zstd/tests/zstreamtest.c
Przemyslaw Skibinski 684858e7b7 fix memory leaks
2017-02-21 18:17:24 +01:00

1193 lines
53 KiB
C

/**
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
/*-************************************
* Compiler specific
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# define _CRT_SECURE_NO_WARNINGS /* fgets */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */
#endif
/*-************************************
* Includes
**************************************/
#include <stdlib.h> /* free */
#include <stdio.h> /* fgets, sscanf */
#include <time.h> /* clock_t, clock() */
#include <string.h> /* strcmp */
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_maxCLevel, ZSTD_customMem, ZSTD_getDictID_fromFrame */
#include "zstd.h" /* ZSTD_compressBound */
#include "zstd_errors.h" /* ZSTD_error_srcSize_wrong */
#include "zstdmt_compress.h"
#include "zdict.h" /* ZDICT_trainFromBuffer */
#include "datagen.h" /* RDG_genBuffer */
#define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#include "xxhash.h" /* XXH64_* */
/*-************************************
* Constants
**************************************/
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
static const U32 nbTestsDefault = 10000;
#define COMPRESSIBLE_NOISE_LENGTH (10 MB)
#define FUZ_COMPRESSIBILITY_DEFAULT 50
static const U32 prime32 = 2654435761U;
/*-************************************
* Display Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static U32 g_displayLevel = 2;
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if ((FUZ_GetClockSpan(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
{ g_displayClock = clock(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stdout); } }
static const clock_t g_refreshRate = CLOCKS_PER_SEC / 6;
static clock_t g_displayClock = 0;
static clock_t g_clockTime = 0;
/*-*******************************************************
* Fuzzer functions
*********************************************************/
#define MAX(a,b) ((a)>(b)?(a):(b))
static clock_t FUZ_GetClockSpan(clock_t clockStart)
{
return clock() - clockStart; /* works even when overflow. Max span ~ 30 mn */
}
/*! FUZ_rand() :
@return : a 27 bits random value, from a 32-bits `seed`.
`seed` is also modified */
#define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r)))
unsigned int FUZ_rand(unsigned int* seedPtr)
{
static const U32 prime2 = 2246822519U;
U32 rand32 = *seedPtr;
rand32 *= prime32;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*seedPtr = rand32;
return rand32 >> 5;
}
static void* allocFunction(void* opaque, size_t size)
{
void* address = malloc(size);
(void)opaque;
return address;
}
static void freeFunction(void* opaque, void* address)
{
(void)opaque;
free(address);
}
/*======================================================
* Basic Unit tests
======================================================*/
typedef struct {
void* start;
size_t size;
size_t filled;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 , 0 };
static buffer_t FUZ_createDictionary(const void* src, size_t srcSize, size_t blockSize, size_t requestedDictSize)
{
buffer_t dict = { NULL, 0, 0 };
size_t const nbBlocks = (srcSize + (blockSize-1)) / blockSize;
size_t* const blockSizes = (size_t*) malloc(nbBlocks * sizeof(size_t));
if (!blockSizes) return dict;
dict.start = malloc(requestedDictSize);
if (!dict.start) { free(blockSizes); return dict; }
{ size_t nb;
for (nb=0; nb<nbBlocks-1; nb++) blockSizes[nb] = blockSize;
blockSizes[nbBlocks-1] = srcSize - (blockSize * (nbBlocks-1));
}
{ size_t const dictSize = ZDICT_trainFromBuffer(dict.start, requestedDictSize, src, blockSizes, (unsigned)nbBlocks);
free(blockSizes);
if (ZDICT_isError(dictSize)) { free(dict.start); return (buffer_t){ NULL, 0, 0 }; }
dict.size = requestedDictSize;
dict.filled = dictSize;
return dict; /* how to return dictSize ? */
}
}
static void FUZ_freeDictionary(buffer_t dict)
{
free(dict.start);
}
static int basicUnitTests(U32 seed, double compressibility, ZSTD_customMem customMem)
{
size_t const CNBufferSize = COMPRESSIBLE_NOISE_LENGTH;
void* CNBuffer = malloc(CNBufferSize);
size_t const skippableFrameSize = 11;
size_t const compressedBufferSize = (8 + skippableFrameSize) + ZSTD_compressBound(COMPRESSIBLE_NOISE_LENGTH);
void* compressedBuffer = malloc(compressedBufferSize);
size_t const decodedBufferSize = CNBufferSize;
void* decodedBuffer = malloc(decodedBufferSize);
size_t cSize;
