3730 lines
134 KiB
C
3730 lines
134 KiB
C
/* ******************************************************************
|
|
Error codes and messages
|
|
Copyright (C) 2013-2015, Yann Collet
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
#ifndef ERROR_H_MODULE
|
|
#define ERROR_H_MODULE
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <stddef.h> /* size_t, ptrdiff_t */
|
|
#include "zstd_v02.h"
|
|
|
|
/******************************************
|
|
* Compiler-specific
|
|
******************************************/
|
|
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# define ERR_STATIC static inline
|
|
#elif defined(_MSC_VER)
|
|
# define ERR_STATIC static __inline
|
|
#elif defined(__GNUC__)
|
|
# define ERR_STATIC static __attribute__((unused))
|
|
#else
|
|
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
|
#endif
|
|
|
|
|
|
/******************************************
|
|
* Error Management
|
|
******************************************/
|
|
#define PREFIX(name) ZSTD_error_##name
|
|
|
|
#define ERROR(name) (size_t)-PREFIX(name)
|
|
|
|
#define ERROR_LIST(ITEM) \
|
|
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
|
|
ITEM(PREFIX(memory_allocation)) \
|
|
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
|
|
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
|
|
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
|
|
ITEM(PREFIX(maxCode))
|
|
|
|
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
|
|
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
|
|
|
|
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
|
|
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
|
|
|
|
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* ERROR_H_MODULE */
|
|
|
|
|
|
/* ******************************************************************
|
|
mem.h
|
|
low-level memory access routines
|
|
Copyright (C) 2013-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
#ifndef MEM_H_MODULE
|
|
#define MEM_H_MODULE
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/******************************************
|
|
* Includes
|
|
******************************************/
|
|
#include <stddef.h> /* size_t, ptrdiff_t */
|
|
#include <string.h> /* memcpy */
|
|
|
|
|
|
/******************************************
|
|
* Compiler-specific
|
|
******************************************/
|
|
#if defined(__GNUC__)
|
|
# define MEM_STATIC static __attribute__((unused))
|
|
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# define MEM_STATIC static inline
|
|
#elif defined(_MSC_VER)
|
|
# define MEM_STATIC static __inline
|
|
#else
|
|
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* Basic Types
|
|
*****************************************************************/
|
|
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# include <stdint.h>
|
|
typedef uint8_t BYTE;
|
|
typedef uint16_t U16;
|
|
typedef int16_t S16;
|
|
typedef uint32_t U32;
|
|
typedef int32_t S32;
|
|
typedef uint64_t U64;
|
|
typedef int64_t S64;
|
|
#else
|
|
typedef unsigned char BYTE;
|
|
typedef unsigned short U16;
|
|
typedef signed short S16;
|
|
typedef unsigned int U32;
|
|
typedef signed int S32;
|
|
typedef unsigned long long U64;
|
|
typedef signed long long S64;
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* Memory I/O
|
|
*****************************************************************/
|
|
/* MEM_FORCE_MEMORY_ACCESS
|
|
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
|
|
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
|
|
* The below switch allow to select different access method for improved performance.
|
|
* Method 0 (default) : use `memcpy()`. Safe and portable.
|
|
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
|
|
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
|
|
* Method 2 : direct access. This method is portable but violate C standard.
|
|
* It can generate buggy code on targets generating assembly depending on alignment.
|
|
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
|
|
* See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
|
|
* Prefer these methods in priority order (0 > 1 > 2)
|
|
*/
|
|
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
|
|
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
|
|
# define MEM_FORCE_MEMORY_ACCESS 2
|
|
# elif defined(__INTEL_COMPILER) || \
|
|
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
|
|
# define MEM_FORCE_MEMORY_ACCESS 1
|
|
# endif
|
|
#endif
|
|
|
|
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
|
|
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
|
|
|
|
MEM_STATIC unsigned MEM_isLittleEndian(void)
|
|
{
|
|
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
|
|
return one.c[0];
|
|
}
|
|
|
|
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
|
|
|
|
/* violates C standard on structure alignment.
|
|
Only use if no other choice to achieve best performance on target platform */
|
|
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
|
|
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
|
|
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
|
|
|
|
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
|
|
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
|
|
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
|
|
|
|
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
|
|
|
|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
|
|
/* currently only defined for gcc and icc */
|
|
typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
|
|
|
|
MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
|
|
MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
|
|
MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
|
|
|
|
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
|
|
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign*)memPtr)->u32 = value; }
|
|
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign*)memPtr)->u64 = value; }
|
|
|
|
#else
|
|
|
|
/* default method, safe and standard.
|
|
can sometimes prove slower */
|
|
|
|
MEM_STATIC U16 MEM_read16(const void* memPtr)
|
|
{
|
|
U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
|
}
|
|
|
|
MEM_STATIC U32 MEM_read32(const void* memPtr)
|
|
{
|
|
U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
|
}
|
|
|
|
MEM_STATIC U64 MEM_read64(const void* memPtr)
|
|
{
|
|
U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
|
|
}
|
|
|
|
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
|
|
{
|
|
memcpy(memPtr, &value, sizeof(value));
|
|
}
|
|
|
|
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
|
|
{
|
|
memcpy(memPtr, &value, sizeof(value));
|
|
}
|
|
|
|
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
|
|
{
|
|
memcpy(memPtr, &value, sizeof(value));
|
|
}
|
|
|
|
#endif // MEM_FORCE_MEMORY_ACCESS
|
|
|
|
|
|
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
return MEM_read16(memPtr);
|
|
else
|
|
{
|
|
const BYTE* p = (const BYTE*)memPtr;
|
|
return (U16)(p[0] + (p[1]<<8));
|
|
}
|
|
}
|
|
|
|
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
{
|
|
MEM_write16(memPtr, val);
|
|
}
|
|
else
|
|
{
|
|
BYTE* p = (BYTE*)memPtr;
|
|
p[0] = (BYTE)val;
|
|
p[1] = (BYTE)(val>>8);
|
|
}
|
|
}
|
|
|
|
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
return MEM_read32(memPtr);
|
|
else
|
|
{
|
|
const BYTE* p = (const BYTE*)memPtr;
|
|
return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
|
|
}
|
|
}
|
|
|
|
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
{
|
|
MEM_write32(memPtr, val32);
|
|
}
|
|
else
|
|
{
|
|
BYTE* p = (BYTE*)memPtr;
|
|
p[0] = (BYTE)val32;
|
|
p[1] = (BYTE)(val32>>8);
|
|
p[2] = (BYTE)(val32>>16);
|
|
p[3] = (BYTE)(val32>>24);
|
|
}
|
|
}
|
|
|
|
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
return MEM_read64(memPtr);
|
|
else
|
|
{
|
|
const BYTE* p = (const BYTE*)memPtr;
|
|
return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
|
|
+ ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
|
|
}
|
|
}
|
|
|
|
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
{
|
|
MEM_write64(memPtr, val64);
|
|
}
|
|
else
|
|
{
|
|
BYTE* p = (BYTE*)memPtr;
|
|
p[0] = (BYTE)val64;
|
|
p[1] = (BYTE)(val64>>8);
|
|
p[2] = (BYTE)(val64>>16);
|
|
p[3] = (BYTE)(val64>>24);
|
|
p[4] = (BYTE)(val64>>32);
|
|
p[5] = (BYTE)(val64>>40);
|
|
p[6] = (BYTE)(val64>>48);
|
|
p[7] = (BYTE)(val64>>56);
|
|
}
|
|
}
|
|
|
|
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
|
|
{
|
|
if (MEM_32bits())
|
|
return (size_t)MEM_readLE32(memPtr);
|
|
else
|
|
return (size_t)MEM_readLE64(memPtr);
|
|
}
|
|
|
|
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
|
|
{
|
|
if (MEM_32bits())
|
|
MEM_writeLE32(memPtr, (U32)val);
|
|
else
|
|
MEM_writeLE64(memPtr, (U64)val);
|
|
}
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* MEM_H_MODULE */
|
|
|
|
|
|
/* ******************************************************************
|
|
bitstream
|
|
Part of NewGen Entropy library
|
|
header file (to include)
|
|
Copyright (C) 2013-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
#ifndef BITSTREAM_H_MODULE
|
|
#define BITSTREAM_H_MODULE
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/*
|
|
* This API consists of small unitary functions, which highly benefit from being inlined.
|
|
* Since link-time-optimization is not available for all compilers,
|
|
* these functions are defined into a .h to be included.
|
|
*/
|
|
|
|
|
|
/**********************************************
|
|
* bitStream decompression API (read backward)
|
|
**********************************************/
|
|
typedef struct
|
|
{
|
|
size_t bitContainer;
|
|
unsigned bitsConsumed;
|
|
const char* ptr;
|
|
const char* start;
|
|
} BIT_DStream_t;
|
|
|
|
typedef enum { BIT_DStream_unfinished = 0,
|
|
BIT_DStream_endOfBuffer = 1,
|
|
BIT_DStream_completed = 2,
|
|
BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */
|
|
/* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
|
|
|
|
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
|
|
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
|
|
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
|
|
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
|
|
|
|
|
|
/*
|
|
* Start by invoking BIT_initDStream().
|
|
* A chunk of the bitStream is then stored into a local register.
|
|
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
|
|
* You can then retrieve bitFields stored into the local register, **in reverse order**.
|
|
* Local register is manually filled from memory by the BIT_reloadDStream() method.
|
|
* A reload guarantee a minimum of ((8*sizeof(size_t))-7) bits when its result is BIT_DStream_unfinished.
