPtrs[0] = malloc(ZSTD_compressBound(benchedSize) + (maxNbBlocks * 1024));
buff->resPtrs[0] = malloc(benchedSize);
if(!buff->srcPtrs[0] || !buff->dstPtrs[0] || !buff->resPtrs[0]) {
DISPLAY("alloc error\n");
freeBuffers(*buff);
return 1;
}
for(n = 0; n < nbFiles; n++) {
FILE* f;
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAY("Ignoring %s directory... \n", fileNamesTable[n]);
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
continue;
}
f = fopen(fileNamesTable[n], "rb");
if (f==NULL) {
DISPLAY("impossible to open file %s\n", fileNamesTable[n]);
freeBuffers(*buff);
fclose(f);
return 10;
}
DISPLAY("Loading %s... \r", fileNamesTable[n]);
if (fileSize + pos > benchedSize) fileSize = benchedSize - pos, nbFiles=n; /* buffer too small - stop after this file */
{
char* buffer = (char*)(buff->srcBuffer);
size_t const readSize = fread(((buffer)+pos), 1, (size_t)fileSize, f);
size_t blocked = 0;
while(blocked < readSize) {
buff->srcPtrs[blockNb] = (const void*)((buffer) + (pos + blocked));
buff->srcSizes[blockNb] = blockSize;
blocked += blockSize;
blockNb++;
}
if(readSize > 0) { buff->srcSizes[blockNb - 1] = ((readSize - 1) % blockSize) + 1; }
if (readSize != (size_t)fileSize) {
DISPLAY("could not read %s", fileNamesTable[n]);
freeBuffers(*buff);
fclose(f);
return 1;
}
pos += readSize;
}
fclose(f);
}
buff->dstCapacities[0] = ZSTD_compressBound(buff->srcSizes[0]);
buff->dstSizes[0] = buff->dstCapacities[0];
buff->resSizes[0] = buff->srcSizes[0];
for(n = 1; n < blockNb; n++) {
buff->dstPtrs[n] = ((char*)buff->dstPtrs[n-1]) + buff->dstCapacities[n-1];
buff->resPtrs[n] = ((char*)buff->resPtrs[n-1]) + buff->resSizes[n-1];
buff->dstCapacities[n] = ZSTD_compressBound(buff->srcSizes[n]);
buff->dstSizes[n] = buff->dstCapacities[n];
buff->resSizes[n] = buff->srcSizes[n];
}
buff->srcSize = pos;
buff->nbBlocks = blockNb;
if (pos == 0) { DISPLAY("\nno data to bench\n"); return 1; }
return 0;
}
static void freeContexts(contexts_t ctx) {
free(ctx.dictBuffer);
ZSTD_freeCCtx(ctx.cctx);
ZSTD_freeDCtx(ctx.dctx);
}
/* Creates struct holding contexts and dictionary buffers. returns 0 on success, 1 on failure. */
static int createContexts(contexts_t* ctx, const char* dictFileName) {
FILE* f;
size_t readSize;
U64 dictSize;
ctx->cctx = ZSTD_createCCtx();
ctx->dctx = ZSTD_createDCtx();
ctx->dictSize = 0;
ctx->dictBuffer = NULL;
if(!ctx->cctx || !ctx->dctx) {
DISPLAY("context allocation error\n");
freeContexts(*ctx);
return 1;
}
if(dictFileName == NULL) {
return 0;
}
dictSize = UTIL_getFileSize(dictFileName);
if(dictSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Unable to get dictionary size\n");
freeContexts(*ctx);
return 1;
} else {
ctx->dictSize = (size_t)dictSize;
}
ctx->dictBuffer = malloc(ctx->dictSize);
f = fopen(dictFileName, "rb");
if(!f) {
DISPLAY("unable to open file\n");
fclose(f);
freeContexts(*ctx);
return 1;
}
if(ctx->dictSize > 64 MB || !(ctx->dictBuffer)) {
DISPLAY("dictionary too large\n");
fclose(f);
freeContexts(*ctx);
return 1;
}
readSize = fread(ctx->dictBuffer, 1, ctx->dictSize, f);
if(readSize != ctx->dictSize) {
DISPLAY("unable to read file\n");
fclose(f);
freeContexts(*ctx);
return 1;
}
return 0;
}
/* goes best, best-1, best+1, best-2, ... */
/* return 0 if nothing remaining */
static int nextStrategy(const int currentStrategy, const int bestStrategy) {
if(bestStrategy <= currentStrategy) {