int testResult = 0;
U32 testNb=0;
ZSTD_CStream* zc = ZSTD_createCStream_advanced(customMem);
ZSTD_DStream* zd = ZSTD_createDStream_advanced(customMem);
ZSTD_inBuffer inBuff, inBuff2;
ZSTD_outBuffer outBuff;
buffer_t dictionary = g_nullBuffer;
unsigned dictID = 0;
/* Create compressible test buffer */
if (!CNBuffer || !compressedBuffer || !decodedBuffer || !zc || !zd) {
DISPLAY("Not enough memory, aborting \n");
goto _output_error;
}
RDG_genBuffer(CNBuffer, CNBufferSize, compressibility, 0., seed);
/* Create dictionary */
MEM_STATIC_ASSERT(COMPRESSIBLE_NOISE_LENGTH >= 4 MB);
dictionary = FUZ_createDictionary(CNBuffer, 4 MB, 4 KB, 40 KB);
if (!dictionary.start) {
DISPLAY("Error creating dictionary, aborting \n");
goto _output_error;
}
dictID = ZDICT_getDictID(dictionary.start, dictionary.filled);
/* generate skippable frame */
MEM_writeLE32(compressedBuffer, ZSTD_MAGIC_SKIPPABLE_START);
MEM_writeLE32(((char*)compressedBuffer)+4, (U32)skippableFrameSize);
cSize = skippableFrameSize + 8;
/* Basic compression test */
DISPLAYLEVEL(3, "test%3i : compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
ZSTD_initCStream_usingDict(zc, CNBuffer, 128 KB, 1);
outBuff.dst = (char*)(compressedBuffer)+cSize;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
cSize += outBuff.pos;
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100);
DISPLAYLEVEL(3, "test%3i : check CStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_CStream(zc);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
/* skippable frame test */
DISPLAYLEVEL(3, "test%3i : decompress skippable frame : ", testNb++);
ZSTD_initDStream_usingDict(zd, CNBuffer, 128 KB);
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (r != 0) goto _output_error; }
if (outBuff.pos != 0) goto _output_error; /* skippable frame len is 0 */
DISPLAYLEVEL(3, "OK \n");
/* Basic decompression test */
inBuff2 = inBuff;
DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
ZSTD_initDStream_usingDict(zd, CNBuffer, 128 KB);
{ size_t const r = ZSTD_setDStreamParameter(zd, DStream_p_maxWindowSize, 1000000000); /* large limit */
if (ZSTD_isError(r)) goto _output_error; }
{ size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* Re-use without init */
DISPLAYLEVEL(3, "test%3i : decompress again without init (re-use previous settings): ", testNb++);
outBuff.pos = 0;
{ size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff2);
if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* check regenerated data is byte exact */
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t i;
for (i=0; i<CNBufferSize; i++) {
if (((BYTE*)decodedBuffer)[i] != ((BYTE*)CNBuffer)[i]) goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check DStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_DStream(zd);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
/* Byte-by-byte decompression test */
DISPLAYLEVEL(3, "test%3i : decompress byte-by-byte : ", testNb++);
{ /* skippable frame */
size_t r = 1;
ZSTD_initDStream_usingDict(zd, CNBuffer, 128 KB);
inBuff.src = compressedBuffer;
outBuff.dst = decodedBuffer;
inBuff.pos = 0;
outBuff.pos = 0;
while (r) { /* skippable frame */
inBuff.size = inBuff.pos + 1;
outBuff.size = outBuff.pos + 1;
r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error;
}
/* normal frame */
ZSTD_initDStream_usingDict(zd, CNBuffer, 128 KB);
r=1;
while (r) {
inBuff.size = inBuff.pos + 1;
outBuff.size = outBuff.pos + 1;
r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error;
}
}
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != cSize) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* check regenerated data is byte exact */
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t i;
for (i=0; i<CNBufferSize; i++) {
if (((BYTE*)decodedBuffer)[i] != ((BYTE*)CNBuffer)[i]) goto _output_error;;
} }
DISPLAYLEVEL(3, "OK \n");
/* _srcSize compression test */
DISPLAYLEVEL(3, "test%3i : compress_srcSize %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
ZSTD_initCStream_srcSize(zc, 1, CNBufferSize);
outBuff.dst = (char*)(compressedBuffer);
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
{ unsigned long long origSize = ZSTD_findDecompressedSize(outBuff.dst, outBuff.pos);
if ((size_t)origSize != CNBufferSize) goto _output_error; } /* exact original size must be present */
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100);
/* wrong _srcSize compression test */