|
|
* Otherwise, it can be less than that, so proceed accordingly.
|
|
* Checking if DStream has reached its end can be performed with BIT_endOfDStream()
|
|
*/
|
|
|
|
|
|
/******************************************
|
|
* unsafe API
|
|
******************************************/
|
|
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
|
|
/* faster, but works only if nbBits >= 1 */
|
|
|
|
|
|
|
|
/****************************************************************
|
|
* Helper functions
|
|
****************************************************************/
|
|
MEM_STATIC unsigned BIT_highbit32 (register U32 val)
|
|
{
|
|
# if defined(_MSC_VER) /* Visual */
|
|
unsigned long r;
|
|
_BitScanReverse ( &r, val );
|
|
return (unsigned) r;
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */
|
|
return 31 - __builtin_clz (val);
|
|
# else /* Software version */
|
|
static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
|
|
U32 v = val;
|
|
unsigned r;
|
|
v |= v >> 1;
|
|
v |= v >> 2;
|
|
v |= v >> 4;
|
|
v |= v >> 8;
|
|
v |= v >> 16;
|
|
r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
|
|
return r;
|
|
# endif
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************
|
|
* bitStream decoding
|
|
**********************************************************/
|
|
|
|
/*!BIT_initDStream
|
|
* Initialize a BIT_DStream_t.
|
|
* @bitD : a pointer to an already allocated BIT_DStream_t structure
|
|
* @srcBuffer must point at the beginning of a bitStream
|
|
* @srcSize must be the exact size of the bitStream
|
|
* @result : size of stream (== srcSize) or an errorCode if a problem is detected
|
|
*/
|
|
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
|
|
{
|
|
if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
|
|
|
|
if (srcSize >= sizeof(size_t)) /* normal case */
|
|
{
|
|
U32 contain32;
|
|
bitD->start = (const char*)srcBuffer;
|
|
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t);
|
|
bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
|
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
|
|
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
|
|
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
|
|
}
|
|
else
|
|
{
|
|
U32 contain32;
|
|
bitD->start = (const char*)srcBuffer;
|
|
bitD->ptr = bitD->start;
|
|
bitD->bitContainer = *(const BYTE*)(bitD->start);
|
|
switch(srcSize)
|
|
{
|
|
case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);
|
|
case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);
|
|
case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);
|
|
case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24;
|
|
case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16;
|
|
case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8;
|
|
default:;
|
|
}
|
|
contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
|
|
if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */
|
|
bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
|
|
bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
|
|
}
|
|
|
|
return srcSize;
|
|
}
|
|
|
|
/*!BIT_lookBits
|
|
* Provides next n bits from local register
|
|
* local register is not modified (bits are still present for next read/look)
|
|
* On 32-bits, maxNbBits==25
|
|
* On 64-bits, maxNbBits==57
|
|
* @return : value extracted
|
|
*/
|
|
MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
|
|
{
|
|
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
|
return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
|
|
}
|
|
|
|
/*! BIT_lookBitsFast :
|
|
* unsafe version; only works only if nbBits >= 1 */
|
|
MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
|
|
{
|
|
const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
|
|
return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
|
|
}
|
|
|
|
MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
|
|
{
|
|
bitD->bitsConsumed += nbBits;
|
|
}
|
|
|
|
/*!BIT_readBits
|
|
* Read next n bits from local register.
|
|
* pay attention to not read more than nbBits contained into local register.
|
|
* @return : extracted value.
|
|
*/
|
|
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
|
|
{
|
|
size_t value = BIT_lookBits(bitD, nbBits);
|
|
BIT_skipBits(bitD, nbBits);
|
|
return value;
|
|
}
|
|
|
|
/*!BIT_readBitsFast :
|
|
* unsafe version; only works only if nbBits >= 1 */
|
|
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
|
|
{
|
|
size_t value = BIT_lookBitsFast(bitD, nbBits);
|
|
BIT_skipBits(bitD, nbBits);
|
|
return value;
|
|
}
|
|
|
|
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
|
|
{
|
|
if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */
|
|
return BIT_DStream_overflow;
|
|
|
|
if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
|
|
{
|
|
bitD->ptr -= bitD->bitsConsumed >> 3;
|
|
bitD->bitsConsumed &= 7;
|
|
bitD->bitContainer = MEM_readLEST(bitD->ptr);
|
|
return BIT_DStream_unfinished;
|
|
}
|
|
if (bitD->ptr == bitD->start)
|
|
{
|
|
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
|
|
return BIT_DStream_completed;
|
|
}
|
|
{
|
|
U32 nbBytes = bitD->bitsConsumed >> 3;
|
|
BIT_DStream_status result = BIT_DStream_unfinished;
|
|
if (bitD->ptr - nbBytes < bitD->start)
|
|
{
|
|
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
|
|
result = BIT_DStream_endOfBuffer;
|
|
}
|
|
bitD->ptr -= nbBytes;
|
|
bitD->bitsConsumed -= nbBytes*8;
|
|
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/*! BIT_endOfDStream
|
|
* @return Tells if DStream has reached its exact end
|
|
*/
|
|
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
|
|
{
|
|
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
|
|
}
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* BITSTREAM_H_MODULE */
|
|
/* ******************************************************************
|
|
Error codes and messages
|
|
Copyright (C) 2013-2015, Yann Collet
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
#ifndef ERROR_H_MODULE
|
|
#define ERROR_H_MODULE
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/******************************************
|
|
* Compiler-specific
|
|
******************************************/
|
|
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
# define ERR_STATIC static inline
|
|
#elif defined(_MSC_VER)
|
|
# define ERR_STATIC static __inline
|
|
#elif defined(__GNUC__)
|
|
# define ERR_STATIC static __attribute__((unused))
|
|
#else
|
|
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
|
|
#endif
|
|
|
|
|
|
/******************************************
|
|
* Error Management
|
|
******************************************/
|
|
#define PREFIX(name) ZSTD_error_##name
|
|
|
|
#define ERROR(name) (size_t)-PREFIX(name)
|
|
|
|
#define ERROR_LIST(ITEM) \
|
|
ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \
|
|
ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \
|
|
ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \
|
|
ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \
|
|
ITEM(PREFIX(maxCode))
|
|
|
|
#define ERROR_GENERATE_ENUM(ENUM) ENUM,
|
|
typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */
|
|
|
|
#define ERROR_CONVERTTOSTRING(STRING) #STRING,
|
|
#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR)
|
|
static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) };
|
|
|
|
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
|
|
|
|
ERR_STATIC const char* ERR_getErrorName(size_t code)
|
|
{
|
|
static const char* codeError = "Unspecified error code";
|
|
if (ERR_isError(code)) return ERR_strings[-(int)(code)];
|
|
return codeError;
|
|
}
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
#endif /* ERROR_H_MODULE */
|
|
/*
|
|
Constructor and Destructor of type FSE_CTable
|
|
Note that its size depends on 'tableLog' and 'maxSymbolValue' */
|
|
typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */
|
|
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
|
|
|
|
|
|
/* ******************************************************************
|
|
FSE : Finite State Entropy coder
|
|
header file for static linking (only)
|
|
Copyright (C) 2013-2015, Yann Collet
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/******************************************
|
|
* Static allocation
|
|
******************************************/
|
|
/* FSE buffer bounds */
|
|
#define FSE_NCOUNTBOUND 512
|
|
#define FSE_BLOCKBOUND(size) (size + (size>>7))
|
|
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
|
|
|
/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */
|
|
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
|
|
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog))
|
|
|
|
|
|
/******************************************
|
|
* FSE advanced API
|
|
******************************************/
|
|
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
|
|
/* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
|
|
|
|
static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
|
|
/* build a fake FSE_DTable, designed to always generate the same symbolValue */
|
|
|
|
|
|
/******************************************
|
|
* FSE symbol decompression API
|
|
******************************************/
|
|
typedef struct
|
|
{
|
|
size_t state;
|
|
const void* table; /* precise table may vary, depending on U16 */
|
|
} FSE_DState_t;
|
|
|
|
|
|
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
|
|
|
|
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
|
|
|
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
|
|
|
|
/*
|
|
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
|
|
You will decode FSE-encoded symbols from the bitStream,
|
|
and also any other bitFields you put in, **in reverse order**.
|
|
|
|
You will need a few variables to track your bitStream. They are :
|
|
|
|
BIT_DStream_t DStream; // Stream context
|
|
FSE_DState_t DState; // State context. Multiple ones are possible
|
|
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
|
|
|
|
The first thing to do is to init the bitStream.
|
|
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
|
|
|
|
You should then retrieve your initial state(s)
|
|
(in reverse flushing order if you have several ones) :
|
|
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
|
|
|
|
You can then decode your data, symbol after symbol.
|
|
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
|
|
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
|
|
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
|
|
|
|
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
|
|
Note : maximum allowed nbBits is 25, for 32-bits compatibility
|
|
size_t bitField = BIT_readBits(&DStream, nbBits);
|
|
|
|
All above operations only read from local register (which size depends on size_t).
|
|
Refueling the register from memory is manually performed by the reload method.
|
|
endSignal = FSE_reloadDStream(&DStream);
|
|
|
|
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
|
|
BIT_DStream_unfinished : there is still some data left into the DStream.
|
|
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
|
|
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
|
|
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
|
|
|
|
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
|
|
to properly detect the exact end of stream.