int candidate = 2 * bestStrategy - currentStrategy - 1;
if(candidate < 1) {
candidate = currentStrategy + 1;
if(candidate > (int)ZSTD_btultra) {
return 0;
} else {
return candidate;
}
} else {
return candidate;
}
} else { /* bestStrategy >= currentStrategy */
int candidate = 2 * bestStrategy - currentStrategy;
if(candidate > (int)ZSTD_btultra) {
candidate = currentStrategy - 1;
if(candidate < 1) {
return 0;
} else {
return candidate;
}
} else {
return candidate;
}
}
}
static ZSTD_compressionParameters maskParams(ZSTD_compressionParameters base, ZSTD_compressionParameters mask) {
base.windowLog = mask.windowLog ? mask.windowLog : base.windowLog;
base.chainLog = mask.chainLog ? mask.chainLog : base.chainLog;
base.hashLog = mask.hashLog ? mask.hashLog : base.hashLog;
base.searchLog = mask.searchLog ? mask.searchLog : base.searchLog;
base.searchLength = mask.searchLength ? mask.searchLength : base.searchLength;
base.targetLength = mask.targetLength ? mask.targetLength : base.targetLength;
base.strategy = mask.strategy ? mask.strategy : base.strategy;
return base;
}
#define MAX_TRIES 8
/* main fn called when using --optimize */
/* Does strategy selection by benchmarking default compression levels
* then optimizes by strategy, starting with the best one and moving
* progressively moving further away by number
* args:
* fileNamesTable - list of files to benchmark
* nbFiles - length of fileNamesTable
* dictFileName - name of dictionary file if one, else NULL
* target - performance constraints (cSpeed, dSpeed, cMem)
* paramTarget - parameter constraints (i.e. restriction search space to where strategy = ZSTD_fast)
* cLevel - compression level to exceed (all solutions must be > lvl in cSpeed + ratio)
*/
static int optimizeForSize(const char* const * const fileNamesTable, const size_t nbFiles, const char* dictFileName, constraint_t target, ZSTD_compressionParameters paramTarget, int cLevel)
{
varInds_t varArray [NUM_PARAMS];
int ret = 0;
const int varLen = variableParams(paramTarget, varArray);
winnerInfo_t winner = initWinnerInfo(emptyParams());
U8** allMT = NULL;
size_t k;
size_t maxBlockSize = 0;
contexts_t ctx;
buffers_t buf;
/* Init */
if(!cParamValid(paramTarget)) {
return 1;
}
/* load dictionary*/
if(createBuffers(&buf, fileNamesTable, nbFiles)) {
DISPLAY("unable to load files\n");
return 1;
}
if(createContexts(&ctx, dictFileName)) {
DISPLAY("unable to load dictionary\n");
freeBuffers(buf);
return 2;
}
if(nbFiles == 1) {
DISPLAY("Loading %s... \r", fileNamesTable[0]);
} else {
DISPLAY("Loading %lu Files... \r", (unsigned long)nbFiles);
}
for(k = 0; k < buf.nbBlocks; k++) {
maxBlockSize = MAX(buf.srcSizes[k], maxBlockSize);
}
/* if strategy is fixed, only init that part of memotable */
if(paramTarget.strategy) {
varInds_t varNew[NUM_PARAMS];
int varLenNew = sanitizeVarArray(varNew, varLen, varArray, paramTarget.strategy);
allMT = calloc(sizeof(U8), (ZSTD_btultra + 1));
if(allMT == NULL) {
ret = 57;
goto _cleanUp;
}
allMT[paramTarget.strategy] = malloc(sizeof(U8) * memoTableLen(varNew, varLenNew));
if(allMT[paramTarget.strategy] == NULL) {
ret = 58;
goto _cleanUp;
}
initMemoTable(allMT[paramTarget.strategy], paramTarget, target, varNew, varLenNew, maxBlockSize);
} else {
allMT = createMemoTableArray(paramTarget, target, varArray, varLen, maxBlockSize);
}
if(!allMT) {
DISPLAY("MemoTable Init Error\n");
ret = 2;
goto _cleanUp;