DISPLAYLEVEL(3, "test%3i : wrong srcSize : %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH-1);
ZSTD_initCStream_srcSize(zc, 1, CNBufferSize-1);
outBuff.dst = (char*)(compressedBuffer);
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; /* must fail : wrong srcSize */
DISPLAYLEVEL(3, "OK (error detected : %s) \n", ZSTD_getErrorName(r)); }
/* Complex context re-use scenario */
DISPLAYLEVEL(3, "test%3i : context re-use : ", testNb++);
ZSTD_freeCStream(zc);
zc = ZSTD_createCStream_advanced(customMem);
if (zc==NULL) goto _output_error; /* memory allocation issue */
/* use 1 */
{ size_t const inSize = 513;
ZSTD_initCStream_advanced(zc, NULL, 0, ZSTD_getParams(19, inSize, 0), inSize); /* needs btopt + search3 to trigger hashLog3 */
inBuff.src = CNBuffer;
inBuff.size = inSize;
inBuff.pos = 0;
outBuff.dst = (char*)(compressedBuffer)+cSize;
outBuff.size = ZSTD_compressBound(inSize);
outBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
}
/* use 2 */
{ size_t const inSize = 1025; /* will not continue, because tables auto-adjust and are therefore different size */
ZSTD_initCStream_advanced(zc, NULL, 0, ZSTD_getParams(19, inSize, 0), inSize); /* needs btopt + search3 to trigger hashLog3 */
inBuff.src = CNBuffer;
inBuff.size = inSize;
inBuff.pos = 0;
outBuff.dst = (char*)(compressedBuffer)+cSize;
outBuff.size = ZSTD_compressBound(inSize);
outBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
}
DISPLAYLEVEL(3, "OK \n");
/* CDict scenario */
DISPLAYLEVEL(3, "test%3i : digested dictionary : ", testNb++);
{ ZSTD_CDict* const cdict = ZSTD_createCDict(dictionary.start, dictionary.filled, 1);
size_t const initError = ZSTD_initCStream_usingCDict(zc, cdict);
if (ZSTD_isError(initError)) goto _output_error;
cSize = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_compressStream(zc, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error; }
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
cSize = outBuff.pos;
ZSTD_freeCDict(cdict);
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100);
}
DISPLAYLEVEL(3, "test%3i : check CStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_CStream(zc);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
DISPLAYLEVEL(4, "test%3i : check Dictionary ID : ", testNb++);
{ unsigned const dID = ZSTD_getDictID_fromFrame(compressedBuffer, cSize);
if (dID != dictID) goto _output_error;
DISPLAYLEVEL(4, "OK (%u) \n", dID);
}
/* DDict scenario */
DISPLAYLEVEL(3, "test%3i : decompress %u bytes with digested dictionary : ", testNb++, (U32)CNBufferSize);
{ ZSTD_DDict* const ddict = ZSTD_createDDict(dictionary.start, dictionary.filled);
size_t const initError = ZSTD_initDStream_usingDDict(zd, ddict);
if (ZSTD_isError(initError)) goto _output_error;
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (r != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
ZSTD_freeDDict(ddict);
DISPLAYLEVEL(3, "OK \n");
}
/* test ZSTD_setDStreamParameter() resilience */
DISPLAYLEVEL(3, "test%3i : wrong parameter for ZSTD_setDStreamParameter(): ", testNb++);
{ size_t const r = ZSTD_setDStreamParameter(zd, (ZSTD_DStreamParameter_e)999, 1); /* large limit */
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* Memory restriction */
DISPLAYLEVEL(3, "test%3i : maxWindowSize < frame requirement : ", testNb++);
ZSTD_initDStream_usingDict(zd, CNBuffer, 128 KB);
{ size_t const r = ZSTD_setDStreamParameter(zd, DStream_p_maxWindowSize, 1000); /* too small limit */
if (ZSTD_isError(r)) goto _output_error; }
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (!ZSTD_isError(r)) goto _output_error; /* must fail : frame requires > 100 bytes */
DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r)); }
/* Unknown srcSize */
DISPLAYLEVEL(3, "test%3i : pledgedSrcSize == 0 behaves properly : ", testNb++);
{ ZSTD_parameters params = ZSTD_getParams(5, 0, 0);
params.fParams.contentSizeFlag = 1;
ZSTD_initCStream_advanced(zc, NULL, 0, params, 0); } /* cstream advanced should write the 0 size field */
inBuff.src = CNBuffer;
inBuff.size = 0;
inBuff.pos = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
if (ZSTD_isError(ZSTD_compressStream(zc, &outBuff, &inBuff))) goto _output_error;
if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error;
cSize = outBuff.pos;
if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != 0) goto _output_error;
ZSTD_resetCStream(zc, 0); /* resetCStream should treat 0 as unknown */
inBuff.src = CNBuffer;
inBuff.size = 0;