|
|
After each decoded symbol, check if DStream is fully consumed using this simple test :
|
|
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
|
|
|
|
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
|
|
Checking if DStream has reached its end is performed by :
|
|
BIT_endOfDStream(&DStream);
|
|
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
|
|
FSE_endOfDState(&DState);
|
|
*/
|
|
|
|
|
|
/******************************************
|
|
* FSE unsafe API
|
|
******************************************/
|
|
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
|
|
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
|
|
|
|
|
|
/******************************************
|
|
* Implementation of inline functions
|
|
******************************************/
|
|
|
|
/* decompression */
|
|
|
|
typedef struct {
|
|
U16 tableLog;
|
|
U16 fastMode;
|
|
} FSE_DTableHeader; /* sizeof U32 */
|
|
|
|
typedef struct
|
|
{
|
|
unsigned short newState;
|
|
unsigned char symbol;
|
|
unsigned char nbBits;
|
|
} FSE_decode_t; /* size == U32 */
|
|
|
|
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
|
|
{
|
|
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)dt;
|
|
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
|
|
BIT_reloadDStream(bitD);
|
|
DStatePtr->table = dt + 1;
|
|
}
|
|
|
|
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
|
{
|
|
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
const U32 nbBits = DInfo.nbBits;
|
|
BYTE symbol = DInfo.symbol;
|
|
size_t lowBits = BIT_readBits(bitD, nbBits);
|
|
|
|
DStatePtr->state = DInfo.newState + lowBits;
|
|
return symbol;
|
|
}
|
|
|
|
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
|
|
{
|
|
const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
|
|
const U32 nbBits = DInfo.nbBits;
|
|
BYTE symbol = DInfo.symbol;
|
|
size_t lowBits = BIT_readBitsFast(bitD, nbBits);
|
|
|
|
DStatePtr->state = DInfo.newState + lowBits;
|
|
return symbol;
|
|
}
|
|
|
|
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
|
|
{
|
|
return DStatePtr->state == 0;
|
|
}
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
/* ******************************************************************
|
|
Huff0 : Huffman coder, part of New Generation Entropy library
|
|
header file for static linking (only)
|
|
Copyright (C) 2013-2015, Yann Collet
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- Source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/******************************************
|
|
* Static allocation macros
|
|
******************************************/
|
|
/* Huff0 buffer bounds */
|
|
#define HUF_CTABLEBOUND 129
|
|
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */
|
|
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
|
|
|
|
/* static allocation of Huff0's DTable */
|
|
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<maxTableLog)) /* nb Cells; use unsigned short for X2, unsigned int for X4 */
|
|
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
|
|
unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
|
|
#define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
|
|
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
|
|
#define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
|
|
unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
|
|
|
|
|
|
/******************************************
|
|
* Advanced functions
|
|
******************************************/
|
|
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */
|
|
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbols decoder */
|
|
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* quad-symbols decoder */
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
zstd - standard compression library
|
|
Header File
|
|
Copyright (C) 2014-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- zstd source repository : https://github.com/Cyan4973/zstd
|
|
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
*/
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* *************************************
|
|
* Includes
|
|
***************************************/
|
|
#include <stddef.h> /* size_t */
|
|
|
|
|
|
/* *************************************
|
|
* Version
|
|
***************************************/
|
|
#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */
|
|
#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */
|
|
#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */
|
|
#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE)
|
|
|
|
|
|
/* *************************************
|
|
* Advanced functions
|
|
***************************************/
|
|
typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
/*
|
|
zstd - standard compression library
|
|
Header File for static linking only
|
|
Copyright (C) 2014-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- zstd source repository : https://github.com/Cyan4973/zstd
|
|
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
*/
|
|
|
|
/* The objects defined into this file should be considered experimental.
|
|
* They are not labelled stable, as their prototype may change in the future.
|
|
* You can use them for tests, provide feedback, or if you can endure risk of future changes.
|
|
*/
|
|
|
|
#if defined (__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* *************************************
|
|
* Streaming functions
|
|
***************************************/
|
|
|
|
typedef struct ZSTD_DCtx_s ZSTD_DCtx;
|
|
|
|
/*
|
|
Use above functions alternatively.
|
|
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
|
|
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
|
|
Result is the number of bytes regenerated within 'dst'.
|
|
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
|
|
*/
|
|
|
|
/* *************************************
|
|
* Prefix - version detection
|
|
***************************************/
|
|
#define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/
|
|
|
|
|
|
#if defined (__cplusplus)
|
|
}
|
|
#endif
|
|
/* ******************************************************************
|
|
FSE : Finite State Entropy coder
|
|
Copyright (C) 2013-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
|
|
#ifndef FSE_COMMONDEFS_ONLY
|
|
|
|
/****************************************************************
|
|
* Tuning parameters
|
|
****************************************************************/
|
|
/* MEMORY_USAGE :
|
|
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
|
* Increasing memory usage improves compression ratio
|
|
* Reduced memory usage can improve speed, due to cache effect
|
|
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
|
|
#define FSE_MAX_MEMORY_USAGE 14
|
|
#define FSE_DEFAULT_MEMORY_USAGE 13
|
|
|
|
/* FSE_MAX_SYMBOL_VALUE :
|
|
* Maximum symbol value authorized.
|
|
* Required for proper stack allocation */
|
|
#define FSE_MAX_SYMBOL_VALUE 255
|
|
|
|
|
|
/****************************************************************
|
|
* template functions type & suffix
|
|
****************************************************************/
|
|
#define FSE_FUNCTION_TYPE BYTE
|
|
#define FSE_FUNCTION_EXTENSION
|
|
|
|
|
|
/****************************************************************
|
|
* Byte symbol type
|
|
****************************************************************/
|
|
#endif /* !FSE_COMMONDEFS_ONLY */
|
|
|
|
|
|
/****************************************************************
|
|
* Compiler specifics
|
|
****************************************************************/
|
|
#ifdef _MSC_VER /* Visual Studio */
|
|
# define FORCE_INLINE static __forceinline
|
|
# include <intrin.h> /* For Visual 2005 */
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
|
|
#else
|
|
# ifdef __GNUC__
|
|
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
|
# else
|
|
# define FORCE_INLINE static inline
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* Includes
|
|
****************************************************************/
|
|
#include <stdlib.h> /* malloc, free, qsort */
|
|
#include <string.h> /* memcpy, memset */
|
|
#include <stdio.h> /* printf (debug) */
|
|
|
|
/****************************************************************
|
|
* Constants
|
|
*****************************************************************/
|
|
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
|
|
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
|
|
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
|
|
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
|
|
#define FSE_MIN_TABLELOG 5
|
|
|
|
#define FSE_TABLELOG_ABSOLUTE_MAX 15
|
|
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
|
|
#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* Error Management
|
|
****************************************************************/
|
|
#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
|
|
|
|
/****************************************************************
|
|
* Complex types
|
|
****************************************************************/
|
|
typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
|
|
|
|
|
|
/****************************************************************
|
|
* Templates
|
|
****************************************************************/
|
|
/*
|
|
designed to be included
|
|
for type-specific functions (template emulation in C)
|
|
Objective is to write these functions only once, for improved maintenance
|
|
*/
|
|
|
|
/* safety checks */
|
|
#ifndef FSE_FUNCTION_EXTENSION
|
|
# error "FSE_FUNCTION_EXTENSION must be defined"
|
|
#endif
|
|
#ifndef FSE_FUNCTION_TYPE
|
|
# error "FSE_FUNCTION_TYPE must be defined"
|
|
#endif
|
|
|
|
/* Function names */
|
|
#define FSE_CAT(X,Y) X##Y
|
|
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
|
|
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
|
|
|
|
|
|
/* Function templates */
|