}
if(cLevel) {
winner.params = ZSTD_getCParams(cLevel, maxBlockSize, ctx.dictSize);
if(BMK_benchParam(&winner.result, buf, ctx, winner.params)) {
ret = 3;
goto _cleanUp;
}
target.cSpeed = (U32)winner.result.cSpeed;
BMK_printWinnerOpt(stdout, cLevel, winner.result, winner.params, target, buf.srcSize);
}
/* bench */
DISPLAY("\r%79s\r", "");
if(nbFiles == 1) {
DISPLAY("optimizing for %s", fileNamesTable[0]);
} else {
DISPLAY("optimizing for %lu Files", (unsigned long)nbFiles);
}
if(target.cSpeed != 0) { DISPLAY(" - limit compression speed %u MB/s", target.cSpeed >> 20); }
if(target.dSpeed != 0) { DISPLAY(" - limit decompression speed %u MB/s", target.dSpeed >> 20); }
if(target.cMem != (U32)-1) { DISPLAY(" - limit memory %u MB", target.cMem >> 20); }
DISPLAY("\n");
findClockGranularity();
{
varInds_t varNew[NUM_PARAMS];
/* find best solution from default params */
{
/* strategy selection */
const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
DEBUGOUTPUT("Strategy Selection\n");
if(paramTarget.strategy == 0) { /* no variable based constraints */
BMK_result_t candidate;
int i;
for (i=1; i<=maxSeeds; i++) {
int ec;
ZSTD_compressionParameters CParams = ZSTD_getCParams(i, maxBlockSize, ctx.dictSize);
CParams = maskParams(CParams, paramTarget);
ec = BMK_benchParam(&candidate, buf, ctx, CParams);
BMK_printWinnerOpt(stdout, i, candidate, CParams, target, buf.srcSize);
if(!ec && compareResultLT(winner.result, candidate, relaxTarget(target), buf.srcSize)) {
winner.result = candidate;
winner.params = CParams;
}
}
}
}
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winner.result, winner.params, target, buf.srcSize);
BMK_translateAdvancedParams(winner.params);
DEBUGOUTPUT("Real Opt\n");
/* start 'real' tests */
{
int bestStrategy = (int)winner.params.strategy;
if(paramTarget.strategy == 0) {
int st = (int)winner.params.strategy;
int tries = MAX_TRIES;
{
int varLenNew = sanitizeVarArray(varNew, varLen, varArray, st);
winnerInfo_t w1 = climbOnce(target, varNew, varLenNew, allMT[st],
buf, ctx, winner.params);
if(compareResultLT(winner.result, w1.result, target, buf.srcSize)) {
winner = w1;
}
}
while(st && tries) {
winnerInfo_t wc = optimizeFixedStrategy(buf, ctx, target, paramTarget,
st, varArray, varLen, allMT[st], tries);
DEBUGOUTPUT("StratNum %d\n", st);
if(compareResultLT(winner.result, wc.result, target, buf.srcSize)) {
winner = wc;
}
st = nextStrategy(st, bestStrategy);
tries--;
}
} else {
winner = optimizeFixedStrategy(buf, ctx, target, paramTarget, paramTarget.strategy,
varArray, varLen, allMT[paramTarget.strategy], 10);
}
}
/* no solution found */
if(winner.result.cSize == (size_t)-1) {
ret = 1;
DISPLAY("No feasible solution found\n");
goto _cleanUp;
}
/* end summary */
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winner.result, winner.params, target, buf.srcSize);
BMK_translateAdvancedParams(winner.params);
DISPLAY("grillParams size - optimizer completed \n");
}
_cleanUp:
freeContexts(ctx);
freeBuffers(buf);
freeMemoTableArray(allMT);
return ret;
}
static void errorOut(const char* msg)
{
DISPLAY("%s \n", msg); exit(1);
}
/*! readU32FromChar() :
* @return : unsigned integer value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static unsigned readU32FromChar(const char** stringPtr)
{
const char errorMsg[] = "error: numeric value too large";
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = (((unsigned)(-1)) / 10) - 1;