inBuff.pos = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
if (ZSTD_isError(ZSTD_compressStream(zc, &outBuff, &inBuff))) goto _output_error;
if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error;
cSize = outBuff.pos;
if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != ZSTD_CONTENTSIZE_UNKNOWN) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
/* Overlen overwriting window data bug */
DISPLAYLEVEL(3, "test%3i : wildcopy doesn't overwrite potential match data : ", testNb++);
{ /* This test has a window size of 1024 bytes and consists of 3 blocks:
1. 'a' repeated 517 times
2. 'b' repeated 516 times
3. a compressed block with no literals and 3 sequence commands:
litlength = 0, offset = 24, match length = 24
litlength = 0, offset = 24, match length = 3 (this one creates an overlength write of length 2*WILDCOPY_OVERLENGTH - 3)
litlength = 0, offset = 1021, match length = 3 (this one will try to read from overwritten data if the buffer is too small) */
const char* testCase =
"\x28\xB5\x2F\xFD\x04\x00\x4C\x00\x00\x10\x61\x61\x01\x00\x00\x2A"
"\x80\x05\x44\x00\x00\x08\x62\x01\x00\x00\x2A\x20\x04\x5D\x00\x00"
"\x00\x03\x40\x00\x00\x64\x60\x27\xB0\xE0\x0C\x67\x62\xCE\xE0";
ZSTD_DStream* zds = ZSTD_createDStream();
ZSTD_initDStream(zds);
inBuff.src = testCase;
inBuff.size = 47;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
while (inBuff.pos < inBuff.size) {
size_t const r = ZSTD_decompressStream(zds, &outBuff, &inBuff);
/* Bug will cause checksum to fail */
if (ZSTD_isError(r)) goto _output_error;
}
ZSTD_freeDStream(zds);
}
DISPLAYLEVEL(3, "OK \n");
_end:
FUZ_freeDictionary(dictionary);
ZSTD_freeCStream(zc);
ZSTD_freeDStream(zd);
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
return testResult;
_output_error:
testResult = 1;
DISPLAY("Error detected in Unit tests ! \n");
goto _end;
}
/* ====== Fuzzer tests ====== */
static size_t findDiff(const void* buf1, const void* buf2, size_t max)
{
const BYTE* b1 = (const BYTE*)buf1;
const BYTE* b2 = (const BYTE*)buf2;
size_t u;
for (u=0; u<max; u++) {
if (b1[u] != b2[u]) break;
}
DISPLAY("Error at position %u / %u \n", (U32)u, (U32)max);
DISPLAY(" %02X %02X %02X :%02X: %02X %02X %02X %02X %02X \n",
b1[u-3], b1[u-2], b1[u-1], b1[u-0], b1[u+1], b1[u+2], b1[u+3], b1[u+4], b1[u+5]);
DISPLAY(" %02X %02X %02X :%02X: %02X %02X %02X %02X %02X \n",
b2[u-3], b2[u-2], b2[u-1], b2[u-0], b2[u+1], b2[u+2], b2[u+3], b2[u+4], b2[u+5]);
return u;
}
static size_t FUZ_rLogLength(U32* seed, U32 logLength)
{
size_t const lengthMask = ((size_t)1 << logLength) - 1;
return (lengthMask+1) + (FUZ_rand(seed) & lengthMask);
}
static size_t FUZ_randomLength(U32* seed, U32 maxLog)
{
U32 const logLength = FUZ_rand(seed) % maxLog;
return FUZ_rLogLength(seed, logLength);
}
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define CHECK(cond, ...) if (cond) { DISPLAY("Error => "); DISPLAY(__VA_ARGS__); \
DISPLAY(" (seed %u, test nb %u) \n", seed, testNb); goto _output_error; }
static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, double compressibility)
{
static const U32 maxSrcLog = 24;
static const U32 maxSampleLog = 19;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
BYTE* cNoiseBuffer[5];
size_t const copyBufferSize= srcBufferSize + (1<<maxSampleLog);
BYTE* const copyBuffer = (BYTE*)malloc (copyBufferSize);
size_t const cBufferSize = ZSTD_compressBound(srcBufferSize);
BYTE* const cBuffer = (BYTE*)malloc (cBufferSize);
size_t const dstBufferSize = srcBufferSize;
BYTE* const dstBuffer = (BYTE*)malloc (dstBufferSize);
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed;
ZSTD_CStream* zc = ZSTD_createCStream(); /* will be reset sometimes */
ZSTD_DStream* zd = ZSTD_createDStream(); /* will be reset sometimes */
ZSTD_DStream* const zd_noise = ZSTD_createDStream();
clock_t const startClock = clock();
const BYTE* dict=NULL; /* can keep same dict on 2 consecutive tests */
size_t dictSize = 0;
U32 oldTestLog = 0;
/* allocations */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] ||
!copyBuffer || !dstBuffer || !cBuffer || !zc || !zd || !zd_noise ,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
memset(copyBuffer, 0x65, copyBufferSize); /* make copyBuffer considered initialized */
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++)
FUZ_rand(&coreSeed);
/* test loop */
for ( ; (testNb <= nbTests) || (FUZ_GetClockSpan(startClock) < g_clockTime) ; testNb++ ) {
U32 lseed;
const BYTE* srcBuffer;