|
|
|
#define FSE_DECODE_TYPE FSE_TYPE_NAME(FSE_decode_t, FSE_FUNCTION_EXTENSION)
|
|
|
|
static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
|
|
|
|
static size_t FSE_FUNCTION_NAME(FSE_buildDTable, FSE_FUNCTION_EXTENSION)
|
|
(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
|
|
{
|
|
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)dt;
|
|
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (dt+1); /* because dt is unsigned, 32-bits aligned on 32-bits */
|
|
const U32 tableSize = 1 << tableLog;
|
|
const U32 tableMask = tableSize-1;
|
|
const U32 step = FSE_tableStep(tableSize);
|
|
U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
|
|
U32 position = 0;
|
|
U32 highThreshold = tableSize-1;
|
|
const S16 largeLimit= (S16)(1 << (tableLog-1));
|
|
U32 noLarge = 1;
|
|
U32 s;
|
|
|
|
/* Sanity Checks */
|
|
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
|
|
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
|
|
/* Init, lay down lowprob symbols */
|
|
DTableH[0].tableLog = (U16)tableLog;
|
|
for (s=0; s<=maxSymbolValue; s++)
|
|
{
|
|
if (normalizedCounter[s]==-1)
|
|
{
|
|
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
|
|
symbolNext[s] = 1;
|
|
}
|
|
else
|
|
{
|
|
if (normalizedCounter[s] >= largeLimit) noLarge=0;
|
|
symbolNext[s] = normalizedCounter[s];
|
|
}
|
|
}
|
|
|
|
/* Spread symbols */
|
|
for (s=0; s<=maxSymbolValue; s++)
|
|
{
|
|
int i;
|
|
for (i=0; i<normalizedCounter[s]; i++)
|
|
{
|
|
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
|
|
position = (position + step) & tableMask;
|
|
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
|
|
}
|
|
}
|
|
|
|
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
|
|
|
|
/* Build Decoding table */
|
|
{
|
|
U32 i;
|
|
for (i=0; i<tableSize; i++)
|
|
{
|
|
FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
|
|
U16 nextState = symbolNext[symbol]++;
|
|
tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
|
|
tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
|
|
}
|
|
}
|
|
|
|
DTableH->fastMode = (U16)noLarge;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifndef FSE_COMMONDEFS_ONLY
|
|
/******************************************
|
|
* FSE helper functions
|
|
******************************************/
|
|
static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
|
|
|
|
|
|
/****************************************************************
|
|
* FSE NCount encoding-decoding
|
|
****************************************************************/
|
|
static short FSE_abs(short a)
|
|
{
|
|
return a<0 ? -a : a;
|
|
}
|
|
|
|
static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
|
|
const void* headerBuffer, size_t hbSize)
|
|
{
|
|
const BYTE* const istart = (const BYTE*) headerBuffer;
|
|
const BYTE* const iend = istart + hbSize;
|
|
const BYTE* ip = istart;
|
|
int nbBits;
|
|
int remaining;
|
|
int threshold;
|
|
U32 bitStream;
|
|
int bitCount;
|
|
unsigned charnum = 0;
|
|
int previous0 = 0;
|
|
|
|
if (hbSize < 4) return ERROR(srcSize_wrong);
|
|
bitStream = MEM_readLE32(ip);
|
|
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
|
|
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
|
|
bitStream >>= 4;
|
|
bitCount = 4;
|
|
*tableLogPtr = nbBits;
|
|
remaining = (1<<nbBits)+1;
|
|
threshold = 1<<nbBits;
|
|
nbBits++;
|
|
|
|
while ((remaining>1) && (charnum<=*maxSVPtr))
|
|
{
|
|
if (previous0)
|
|
{
|
|
unsigned n0 = charnum;
|
|
while ((bitStream & 0xFFFF) == 0xFFFF)
|
|
{
|
|
n0+=24;
|
|
if (ip < iend-5)
|
|
{
|
|
ip+=2;
|
|
bitStream = MEM_readLE32(ip) >> bitCount;
|
|
}
|
|
else
|
|
{
|
|
bitStream >>= 16;
|
|
bitCount+=16;
|
|
}
|
|
}
|
|
while ((bitStream & 3) == 3)
|
|
{
|
|
n0+=3;
|
|
bitStream>>=2;
|
|
bitCount+=2;
|
|
}
|
|
n0 += bitStream & 3;
|
|
bitCount += 2;
|
|
if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
|
|
while (charnum < n0) normalizedCounter[charnum++] = 0;
|
|
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
|
|
{
|
|
ip += bitCount>>3;
|
|
bitCount &= 7;
|
|
bitStream = MEM_readLE32(ip) >> bitCount;
|
|
}
|
|
else
|
|
bitStream >>= 2;
|
|
}
|
|
{
|
|
const short max = (short)((2*threshold-1)-remaining);
|
|
short count;
|
|
|
|
if ((bitStream & (threshold-1)) < (U32)max)
|
|
{
|
|
count = (short)(bitStream & (threshold-1));
|
|
bitCount += nbBits-1;
|
|
}
|
|
else
|
|
{
|
|
count = (short)(bitStream & (2*threshold-1));
|
|
if (count >= threshold) count -= max;
|
|
bitCount += nbBits;
|
|
}
|
|
|
|
count--; /* extra accuracy */
|
|
remaining -= FSE_abs(count);
|
|
normalizedCounter[charnum++] = count;
|
|
previous0 = !count;
|
|
while (remaining < threshold)
|
|
{
|
|
nbBits--;
|
|
threshold >>= 1;
|
|
}
|
|
|
|
{
|
|
if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
|
|
{
|
|
ip += bitCount>>3;
|
|
bitCount &= 7;
|
|
}
|
|
else
|
|
{
|
|
bitCount -= (int)(8 * (iend - 4 - ip));
|
|
ip = iend - 4;
|
|
}
|
|
bitStream = MEM_readLE32(ip) >> (bitCount & 31);
|
|
}
|
|
}
|
|
}
|
|
if (remaining != 1) return ERROR(GENERIC);
|
|
*maxSVPtr = charnum-1;
|
|
|
|
ip += (bitCount+7)>>3;
|
|
if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
|
|
return ip-istart;
|
|
}
|
|
|
|
|
|
/*********************************************************
|
|
* Decompression (Byte symbols)
|
|
*********************************************************/
|
|
static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
|
|
{
|
|
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)dt;
|
|
FSE_decode_t* const cell = (FSE_decode_t*)(dt + 1); /* because dt is unsigned */
|
|
|
|
DTableH->tableLog = 0;
|
|
DTableH->fastMode = 0;
|
|
|
|
cell->newState = 0;
|
|
cell->symbol = symbolValue;
|
|
cell->nbBits = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
|
|
{
|
|
FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)dt;
|
|
FSE_decode_t* const dinfo = (FSE_decode_t*)(dt + 1); /* because dt is unsigned */
|
|
const unsigned tableSize = 1 << nbBits;
|
|
const unsigned tableMask = tableSize - 1;
|
|
const unsigned maxSymbolValue = tableMask;
|
|
unsigned s;
|
|
|
|
/* Sanity checks */
|
|
if (nbBits < 1) return ERROR(GENERIC); /* min size */
|
|
|
|
/* Build Decoding Table */
|
|
DTableH->tableLog = (U16)nbBits;
|
|
DTableH->fastMode = 1;
|
|
for (s=0; s<=maxSymbolValue; s++)
|
|
{
|
|
dinfo[s].newState = 0;
|
|
dinfo[s].symbol = (BYTE)s;
|
|
dinfo[s].nbBits = (BYTE)nbBits;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
|
|
void* dst, size_t maxDstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const FSE_DTable* dt, const unsigned fast)
|
|
{
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const omax = op + maxDstSize;
|
|
BYTE* const olimit = omax-3;
|
|
|
|
BIT_DStream_t bitD;
|
|
FSE_DState_t state1;
|
|
FSE_DState_t state2;
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */
|
|
if (FSE_isError(errorCode)) return errorCode;
|
|
|
|
FSE_initDState(&state1, &bitD, dt);
|
|
FSE_initDState(&state2, &bitD, dt);
|
|
|
|
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
|
|
|
|
/* 4 symbols per loop */
|
|
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
|
|
{
|
|
op[0] = FSE_GETSYMBOL(&state1);
|
|
|
|
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
BIT_reloadDStream(&bitD);
|
|
|
|
op[1] = FSE_GETSYMBOL(&state2);
|
|
|
|
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
|
|
|
|
op[2] = FSE_GETSYMBOL(&state1);
|
|
|
|
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
|
|
BIT_reloadDStream(&bitD);
|
|
|
|
op[3] = FSE_GETSYMBOL(&state2);
|
|
}
|
|
|
|
/* tail */
|
|
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
|
|
while (1)
|
|
{
|
|
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
|
|
break;
|
|
|
|
*op++ = FSE_GETSYMBOL(&state1);
|
|
|
|
if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
|
|
break;
|
|
|
|
*op++ = FSE_GETSYMBOL(&state2);
|
|
}
|
|
|
|
/* end ? */
|
|
if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
|
|
return op-ostart;
|
|
|
|
if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */
|
|
|
|
return ERROR(corruption_detected);
|
|
}
|
|
|
|
|
|
static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const FSE_DTable* dt)
|
|
{
|
|
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)dt;
|
|
const U32 fastMode = DTableH->fastMode;
|
|
|
|
/* select fast mode (static) */
|
|
if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
|
|
return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
|
|
}
|
|
|
|
|
|
static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
const BYTE* const istart = (const BYTE*)cSrc;
|
|
const BYTE* ip = istart;
|
|
short counting[FSE_MAX_SYMBOL_VALUE+1];
|
|
DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */
|
|
unsigned tableLog;
|
|
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
|
|
size_t errorCode;
|
|
|
|
if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */
|
|
|
|
/* normal FSE decoding mode */
|
|
errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
|
|
if (FSE_isError(errorCode)) return errorCode;
|
|
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */
|
|
ip += errorCode;
|
|
cSrcSize -= errorCode;
|
|
|
|
errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
|
|
if (FSE_isError(errorCode)) return errorCode;
|
|
|
|
/* always return, even if it is an error code */
|
|
return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
|
|
}
|
|
|
|
|
|
|
|
#endif /* FSE_COMMONDEFS_ONLY */
|
|
/* ******************************************************************
|
|
Huff0 : Huffman coder, part of New Generation Entropy library
|
|
Copyright (C) 2013-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
|
|
/****************************************************************
|
|
* Compiler specifics
|
|
****************************************************************/
|
|
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
/* inline is defined */
|
|
#elif defined(_MSC_VER)