if (result > max) errorOut(errorMsg);
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
if (result > maxK) errorOut(errorMsg);
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) errorOut(errorMsg);
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static int usage(const char* exename)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [arg] file\n", exename);
DISPLAY( "Arguments :\n");
DISPLAY( " file : path to the file used as reference (if none, generates a compressible sample)\n");
DISPLAY( " -H/-h : Help (this text + advanced options)\n");
return 0;
}
static int usage_advanced(void)
{
DISPLAY( "\nAdvanced options :\n");
DISPLAY( " -T# : set level 1 speed objective \n");
DISPLAY( " -B# : cut input into blocks of size # (default : single block) \n");
DISPLAY( " -i# : iteration loops (default : %i) \n", NBLOOPS);
DISPLAY( " --optimize= : same as -O with more verbose syntax (see README.md)\n");
DISPLAY( " -S : Single run \n");
DISPLAY( " --zstd : Single run, parameter selection same as zstdcli \n");
DISPLAY( " -P# : generated sample compressibility (default : %.1f%%) \n", COMPRESSIBILITY_DEFAULT * 100);
DISPLAY( " -t# : Caps runtime of operation in seconds (default : %u seconds (%.1f hours)) \n", (U32)g_grillDuration_s, g_grillDuration_s / 3600);
DISPLAY( " -v : Prints Benchmarking output\n");
DISPLAY( " -D : Next argument dictionary file\n");
return 0;
}
static int badusage(const char* exename)
{
DISPLAY("Wrong parameters\n");
usage(exename);
return 1;
}
#define PARSE_SUB_ARGS(stringLong, stringShort, variable) { if (longCommandWArg(&argument, stringLong) || longCommandWArg(&argument, stringShort)) { variable = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; } }
#define PARSE_CPARAMS(variable) \
{ \
PARSE_SUB_ARGS("windowLog=", "wlog=", variable.windowLog); \
PARSE_SUB_ARGS("chainLog=" , "clog=", variable.chainLog); \
PARSE_SUB_ARGS("hashLog=", "hlog=", variable.hashLog); \
PARSE_SUB_ARGS("searchLog=" , "slog=", variable.searchLog); \
PARSE_SUB_ARGS("searchLength=", "slen=", variable.searchLength); \
PARSE_SUB_ARGS("targetLength=" , "tlen=", variable.targetLength); \
PARSE_SUB_ARGS("strategy=", "strat=", variable.strategy); \
}
int main(int argc, const char** argv)
{
int i,
filenamesStart=0,
result;
const char* exename=argv[0];
const char* input_filename = NULL;
const char* dictFileName = NULL;
U32 optimizer = 0;
U32 main_pause = 0;
int optimizerCLevel = 0;
constraint_t target = { 0, 0, (U32)-1 };
ZSTD_compressionParameters paramTarget = { 0, 0, 0, 0, 0, 0, 0 };
assert(argc>=1); /* for exename */
g_time = UTIL_getTime();
/* Welcome message */
DISPLAY(WELCOME_MESSAGE);
for(i=1; i<argc; i++) {
const char* argument = argv[i];
DISPLAY("%d: ", i);
DISPLAY("%s\n", argument);
assert(argument != NULL);
if(!strcmp(argument,"--no-seed")) { g_noSeed = 1; continue; }
if (longCommandWArg(&argument, "--optimize=")) {
optimizer = 1;
for ( ; ;) {
PARSE_CPARAMS(paramTarget);
PARSE_SUB_ARGS("compressionSpeed=" , "cSpeed=", target.cSpeed);
PARSE_SUB_ARGS("decompressionSpeed=", "dSpeed=", target.dSpeed);
PARSE_SUB_ARGS("compressionMemory=" , "cMem=", target.cMem);
PARSE_SUB_ARGS("level=", "lvl=", optimizerCLevel);
DISPLAY("invalid optimization parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --optimize= format\n");
return 1; /* check the end of string */
}
continue;