size_t totalTestSize, totalGenSize, cSize;
XXH64_state_t xxhState;
U64 crcOrig;
U32 resetAllowed = 1;
size_t maxTestSize;
/* init */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
lseed = coreSeed ^ prime32;
/* states full reset (deliberately not synchronized) */
/* some issues can only happen when reusing states */
if ((FUZ_rand(&lseed) & 0xFF) == 131) { ZSTD_freeCStream(zc); zc = ZSTD_createCStream(); resetAllowed=0; }
if ((FUZ_rand(&lseed) & 0xFF) == 132) { ZSTD_freeDStream(zd); zd = ZSTD_createDStream(); ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */ }
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* compression init */
if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */
&& oldTestLog /* at least one test happened */ && resetAllowed) {
maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2);
if (maxTestSize >= srcBufferSize) maxTestSize = srcBufferSize-1;
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? 0 : maxTestSize;
size_t const resetError = ZSTD_resetCStream(zc, pledgedSrcSize);
CHECK(ZSTD_isError(resetError), "ZSTD_resetCStream error : %s", ZSTD_getErrorName(resetError));
}
} else {
U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (testLog/3))) + 1;
maxTestSize = FUZ_rLogLength(&lseed, testLog);
oldTestLog = testLog;
/* random dictionary selection */
dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_randomLength(&lseed, maxSampleLog) : 0;
{ size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize);
dict = srcBuffer + dictStart;
}
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? 0 : maxTestSize;
ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize);
params.fParams.checksumFlag = FUZ_rand(&lseed) & 1;
params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1;
{ size_t const initError = ZSTD_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize);
CHECK (ZSTD_isError(initError),"ZSTD_initCStream_advanced error : %s", ZSTD_getErrorName(initError));
} } }
/* multi-segments compression test */
XXH64_reset(&xxhState, 0);
{ ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ;
U32 n;
for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) {
/* compress random chunks into randomly sized dst buffers */
{ size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const srcSize = MIN (maxTestSize-totalTestSize, randomSrcSize);
size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize);
ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 };
outBuff.size = outBuff.pos + dstBuffSize;
{ size_t const compressionError = ZSTD_compressStream(zc, &outBuff, &inBuff);
CHECK (ZSTD_isError(compressionError), "compression error : %s", ZSTD_getErrorName(compressionError)); }
XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos);
memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos);
totalTestSize += inBuff.pos;
}
/* random flush operation, to mess around */
if ((FUZ_rand(&lseed) & 15) == 0) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
{ size_t const flushError = ZSTD_flushStream(zc, &outBuff);
CHECK (ZSTD_isError(flushError), "flush error : %s", ZSTD_getErrorName(flushError));
} } }
/* final frame epilogue */
{ size_t remainingToFlush = (size_t)(-1);
while (remainingToFlush) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
U32 const enoughDstSize = (adjustedDstSize >= remainingToFlush);
outBuff.size = outBuff.pos + adjustedDstSize;
remainingToFlush = ZSTD_endStream(zc, &outBuff);
CHECK (ZSTD_isError(remainingToFlush), "flush error : %s", ZSTD_getErrorName(remainingToFlush));
CHECK (enoughDstSize && remainingToFlush, "ZSTD_endStream() not fully flushed (%u remaining), but enough space available", (U32)remainingToFlush);
} }
crcOrig = XXH64_digest(&xxhState);
cSize = outBuff.pos;
}
/* multi - fragments decompression test */
if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) {
CHECK (ZSTD_isError(ZSTD_resetDStream(zd)), "ZSTD_resetDStream failed");
} else {
ZSTD_initDStream_usingDict(zd, dict, dictSize);
}
{ size_t decompressionResult = 1;
ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
for (totalGenSize = 0 ; decompressionResult ; ) {
size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize);
inBuff.size = inBuff.pos + readCSrcSize;
outBuff.size = inBuff.pos + dstBuffSize;
decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff);
CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult));
}
CHECK (decompressionResult != 0, "frame not fully decoded");
CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size")
CHECK (inBuff.pos != cSize, "compressed data should be fully read")
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize);
CHECK (crcDest!=crcOrig, "decompressed data corrupted");
} }
/*===== noisy/erroneous src decompression test =====*/
/* add some noise */
{ U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2;
U32 nn; for (nn=0; nn<nbNoiseChunks; nn++) {
size_t const randomNoiseSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const noiseSize = MIN((cSize/3) , randomNoiseSize);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseSize);
size_t const cStart = FUZ_rand(&lseed) % (cSize - noiseSize);
memcpy(cBuffer+cStart, srcBuffer+noiseStart, noiseSize);
} }
/* try decompression on noisy data */
ZSTD_initDStream(zd_noise); /* note : no dictionary */
{ ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
while (outBuff.pos < dstBufferSize) {
size_t const randomCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(dstBufferSize - outBuff.pos, randomDstSize);
size_t const adjustedCSrcSize = MIN(cSize - inBuff.pos, randomCSrcSize);
outBuff.size = outBuff.pos + adjustedDstSize;
inBuff.size = inBuff.pos + adjustedCSrcSize;
{ size_t const decompressError = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(decompressError)) break; /* error correctly detected */
/* No forward progress possible */
if (outBuff.pos < outBuff.size && inBuff.pos == cSize) break;
} } } }
DISPLAY("\r%u fuzzer tests completed \n", testNb);
_cleanup:
ZSTD_freeCStream(zc);
ZSTD_freeDStream(zd);
ZSTD_freeDStream(zd_noise);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(copyBuffer);
free(cBuffer);
free(dstBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/* Multi-threading version of fuzzer Tests */
static int fuzzerTests_MT(U32 seed, U32 nbTests, unsigned startTest, double compressibility)
{
static const U32 maxSrcLog = 24;
static const U32 maxSampleLog = 19;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
BYTE* cNoiseBuffer[5];
size_t const copyBufferSize= srcBufferSize + (1<<maxSampleLog);
BYTE* const copyBuffer = (BYTE*)malloc (copyBufferSize);
size_t const cBufferSize = ZSTD_compressBound(srcBufferSize);
BYTE* const cBuffer = (BYTE*)malloc (cBufferSize);
size_t const dstBufferSize = srcBufferSize;
BYTE* const dstBuffer = (BYTE*)malloc (dstBufferSize);
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed;
ZSTDMT_CCtx* zc = ZSTDMT_createCCtx(2); /* will be reset sometimes */
ZSTD_DStream* zd = ZSTD_createDStream(); /* will be reset sometimes */
ZSTD_DStream* const zd_noise = ZSTD_createDStream();
clock_t const startClock = clock();
const BYTE* dict=NULL; /* can keep same dict on 2 consecutive tests */
size_t dictSize = 0;
U32 oldTestLog = 0;
/* allocations */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] ||
!copyBuffer || !dstBuffer || !cBuffer || !zc || !zd || !zd_noise ,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
memset(copyBuffer, 0x65, copyBufferSize); /* make copyBuffer considered initialized */
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++)
FUZ_rand(&coreSeed);
/* test loop */
for ( ; (testNb <= nbTests) || (FUZ_GetClockSpan(startClock) < g_clockTime) ; testNb++ ) {
U32 lseed;
const BYTE* srcBuffer;
size_t totalTestSize, totalGenSize, cSize;
XXH64_state_t xxhState;
U64 crcOrig;
U32 resetAllowed = 1;
size_t maxTestSize;
/* init */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
lseed = coreSeed ^ prime32;
/* states full reset (deliberately not synchronized) */
/* some issues can only happen when reusing states */
if ((FUZ_rand(&lseed) & 0xFF) == 131) {
U32 const nbThreads = (FUZ_rand(&lseed) % 6) + 1;
ZSTDMT_freeCCtx(zc);
zc = ZSTDMT_createCCtx(nbThreads);
resetAllowed=0;
}
if ((FUZ_rand(&lseed) & 0xFF) == 132) {
ZSTD_freeDStream(zd);
zd = ZSTD_createDStream();
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
}
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* compression init */
if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */
&& oldTestLog /* at least one test happened */ && resetAllowed) {
maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2);
if (maxTestSize >= srcBufferSize) maxTestSize = srcBufferSize-1;
{ int const compressionLevel = (FUZ_rand(&lseed) % 5) + 1;
size_t const resetError = ZSTDMT_initCStream(zc, compressionLevel);
CHECK(ZSTD_isError(resetError), "ZSTDMT_initCStream error : %s", ZSTD_getErrorName(resetError));