|
|
# define inline __inline
|
|
#else
|
|
# define inline /* disable inline */
|
|
#endif
|
|
|
|
|
|
#ifdef _MSC_VER /* Visual Studio */
|
|
# define FORCE_INLINE static __forceinline
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
#else
|
|
# ifdef __GNUC__
|
|
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
|
# else
|
|
# define FORCE_INLINE static inline
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* Includes
|
|
****************************************************************/
|
|
#include <stdlib.h> /* malloc, free, qsort */
|
|
#include <string.h> /* memcpy, memset */
|
|
#include <stdio.h> /* printf (debug) */
|
|
|
|
/****************************************************************
|
|
* Error Management
|
|
****************************************************************/
|
|
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
|
|
|
|
/******************************************
|
|
* Helper functions
|
|
******************************************/
|
|
static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
|
|
|
|
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
|
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
|
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
|
|
#define HUF_MAX_SYMBOL_VALUE 255
|
|
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
|
|
# error "HUF_MAX_TABLELOG is too large !"
|
|
#endif
|
|
|
|
|
|
|
|
/*********************************************************
|
|
* Huff0 : Huffman block decompression
|
|
*********************************************************/
|
|
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
|
|
|
|
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
|
|
|
|
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
|
|
|
|
/*! HUF_readStats
|
|
Read compact Huffman tree, saved by HUF_writeCTable
|
|
@huffWeight : destination buffer
|
|
@return : size read from `src`
|
|
*/
|
|
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|
U32* nbSymbolsPtr, U32* tableLogPtr,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
U32 weightTotal;
|
|
U32 tableLog;
|
|
const BYTE* ip = (const BYTE*) src;
|
|
size_t iSize = ip[0];
|
|
size_t oSize;
|
|
U32 n;
|
|
|
|
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
if (iSize >= 128) /* special header */
|
|
{
|
|
if (iSize >= (242)) /* RLE */
|
|
{
|
|
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
|
|
oSize = l[iSize-242];
|
|
memset(huffWeight, 1, hwSize);
|
|
iSize = 0;
|
|
}
|
|
else /* Incompressible */
|
|
{
|
|
oSize = iSize - 127;
|
|
iSize = ((oSize+1)/2);
|
|
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
if (oSize >= hwSize) return ERROR(corruption_detected);
|
|
ip += 1;
|
|
for (n=0; n<oSize; n+=2)
|
|
{
|
|
huffWeight[n] = ip[n/2] >> 4;
|
|
huffWeight[n+1] = ip[n/2] & 15;
|
|
}
|
|
}
|
|
}
|
|
else /* header compressed with FSE (normal case) */
|
|
{
|
|
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
|
|
if (FSE_isError(oSize)) return oSize;
|
|
}
|
|
|
|
/* collect weight stats */
|
|
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
|
|
weightTotal = 0;
|
|
for (n=0; n<oSize; n++)
|
|
{
|
|
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
|
rankStats[huffWeight[n]]++;
|
|
weightTotal += (1 << huffWeight[n]) >> 1;
|
|
}
|
|
|
|
/* get last non-null symbol weight (implied, total must be 2^n) */
|
|
tableLog = BIT_highbit32(weightTotal) + 1;
|
|
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
|
{
|
|
U32 total = 1 << tableLog;
|
|
U32 rest = total - weightTotal;
|
|
U32 verif = 1 << BIT_highbit32(rest);
|
|
U32 lastWeight = BIT_highbit32(rest) + 1;
|
|
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
|
huffWeight[oSize] = (BYTE)lastWeight;
|
|
rankStats[lastWeight]++;
|
|
}
|
|
|
|
/* check tree construction validity */
|
|
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
|
|
|
|
/* results */
|
|
*nbSymbolsPtr = (U32)(oSize+1);
|
|
*tableLogPtr = tableLog;
|
|
return iSize+1;
|
|
}
|
|
|
|
|
|
/**************************/
|
|
/* single-symbol decoding */
|
|
/**************************/
|
|
|
|
static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
|
|
U32 tableLog = 0;
|
|
const BYTE* ip = (const BYTE*) src;
|
|
size_t iSize = ip[0];
|
|
U32 nbSymbols = 0;
|
|
U32 n;
|
|
U32 nextRankStart;
|
|
HUF_DEltX2* const dt = (HUF_DEltX2*)(DTable + 1);
|
|
|
|
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
|
|
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
|
|
DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
|
|
|
|
/* Prepare ranks */
|
|
nextRankStart = 0;
|
|
for (n=1; n<=tableLog; n++)
|
|
{
|
|
U32 current = nextRankStart;
|
|
nextRankStart += (rankVal[n] << (n-1));
|
|
rankVal[n] = current;
|
|
}
|
|
|
|
/* fill DTable */
|
|
for (n=0; n<nbSymbols; n++)
|
|
{
|
|
const U32 w = huffWeight[n];
|
|
const U32 length = (1 << w) >> 1;
|
|
U32 i;
|
|
HUF_DEltX2 D;
|
|
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
|
|
for (i = rankVal[w]; i < rankVal[w] + length; i++)
|
|
dt[i] = D;
|
|
rankVal[w] += length;
|
|
}
|
|
|
|
return iSize;
|
|
}
|
|
|
|
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
|
|
const BYTE c = dt[val].byte;
|
|
BIT_skipBits(Dstream, dt[val].nbBits);
|
|
return c;
|
|
}
|
|
|
|
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
|
|
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
|
|
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
|
|
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
|
|
{
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 4 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
|
|
{
|
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
|
|
/* no more data to retrieve from bitstream, hence no need to reload */
|
|
while (p < pEnd)
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
|
|
return pEnd-pStart;
|
|
}
|
|
|
|
|
|
static size_t HUF_decompress4X2_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U16* DTable)
|
|
{
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)DTable) +1;
|
|
const U32 dtLog = DTable[0];
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
|
|
{
|
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
|
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
|
|
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
|
|
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
|
|
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
}
|
|
|
|
|
|
static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
size_t errorCode;
|
|
|
|
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += errorCode;
|
|
cSrcSize -= errorCode;
|
|
|
|
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/***************************/
|
|
/* double-symbols decoding */
|
|
/***************************/
|
|
|
|
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
|
|
const U32* rankValOrigin, const int minWeight,
|
|
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
|
|
U32 nbBitsBaseline, U16 baseSeq)
|
|
{
|
|
HUF_DEltX4 DElt;
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
U32 s;
|
|
|
|
/* get pre-calculated rankVal */
|
|
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
|
|
/* fill skipped values */
|
|
if (minWeight>1)
|
|
{
|
|
U32 i, skipSize = rankVal[minWeight];
|
|
MEM_writeLE16(&(DElt.sequence), baseSeq);
|
|
DElt.nbBits = (BYTE)(consumed);
|
|
DElt.length = 1;
|
|
for (i = 0; i < skipSize; i++)
|
|
DTable[i] = DElt;
|
|
}
|
|
|
|
/* fill DTable */
|
|
for (s=0; s<sortedListSize; s++) /* note : sortedSymbols already skipped */
|
|
{
|
|
const U32 symbol = sortedSymbols[s].symbol;
|
|
const U32 weight = sortedSymbols[s].weight;
|
|
const U32 nbBits = nbBitsBaseline - weight;
|
|
const U32 length = 1 << (sizeLog-nbBits);
|
|
const U32 start = rankVal[weight];
|
|
U32 i = start;
|
|
const U32 end = start + length;
|
|
|
|
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
|
|
DElt.nbBits = (BYTE)(nbBits + consumed);
|
|
DElt.length = 2;
|
|
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
|
|
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
|
|
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
|
|
const sortedSymbol_t* sortedList, const U32 sortedListSize,
|
|
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
|
|
const U32 nbBitsBaseline)
|
|
{
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
|
|
const U32 minBits = nbBitsBaseline - maxWeight;
|
|
U32 s;
|
|
|
|
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
|
|
/* fill DTable */
|
|
for (s=0; s<sortedListSize; s++)
|
|
{
|
|
const U16 symbol = sortedList[s].symbol;
|
|
const U32 weight = sortedList[s].weight;
|
|
const U32 nbBits = nbBitsBaseline - weight;
|
|
const U32 start = rankVal[weight];
|
|
const U32 length = 1 << (targetLog-nbBits);
|
|
|
|
if (targetLog-nbBits >= minBits) /* enough room for a second symbol */
|
|
{
|
|
U32 sortedRank;
|
|
int minWeight = nbBits + scaleLog;
|
|
if (minWeight < 1) minWeight = 1;
|
|
sortedRank = rankStart[minWeight];
|
|
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
|
|
rankValOrigin[nbBits], minWeight,
|
|
sortedList+sortedRank, sortedListSize-sortedRank,
|
|
nbBitsBaseline, symbol);
|
|
}
|
|
else
|
|
{
|
|
U32 i;
|
|
const U32 end = start + length;
|
|
HUF_DEltX4 DElt;
|
|
|
|
MEM_writeLE16(&(DElt.sequence), symbol);
|
|
DElt.nbBits = (BYTE)(nbBits);
|
|
DElt.length = 1;
|
|
for (i = start; i < end; i++)
|
|
DTable[i] = DElt;
|
|
}
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
|
|
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
|
|
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
|
|
U32* const rankStart = rankStart0+1;
|
|
rankVal_t rankVal;
|
|
U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
|
const U32 memLog = DTable[0];
|
|
const BYTE* ip = (const BYTE*) src;
|
|
size_t iSize = ip[0];
|
|
HUF_DEltX4* const dt = ((HUF_DEltX4*)DTable) + 1;
|
|
|
|
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
|
|
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
|
|
|
|
/* find maxWeight */
|
|
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
|
|
|
/* Get start index of each weight */
|
|
{
|
|
U32 w, nextRankStart = 0;
|
|
for (w=1; w<=maxW; w++)
|
|
{
|
|
U32 current = nextRankStart;
|
|
nextRankStart += rankStats[w];
|
|
rankStart[w] = current;
|
|
}
|
|
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
|
sizeOfSort = nextRankStart;
|
|
}
|
|
|
|
/* sort symbols by weight */
|
|
{
|
|
U32 s;
|
|
for (s=0; s<nbSymbols; s++)
|
|
{
|
|
U32 w = weightList[s];
|
|
U32 r = rankStart[w]++;
|
|
sortedSymbol[r].symbol = (BYTE)s;
|
|
sortedSymbol[r].weight = (BYTE)w;
|
|
}
|
|
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
|
}
|
|
|
|
/* Build rankVal */
|
|
{
|
|
const U32 minBits = tableLog+1 - maxW;
|
|
U32 nextRankVal = 0;
|
|
U32 w, consumed;
|
|
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
|
|
U32* rankVal0 = rankVal[0];
|
|
for (w=1; w<=maxW; w++)
|
|
{
|
|
U32 current = nextRankVal;
|
|
nextRankVal += rankStats[w] << (w+rescale);
|
|
rankVal0[w] = current;
|
|
}
|
|
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
|
|
{
|
|
U32* rankValPtr = rankVal[consumed];
|
|
for (w = 1; w <= maxW; w++)
|
|
{
|
|
rankValPtr[w] = rankVal0[w] >> consumed;
|
|
}
|
|
}
|
|
}
|
|
|
|
HUF_fillDTableX4(dt, memLog,
|
|
sortedSymbol, sizeOfSort,
|
|
rankStart0, rankVal, maxW,
|
|
tableLog+1);