} else if (longCommandWArg(&argument, "--zstd=")) {
/* Decode command (note : aggregated commands are allowed) */
g_singleRun = 1;
g_params = ZSTD_getCParams(2, g_blockSize, 0);
for ( ; ;) {
PARSE_CPARAMS(g_params)
if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { g_params = ZSTD_getCParams(readU32FromChar(&argument), g_blockSize, 0); if (argument[0]==',') { argument++; continue; } else break; }
DISPLAY("invalid compression parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --zstd= format\n");
return 1; /* check the end of string */
}
continue;
/* if not return, success */
} else if (argument[0]=='-') {
argument++;
while (argument[0]!=0) {
switch(argument[0])
{
/* Display help on usage */
case 'h' :
case 'H': usage(exename); usage_advanced(); return 0;
/* Pause at the end (hidden option) */
case 'p': main_pause = 1; argument++; break;
/* Modify Nb Iterations */
case 'i':
argument++;
g_nbIterations = readU32FromChar(&argument);
break;
/* Sample compressibility (when no file provided) */
case 'P':
argument++;
{ U32 const proba32 = readU32FromChar(&argument);
g_compressibility = (double)proba32 / 100.;
}
break;
/* Run Single conf */
case 'S':
g_singleRun = 1;
argument++;
g_params = ZSTD_getCParams(2, g_blockSize, 0);
for ( ; ; ) {
switch(*argument)
{
case 'w':
argument++;
g_params.windowLog = readU32FromChar(&argument);
continue;
case 'c':
argument++;
g_params.chainLog = readU32FromChar(&argument);
continue;
case 'h':
argument++;
g_params.hashLog = readU32FromChar(&argument);
continue;
case 's':
argument++;
g_params.searchLog = readU32FromChar(&argument);
continue;
case 'l': /* search length */
argument++;
g_params.searchLength = readU32FromChar(&argument);
continue;
case 't': /* target length */
argument++;
g_params.targetLength = readU32FromChar(&argument);
continue;
case 'S': /* strategy */
argument++;
g_params.strategy = (ZSTD_strategy)readU32FromChar(&argument);
continue;
case 'L':
{ int const cLevel = readU32FromChar(&argument);
g_params = ZSTD_getCParams(cLevel, g_blockSize, 0);
continue;
}
default : ;
}
break;
}
break;
/* target level1 speed objective, in MB/s */
case 'T':
argument++;
g_target = readU32FromChar(&argument);
break;
/* cut input into blocks */
case 'B':
argument++;
g_blockSize = readU32FromChar(&argument);
DISPLAY("using %u KB block size \n", g_blockSize>>10);
break;
/* caps runtime (in seconds) */
case 't':
argument++;
g_grillDuration_s = (double)readU32FromChar(&argument);
break;
/* load dictionary file (only applicable for optimizer rn) */
case 'D':
if(i == argc - 1) { /* last argument, return error. */
DISPLAY("Dictionary file expected but not given : %d\n", i);
return 1;
} else {
i++;
dictFileName = argv[i];
argument += strlen(argument);
}
break;
/* Unknown command */
default : return badusage(exename);
}
}
continue;
} /* if (argument[0]=='-') */
/* first provided filename is input */
if (!input_filename) { input_filename=argument; filenamesStart=i; continue; }
}
if (filenamesStart==0) {
if (optimizer) {
DISPLAY("Optimizer Expects File\n");
return 1;
} else {
result = benchSample();
}
} else {
if (optimizer) {
result = optimizeForSize(argv+filenamesStart, argc-filenamesStart, dictFileName, target, paramTarget, optimizerCLevel);
} else {
result = benchFiles(argv+filenamesStart, argc-filenamesStart);
} }
if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }
return result;
}