}
} else {
U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (testLog/3))) + 1;
maxTestSize = FUZ_rLogLength(&lseed, testLog);
oldTestLog = testLog;
/* random dictionary selection */
dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_randomLength(&lseed, maxSampleLog) : 0;
{ size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize);
dict = srcBuffer + dictStart;
}
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? 0 : maxTestSize;
ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize);
DISPLAYLEVEL(5, "Init with windowLog = %u \n", params.cParams.windowLog);
params.fParams.checksumFlag = FUZ_rand(&lseed) & 1;
params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1;
{ size_t const initError = ZSTDMT_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize);
CHECK (ZSTD_isError(initError),"ZSTDMT_initCStream_advanced error : %s", ZSTD_getErrorName(initError)); }
ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_overlapSectionLog, FUZ_rand(&lseed) % 12);
ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_sectionSize, FUZ_rand(&lseed) % (2*maxTestSize+1));
} }
/* multi-segments compression test */
XXH64_reset(&xxhState, 0);
{ ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ;
U32 n;
for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) {
/* compress random chunks into randomly sized dst buffers */
{ size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const srcSize = MIN (maxTestSize-totalTestSize, randomSrcSize);
size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize);
ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 };
outBuff.size = outBuff.pos + dstBuffSize;
DISPLAYLEVEL(5, "Sending %u bytes to compress \n", (U32)srcSize);
{ size_t const compressionError = ZSTDMT_compressStream(zc, &outBuff, &inBuff);
CHECK (ZSTD_isError(compressionError), "compression error : %s", ZSTD_getErrorName(compressionError)); }
DISPLAYLEVEL(5, "%u bytes read by ZSTDMT_compressStream \n", (U32)inBuff.pos);
XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos);
memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos);
totalTestSize += inBuff.pos;
}
/* random flush operation, to mess around */
if ((FUZ_rand(&lseed) & 15) == 0) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
DISPLAYLEVEL(5, "Flushing into dst buffer of size %u \n", (U32)adjustedDstSize);
{ size_t const flushError = ZSTDMT_flushStream(zc, &outBuff);
CHECK (ZSTD_isError(flushError), "flush error : %s", ZSTD_getErrorName(flushError));
} } }
/* final frame epilogue */
{ size_t remainingToFlush = (size_t)(-1);
while (remainingToFlush) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
DISPLAYLEVEL(5, "Ending into dst buffer of size %u \n", (U32)adjustedDstSize);
remainingToFlush = ZSTDMT_endStream(zc, &outBuff);
CHECK (ZSTD_isError(remainingToFlush), "flush error : %s", ZSTD_getErrorName(remainingToFlush));
DISPLAYLEVEL(5, "endStream : remainingToFlush : %u \n", (U32)remainingToFlush);
} }
DISPLAYLEVEL(5, "Frame completed \n");
crcOrig = XXH64_digest(&xxhState);
cSize = outBuff.pos;
}
/* multi - fragments decompression test */
if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) {
CHECK (ZSTD_isError(ZSTD_resetDStream(zd)), "ZSTD_resetDStream failed");
} else {
ZSTD_initDStream_usingDict(zd, dict, dictSize);
}
{ size_t decompressionResult = 1;
ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
for (totalGenSize = 0 ; decompressionResult ; ) {
size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize);
inBuff.size = inBuff.pos + readCSrcSize;
outBuff.size = inBuff.pos + dstBuffSize;
decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff);
CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult));
}
CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize);
CHECK (inBuff.pos != cSize, "compressed data should be fully read (%u != %u)", (U32)inBuff.pos, (U32)cSize);
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize);
CHECK (crcDest!=crcOrig, "decompressed data corrupted");
} }
/*===== noisy/erroneous src decompression test =====*/
/* add some noise */
{ U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2;
U32 nn; for (nn=0; nn<nbNoiseChunks; nn++) {
size_t const randomNoiseSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const noiseSize = MIN((cSize/3) , randomNoiseSize);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseSize);
size_t const cStart = FUZ_rand(&lseed) % (cSize - noiseSize);