|
|
|
|
return iSize;
|
|
}
|
|
|
|
|
|
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, dt+val, 2);
|
|
BIT_skipBits(DStream, dt[val].nbBits);
|
|
return dt[val].length;
|
|
}
|
|
|
|
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, dt+val, 1);
|
|
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
|
|
else
|
|
{
|
|
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
|
|
{
|
|
BIT_skipBits(DStream, dt[val].nbBits);
|
|
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
|
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
|
|
{
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 8 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
|
|
{
|
|
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
|
|
while (p <= pEnd-2)
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
|
|
|
if (p < pEnd)
|
|
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
|
|
|
|
return p-pStart;
|
|
}
|
|
|
|
|
|
|
|
static size_t HUF_decompress4X4_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)DTable) +1;
|
|
const U32 dtLog = DTable[0];
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
|
|
{
|
|
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
|
|
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
|
|
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
|
|
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
|
|
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
}
|
|
|
|
|
|
static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/**********************************/
|
|
/* quad-symbol decoding */
|
|
/**********************************/
|
|
typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
|
|
typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
|
|
|
|
/* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
|
|
static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
|
|
const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
|
|
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
|
|
const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
|
|
{
|
|
const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
|
|
const int minBits = nbBitsBaseline - maxWeight;
|
|
const U32 level = DDesc.nbBytes;
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
U32 symbolStartPos, s;
|
|
|
|
/* local rankVal, will be modified */
|
|
memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
|
|
|
|
/* fill skipped values */
|
|
if (minWeight>1)
|
|
{
|
|
U32 i;
|
|
const U32 skipSize = rankVal[minWeight];
|
|
for (i = 0; i < skipSize; i++)
|
|
{
|
|
DSequence[i] = baseSeq;
|
|
DDescription[i] = DDesc;
|
|
}
|
|
}
|
|
|
|
/* fill DTable */
|
|
DDesc.nbBytes++;
|
|
symbolStartPos = rankStart[minWeight];
|
|
for (s=symbolStartPos; s<sortedListSize; s++)
|
|
{
|
|
const BYTE symbol = sortedSymbols[s].symbol;
|
|
const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */
|
|
const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */
|
|
const int totalBits = consumed+nbBits;
|
|
const U32 start = rankVal[weight];
|
|
const U32 length = 1 << (sizeLog-nbBits);
|
|
baseSeq.byte[level] = symbol;
|
|
DDesc.nbBits = (BYTE)totalBits;
|
|
|
|
if ((level<3) && (sizeLog-totalBits >= minBits)) /* enough room for another symbol */
|
|
{
|
|
int nextMinWeight = totalBits + scaleLog;
|
|
if (nextMinWeight < 1) nextMinWeight = 1;
|
|
HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
|
|
rankValOrigin, totalBits, nextMinWeight, maxWeight,
|
|
sortedSymbols, sortedListSize, rankStart,
|
|
nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */
|
|
}
|
|
else
|
|
{
|
|
U32 i;
|
|
const U32 end = start + length;
|
|
for (i = start; i < end; i++)
|
|
{
|
|
DDescription[i] = DDesc;
|
|
DSequence[i] = baseSeq;
|
|
}
|
|
}
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
|
|
/* note : same preparation as X4 */
|
|
static size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
|
|
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
|
|
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
|
|
U32* const rankStart = rankStart0+1;
|
|
U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
|
rankVal_t rankVal;
|
|
const U32 memLog = DTable[0];
|
|
const BYTE* ip = (const BYTE*) src;
|
|
size_t iSize = ip[0];
|
|
|
|
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */
|
|
|
|
/* find maxWeight */
|
|
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
|
|
|
/* Get start index of each weight */
|
|
{
|
|
U32 w, nextRankStart = 0;
|
|
for (w=1; w<=maxW; w++)
|
|
{
|
|
U32 current = nextRankStart;
|
|
nextRankStart += rankStats[w];
|
|
rankStart[w] = current;
|
|
}
|
|
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
|
sizeOfSort = nextRankStart;
|
|
}
|
|
|
|
/* sort symbols by weight */
|
|
{
|
|
U32 s;
|
|
for (s=0; s<nbSymbols; s++)
|
|
{
|
|
U32 w = weightList[s];
|
|
U32 r = rankStart[w]++;
|
|
sortedSymbol[r].symbol = (BYTE)s;
|
|
sortedSymbol[r].weight = (BYTE)w;
|
|
}
|
|
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
|
}
|
|
|
|
/* Build rankVal */
|
|
{
|
|
const U32 minBits = tableLog+1 - maxW;
|
|
U32 nextRankVal = 0;
|
|
U32 w, consumed;
|
|
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
|
|
U32* rankVal0 = rankVal[0];
|
|
for (w=1; w<=maxW; w++)
|
|
{
|
|
U32 current = nextRankVal;
|
|
nextRankVal += rankStats[w] << (w+rescale);
|
|
rankVal0[w] = current;
|
|
}
|
|
for (consumed = minBits; consumed <= memLog - minBits; consumed++)
|
|
{
|
|
U32* rankValPtr = rankVal[consumed];
|
|
for (w = 1; w <= maxW; w++)
|
|
{
|
|
rankValPtr[w] = rankVal0[w] >> consumed;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* fill tables */
|
|
{
|
|
HUF_DDescX6* DDescription = (HUF_DDescX6*)(DTable+1);
|
|
HUF_DSeqX6* DSequence = (HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(memLog-1)));
|
|
HUF_DSeqX6 DSeq;
|
|
HUF_DDescX6 DDesc;
|
|
DSeq.sequence = 0;
|
|
DDesc.nbBits = 0;
|
|
DDesc.nbBytes = 0;
|
|
HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
|
|
(const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
|
|
sortedSymbol, sizeOfSort, rankStart0,
|
|
tableLog+1, DSeq, DDesc);
|
|
}
|
|
|
|
return iSize;
|
|
}
|
|
|
|
|
|
static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, ds+val, sizeof(HUF_DSeqX6));
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
return dd[val].nbBytes;
|
|
}
|
|
|
|
static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
|
|
const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
U32 length = dd[val].nbBytes;
|
|
if (length <= maxL)
|
|
{
|
|
memcpy(op, ds+val, length);
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
return length;
|
|
}
|
|
memcpy(op, ds+val, maxL);
|
|
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
|
|
{
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
|
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
|
}
|
|
return maxL;
|
|
}
|
|
|
|
|
|
#define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
|
|
ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
|
|
|
|
#define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
|
|
|
|
static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
|
|
{
|
|
const HUF_DDescX6* dd = (const HUF_DDescX6*)(DTable+1);
|
|
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(dtLog-1)));
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 16 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16))
|
|
{
|
|
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end, up to 4 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
|
|
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
|
|
|
|
while (p <= pEnd-4)
|
|
HUF_DECODE_SYMBOLX6_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
|
|
|
while (p < pEnd)
|
|
p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
|
|
|
|
return p-pStart;
|
|
}
|
|
|
|
|
|
|
|
static size_t HUF_decompress4X6_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const U32 dtLog = DTable[0];
|
|
const HUF_DDescX6* dd = (const HUF_DDescX6*)(DTable+1);
|
|
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)(DTable + 1 + ((size_t)1<<(dtLog-1)));
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-64 symbols per loop (4-16 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; )
|
|
{
|
|
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
|
|
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
|
|
HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
|
|
HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
|
|
HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
}
|
|
|
|
|
|
static size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/**********************************/
|
|
/* Generic decompression selector */
|
|
/**********************************/
|
|
|
|
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
|
|
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
|
|
{
|
|
/* single, double, quad */
|
|
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
|
|
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
|
|
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
|
|
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
|
|
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
|
|
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
|
|
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
|
|
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
|
|
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
|
|
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
|
|
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
|
|
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
|
|
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
|
|
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
|
|
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
|
|
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
|
|
};
|
|
|
|
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
|
|
|
static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
|
|
/* estimate decompression time */
|
|
U32 Q;
|
|
const U32 D256 = (U32)(dstSize >> 8);
|
|
U32 Dtime[3];
|
|
U32 algoNb = 0;
|
|
int n;
|
|
|
|
/* validation checks */
|
|
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
|
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
|
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
|
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
|
|
|
/* decoder timing evaluation */
|
|
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
|
|
for (n=0; n<3; n++)
|
|
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
|
|
|
|
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
|
|
|
|
if (Dtime[1] < Dtime[0]) algoNb = 1;
|
|
if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
|
|
|
|
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
|
|
|
|
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
|
|
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
|
|
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
|
|
}
|
|
/*
|
|
zstd - standard compression library
|
|
Copyright (C) 2014-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- zstd source repository : https://github.com/Cyan4973/zstd
|
|
- ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
*/
|
|
|
|
/* ***************************************************************
|
|
* Tuning parameters
|
|
*****************************************************************/
|
|
/*!
|
|
* MEMORY_USAGE :
|
|
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
|
|
* Increasing memory usage improves compression ratio
|
|
* Reduced memory usage can improve speed, due to cache effect
|
|
*/
|
|
#define ZSTD_MEMORY_USAGE 17
|
|
|
|
/*!
|
|
* HEAPMODE :
|
|
* Select how default compression functions will allocate memory for their hash table,
|
|
* in memory stack (0, fastest), or in memory heap (1, requires malloc())
|
|
* Note that compression context is fairly large, as a consequence heap memory is recommended.
|
|
*/
|
|
#ifndef ZSTD_HEAPMODE
|
|
# define ZSTD_HEAPMODE 1
|
|
#endif /* ZSTD_HEAPMODE */
|
|
|
|
/*!
|
|
* LEGACY_SUPPORT :
|
|
* decompressor can decode older formats (starting from Zstd 0.1+)
|
|
*/
|
|
#ifndef ZSTD_LEGACY_SUPPORT
|
|
# define ZSTD_LEGACY_SUPPORT 1
|
|
#endif
|
|
|
|
|
|
/* *******************************************************
|
|
* Includes
|
|
*********************************************************/
|
|
#include <stdlib.h> /* calloc */
|
|
#include <string.h> /* memcpy, memmove */
|
|
#include <stdio.h> /* debug : printf */
|
|
|
|
|
|
/* *******************************************************
|
|
* Compiler specifics
|
|
*********************************************************/
|
|
#ifdef __AVX2__
|
|
# include <immintrin.h> /* AVX2 intrinsics */
|
|
#endif
|
|
|
|
#ifdef _MSC_VER /* Visual Studio */
|
|
# define FORCE_INLINE static __forceinline
|
|
# include <intrin.h> /* For Visual 2005 */
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
|
|
#else
|
|
# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
|
|
# ifdef __GNUC__
|
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
|
# else
|
|
# define FORCE_INLINE static inline
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/* *******************************************************
|
|
* Constants
|
|
*********************************************************/
|
|
#define HASH_LOG (ZSTD_MEMORY_USAGE - 2)
|
|
#define HASH_TABLESIZE (1 << HASH_LOG)
|
|
#define HASH_MASK (HASH_TABLESIZE - 1)
|
|
|
|
#define KNUTH 2654435761
|
|
|
|
#define BIT7 128
|
|
#define BIT6 64
|
|
#define BIT5 32
|
|
#define BIT4 16
|
|
#define BIT1 2
|
|
#define BIT0 1
|
|
|
|
#define KB *(1 <<10)
|
|
#define MB *(1 <<20)
|
|
#define GB *(1U<<30)
|
|
|
|
#define BLOCKSIZE (128 KB) /* define, for static allocation */
|
|
#define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
|
|
#define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
|
|
#define IS_RAW BIT0
|
|
#define IS_RLE BIT1
|
|
|
|
#define WORKPLACESIZE (BLOCKSIZE*3)
|
|
#define MINMATCH 4
|
|
#define MLbits 7
|
|
#define LLbits 6
|
|
#define Offbits 5
|
|
#define MaxML ((1<<MLbits )-1)
|
|
#define MaxLL ((1<<LLbits )-1)
|
|
#define MaxOff 31
|
|
#define LitFSELog 11
|
|
#define MLFSELog 10
|
|
#define LLFSELog 10
|
|
#define OffFSELog 9
|
|
#define MAX(a,b) ((a)<(b)?(b):(a))
|
|
#define MaxSeq MAX(MaxLL, MaxML)
|
|
|
|
#define LITERAL_NOENTROPY 63
|
|
#define COMMAND_NOENTROPY 7 /* to remove */
|
|
|
|
static const size_t ZSTD_blockHeaderSize = 3;
|
|
static const size_t ZSTD_frameHeaderSize = 4;
|
|
|
|
|
|
/* *******************************************************
|
|
* Memory operations
|
|
**********************************************************/
|
|
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
|
|
|
|
static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
|
|
|
|
#define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
|
|
|
|
/*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
|
|
static void ZSTD_wildcopy(void* dst, const void* src, size_t length)
|
|
{
|
|
const BYTE* ip = (const BYTE*)src;
|
|
BYTE* op = (BYTE*)dst;
|
|
BYTE* const oend = op + length;
|
|
do COPY8(op, ip) while (op < oend);
|
|
}
|
|
|
|
|
|
/* **************************************
|
|
* Local structures
|
|
****************************************/
|
|
typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
|
|
|
|
typedef struct
|
|
{
|
|
blockType_t blockType;
|
|
U32 origSize;
|
|
} blockProperties_t;
|
|
|
|
typedef struct {
|
|
void* buffer;
|
|
U32* offsetStart;
|
|
U32* offset;
|
|
BYTE* offCodeStart;
|
|
BYTE* offCode;
|
|
BYTE* litStart;
|
|
BYTE* lit;
|
|
BYTE* litLengthStart;
|
|
BYTE* litLength;
|
|
BYTE* matchLengthStart;
|
|
BYTE* matchLength;
|
|
BYTE* dumpsStart;
|
|
BYTE* dumps;
|
|
} seqStore_t;
|
|
|
|
|
|
/* *************************************
|
|
* Error Management
|
|
***************************************/
|
|
/*! ZSTD_isError
|
|
* tells if a return value is an error code */
|
|
static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
|
|
|
|
|
|
/* *************************************
|
|
* Function body to include
|
|
***************************************/
|
|
static size_t ZSTD_read_ARCH(const void* p) { size_t r; memcpy(&r, p, sizeof(r)); return r; }
|
|
|
|
MEM_STATIC unsigned ZSTD_NbCommonBytes (register size_t val)
|
|
{
|
|
if (MEM_isLittleEndian())
|
|
{
|
|
if (MEM_64bits())
|
|
{
|
|
# if defined(_MSC_VER) && defined(_WIN64) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
unsigned long r = 0;
|
|
_BitScanForward64( &r, (U64)val );
|
|
return (int)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
return (__builtin_ctzll((U64)val) >> 3);
|
|
# else
|
|
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
|
|
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
|
|
# endif
|
|
}
|
|
else /* 32 bits */
|
|
{
|
|
# if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
unsigned long r;
|
|
_BitScanForward( &r, (U32)val );
|
|
return (int)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
return (__builtin_ctz((U32)val) >> 3);
|
|
# else
|
|
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
|
|
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
|
|
# endif
|
|
}
|
|
}
|
|
else /* Big Endian CPU */
|
|
{
|
|
if (MEM_32bits())
|
|
{
|
|
# if defined(_MSC_VER) && defined(_WIN64) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
unsigned long r = 0;
|
|
_BitScanReverse64( &r, val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
return (__builtin_clzll(val) >> 3);
|
|
# else
|
|
unsigned r;
|
|
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
|
|
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
|
|
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
|
|
r += (!val);
|
|
return r;
|
|
# endif
|
|
}
|
|
else /* 32 bits */
|
|
{
|
|
# if defined(_MSC_VER) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
unsigned long r = 0;
|
|
_BitScanReverse( &r, (unsigned long)val );
|
|
return (unsigned)(r>>3);
|
|
# elif defined(__GNUC__) && (__GNUC__ >= 3) && !defined(LZ4_FORCE_SW_BITCOUNT)
|
|
return (__builtin_clz((U32)val) >> 3);
|
|
# else
|
|
unsigned r;
|
|
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
|
|
r += (!val);
|
|
return r;
|
|
# endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* pInLimit)
|
|
{
|
|
const BYTE* const pStart = pIn;
|
|
|
|
while ((pIn<pInLimit-(sizeof(size_t)-1)))
|
|
{
|
|
size_t diff = ZSTD_read_ARCH(pMatch) ^ ZSTD_read_ARCH(pIn);
|
|
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
|
|
pIn += ZSTD_NbCommonBytes(diff);
|
|
return (size_t)(pIn - pStart);
|
|
}
|
|
|
|
if (MEM_32bits()) if ((pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
|
|
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
|
|
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
|
|
return (size_t)(pIn - pStart);
|
|
}
|
|
|
|
|
|
/* *************************************************************
|
|
* Decompression section
|
|
***************************************************************/
|
|
struct ZSTD_DCtx_s
|
|
{
|
|
U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
|
|
U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
|
|
U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
|
|
void* previousDstEnd;
|
|
void* base;
|
|
size_t expected;
|
|
blockType_t bType;
|
|
U32 phase;
|
|
const BYTE* litPtr;
|
|
size_t litBufSize;
|
|
size_t litSize;
|
|
BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
|
|
}; /* typedef'd to ZSTD_Dctx within "zstd_static.h" */
|
|
|
|
|
|
static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
|
|
{
|
|
const BYTE* const in = (const BYTE* const)src;
|
|
BYTE headerFlags;
|
|
U32 cSize;
|
|
|
|
if (srcSize < 3) return ERROR(srcSize_wrong);
|
|
|
|
headerFlags = *in;
|
|
cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
|
|
|
|
bpPtr->blockType = (blockType_t)(headerFlags >> 6);
|
|
bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
|
|
|
|
if (bpPtr->blockType == bt_end) return 0;
|