memcpy(cBuffer+cStart, srcBuffer+noiseStart, noiseSize);
} }
/* try decompression on noisy data */
ZSTD_initDStream(zd_noise); /* note : no dictionary */
{ ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
while (outBuff.pos < dstBufferSize) {
size_t const randomCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(dstBufferSize - outBuff.pos, randomDstSize);
size_t const adjustedCSrcSize = MIN(cSize - inBuff.pos, randomCSrcSize);
outBuff.size = outBuff.pos + adjustedDstSize;
inBuff.size = inBuff.pos + adjustedCSrcSize;
{ size_t const decompressError = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(decompressError)) break; /* error correctly detected */
/* No forward progress possible */
if (outBuff.pos < outBuff.size && inBuff.pos == cSize) break;
} } } }
DISPLAY("\r%u fuzzer tests completed \n", testNb);
_cleanup:
ZSTDMT_freeCCtx(zc);
ZSTD_freeDStream(zd);
ZSTD_freeDStream(zd_noise);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(copyBuffer);
free(cBuffer);
free(dstBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/*-*******************************************************
* Command line
*********************************************************/
int FUZ_usage(const char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault);
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_COMPRESSIBILITY_DEFAULT);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
int main(int argc, const char** argv)
{
U32 seed=0;
int seedset=0;
int argNb;
int nbTests = nbTestsDefault;
int testNb = 0;
int proba = FUZ_COMPRESSIBILITY_DEFAULT;
int result=0;
int mainPause = 0;
int mtOnly = 0;
const char* const programName = argv[0];
ZSTD_customMem const customMem = { allocFunction, freeFunction, NULL };
ZSTD_customMem const customNULL = { NULL, NULL, NULL };
/* Check command line */
for(argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
if(!argument) continue; /* Protection if argument empty */
/* Parsing commands. Aggregated commands are allowed */
if (argument[0]=='-') {
if (!strcmp(argument, "--mt")) { mtOnly=1; continue; }
argument++;
while (*argument!=0) {
switch(*argument)
{
case 'h':
return FUZ_usage(programName);
case 'v':
argument++;
g_displayLevel++;
break;
case 'q':
argument++;
g_displayLevel--;
break;
case 'p': /* pause at the end */
argument++;
mainPause = 1;
break;
case 'i': /* limit tests by nb of iterations (default) */
argument++;
nbTests=0; g_clockTime=0;
while ((*argument>='0') && (*argument<='9')) {
nbTests *= 10;
nbTests += *argument - '0';
argument++;
}
break;
case 'T': /* limit tests by time */
argument++;
nbTests=0; g_clockTime=0;
while ((*argument>='0') && (*argument<='9')) {
g_clockTime *= 10;
g_clockTime += *argument - '0';
argument++;
}
if (*argument=='m') g_clockTime *=60, argument++;
if (*argument=='n') argument++;
g_clockTime *= CLOCKS_PER_SEC;
break;
case 's': /* manually select seed */
argument++;
seed=0;
seedset=1;
while ((*argument>='0') && (*argument<='9')) {
seed *= 10;
seed += *argument - '0';
argument++;
}
break;
case 't': /* select starting test number */
argument++;
testNb=0;
while ((*argument>='0') && (*argument<='9')) {
testNb *= 10;
testNb += *argument - '0';
argument++;
}
break;
case 'P': /* compressibility % */
argument++;
proba=0;
while ((*argument>='0') && (*argument<='9')) {
proba *= 10;
proba += *argument - '0';
argument++;
}
if (proba<0) proba=0;
if (proba>100) proba=100;
break;
default:
return FUZ_usage(programName);
}
} } } /* for(argNb=1; argNb<argc; argNb++) */
/* Get Seed */
DISPLAY("Starting zstream tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION_STRING);
if (!seedset) {
time_t const t = time(NULL);
U32 const h = XXH32(&t, sizeof(t), 1);
seed = h % 10000;
}
DISPLAY("Seed = %u\n", seed);
if (proba!=FUZ_COMPRESSIBILITY_DEFAULT) DISPLAY("Compressibility : %i%%\n", proba);
if (nbTests<=0) nbTests=1;
if (testNb==0) {
result = basicUnitTests(0, ((double)proba) / 100, customNULL); /* constant seed for predictability */
if (!result) {
DISPLAYLEVEL(3, "Unit tests using customMem :\n")
result = basicUnitTests(0, ((double)proba) / 100, customMem); /* use custom memory allocation functions */
} }
if (!result && !mtOnly) result = fuzzerTests(seed, nbTests, testNb, ((double)proba) / 100);
if (!result) result = fuzzerTests_MT(seed, nbTests, testNb, ((double)proba) / 100);
if (mainPause) {
int unused;
DISPLAY("Press Enter \n");
unused = getchar();
(void)unused;
}
return result;
}