|
if (bpPtr->blockType == bt_rle) return 1;
|
|
return cSize;
|
|
}
|
|
|
|
static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
|
|
memcpy(dst, src, srcSize);
|
|
return srcSize;
|
|
}
|
|
|
|
|
|
/** ZSTD_decompressLiterals
|
|
@return : nb of bytes read from src, or an error code*/
|
|
static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
const BYTE* ip = (const BYTE*)src;
|
|
|
|
const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
|
|
const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
|
|
|
|
if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
|
|
if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
|
|
|
|
if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
|
|
|
|
*maxDstSizePtr = litSize;
|
|
return litCSize + 5;
|
|
}
|
|
|
|
|
|
/** ZSTD_decodeLiteralsBlock
|
|
@return : nb of bytes read from src (< srcSize )*/
|
|
static size_t ZSTD_decodeLiteralsBlock(void* ctx,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
|
|
const BYTE* const istart = (const BYTE* const)src;
|
|
|
|
/* any compressed block with literals segment must be at least this size */
|
|
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
|
|
|
|
switch(*istart & 3)
|
|
{
|
|
default:
|
|
case 0:
|
|
{
|
|
size_t litSize = BLOCKSIZE;
|
|
const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
|
|
dctx->litPtr = dctx->litBuffer;
|
|
dctx->litBufSize = BLOCKSIZE;
|
|
dctx->litSize = litSize;
|
|
return readSize; /* works if it's an error too */
|
|
}
|
|
case IS_RAW:
|
|
{
|
|
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
|
|
if (litSize > srcSize-11) /* risk of reading too far with wildcopy */
|
|
{
|
|
if (litSize > srcSize-3) return ERROR(corruption_detected);
|
|
memcpy(dctx->litBuffer, istart, litSize);
|
|
dctx->litBufSize = BLOCKSIZE;
|
|
dctx->litSize = litSize;
|
|
return litSize+3;
|
|
}
|
|
/* direct reference into compressed stream */
|
|
dctx->litPtr = istart+3;
|
|
dctx->litBufSize = srcSize-3;
|
|
dctx->litSize = litSize;
|
|
return litSize+3;
|
|
}
|
|
case IS_RLE:
|
|
{
|
|
const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2; /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
|
|
if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
|
|
memset(dctx->litBuffer, istart[3], litSize);
|
|
dctx->litPtr = dctx->litBuffer;
|
|
dctx->litBufSize = BLOCKSIZE;
|
|
dctx->litSize = litSize;
|
|
return 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
|
|
FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
const BYTE* const istart = (const BYTE* const)src;
|
|
const BYTE* ip = istart;
|
|
const BYTE* const iend = istart + srcSize;
|
|
U32 LLtype, Offtype, MLtype;
|
|
U32 LLlog, Offlog, MLlog;
|
|
size_t dumpsLength;
|
|
|
|
/* check */
|
|
if (srcSize < 5) return ERROR(srcSize_wrong);
|
|
|
|
/* SeqHead */
|
|
*nbSeq = MEM_readLE16(ip); ip+=2;
|
|
LLtype = *ip >> 6;
|
|
Offtype = (*ip >> 4) & 3;
|
|
MLtype = (*ip >> 2) & 3;
|
|
if (*ip & 2)
|
|
{
|
|
dumpsLength = ip[2];
|
|
dumpsLength += ip[1] << 8;
|
|
ip += 3;
|
|
}
|
|
else
|
|
{
|
|
dumpsLength = ip[1];
|
|
dumpsLength += (ip[0] & 1) << 8;
|
|
ip += 2;
|
|
}
|
|
*dumpsPtr = ip;
|
|
ip += dumpsLength;
|
|
*dumpsLengthPtr = dumpsLength;
|
|
|
|
/* check */
|
|
if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
|
|
|
|
/* sequences */
|
|
{
|
|
S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */
|
|
size_t headerSize;
|
|
|
|
/* Build DTables */
|
|
switch(LLtype)
|
|
{
|
|
U32 max;
|
|
case bt_rle :
|
|
LLlog = 0;
|
|
FSE_buildDTable_rle(DTableLL, *ip++); break;
|
|
case bt_raw :
|
|
LLlog = LLbits;
|
|
FSE_buildDTable_raw(DTableLL, LLbits); break;
|
|
default :
|
|
max = MaxLL;
|
|
headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
|
|
if (FSE_isError(headerSize)) return ERROR(GENERIC);
|
|
if (LLlog > LLFSELog) return ERROR(corruption_detected);
|
|
ip += headerSize;
|
|
FSE_buildDTable(DTableLL, norm, max, LLlog);
|
|
}
|
|
|
|
switch(Offtype)
|
|
{
|
|
U32 max;
|
|
case bt_rle :
|
|
Offlog = 0;
|
|
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
|
|
FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
|
|
break;
|
|
case bt_raw :
|
|
Offlog = Offbits;
|
|
FSE_buildDTable_raw(DTableOffb, Offbits); break;
|
|
default :
|
|
max = MaxOff;
|
|
headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
|
|
if (FSE_isError(headerSize)) return ERROR(GENERIC);
|
|
if (Offlog > OffFSELog) return ERROR(corruption_detected);
|
|
ip += headerSize;
|
|
FSE_buildDTable(DTableOffb, norm, max, Offlog);
|
|
}
|
|
|
|
switch(MLtype)
|
|
{
|
|
U32 max;
|
|
case bt_rle :
|
|
MLlog = 0;
|
|
if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
|
|
FSE_buildDTable_rle(DTableML, *ip++); break;
|
|
case bt_raw :
|
|
MLlog = MLbits;
|
|
FSE_buildDTable_raw(DTableML, MLbits); break;
|
|
default :
|
|
max = MaxML;
|
|
headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
|
|
if (FSE_isError(headerSize)) return ERROR(GENERIC);
|
|
if (MLlog > MLFSELog) return ERROR(corruption_detected);
|
|
ip += headerSize;
|
|
FSE_buildDTable(DTableML, norm, max, MLlog);
|
|
}
|
|
}
|
|
|
|
return ip-istart;
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
size_t litLength;
|
|
size_t offset;
|
|
size_t matchLength;
|
|
} seq_t;
|
|
|
|
typedef struct {
|
|
BIT_DStream_t DStream;
|
|
FSE_DState_t stateLL;
|
|
FSE_DState_t stateOffb;
|
|
FSE_DState_t stateML;
|
|
size_t prevOffset;
|
|
const BYTE* dumps;
|
|
const BYTE* dumpsEnd;
|
|
} seqState_t;
|
|
|
|
|
|
static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
|
|
{
|
|
size_t litLength;
|
|
size_t prevOffset;
|
|
size_t offset;
|
|
size_t matchLength;
|
|
const BYTE* dumps = seqState->dumps;
|
|
const BYTE* const de = seqState->dumpsEnd;
|
|
|
|
/* Literal length */
|
|
litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
|
|
prevOffset = litLength ? seq->offset : seqState->prevOffset;
|
|
seqState->prevOffset = seq->offset;
|
|
if (litLength == MaxLL)
|
|
{
|
|
U32 add = *dumps++;
|
|
if (add < 255) litLength += add;
|
|
else
|
|
{
|
|
litLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
|
|
dumps += 3;
|
|
}
|
|
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
|
|
}
|
|
|
|
/* Offset */
|
|
{
|
|
static const size_t offsetPrefix[MaxOff+1] = { /* note : size_t faster than U32 */
|
|
1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
|
|
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
|
|
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
|
|
U32 offsetCode, nbBits;
|
|
offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); /* <= maxOff, by table construction */
|
|
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
|
|
nbBits = offsetCode - 1;
|
|
if (offsetCode==0) nbBits = 0; /* cmove */
|
|
offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
|
|
if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
|
|
if (offsetCode==0) offset = prevOffset; /* cmove */
|
|
}
|
|
|
|
/* MatchLength */
|
|
matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
|
|
if (matchLength == MaxML)
|
|
{
|
|
U32 add = *dumps++;
|
|
if (add < 255) matchLength += add;
|
|
else
|
|
{
|
|
matchLength = MEM_readLE32(dumps) & 0xFFFFFF; /* no pb : dumps is always followed by seq tables > 1 byte */
|
|
dumps += 3;
|
|
}
|
|
if (dumps >= de) dumps = de-1; /* late correction, to avoid read overflow (data is now corrupted anyway) */
|
|
}
|
|
matchLength += MINMATCH;
|
|
|
|
/* save result */
|
|
seq->litLength = litLength;
|
|
seq->offset = offset;
|
|
seq->matchLength = matchLength;
|
|
seqState->dumps = dumps;
|
|
}
|
|
|
|
|
|
static size_t ZSTD_execSequence(BYTE* op,
|
|
seq_t sequence,
|
|
const BYTE** litPtr, const BYTE* const litLimit,
|
|
BYTE* const base, BYTE* const oend)
|
|
{
|
|
static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */
|
|
static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* substracted */
|
|
const BYTE* const ostart = op;
|
|
BYTE* const oLitEnd = op + sequence.litLength;
|
|
BYTE* const oMatchEnd = op + sequence.litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */
|
|
BYTE* const oend_8 = oend-8;
|
|
const BYTE* const litEnd = *litPtr + sequence.litLength;
|
|
|
|
/* checks */
|
|
if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of 8 from oend */
|
|
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */
|
|
if (litEnd > litLimit-8) return ERROR(corruption_detected); /* overRead beyond lit buffer */
|
|
|
|
/* copy Literals */
|
|
ZSTD_wildcopy(op, *litPtr, sequence.litLength); /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
|
|
op = oLitEnd;
|
|
*litPtr = litEnd; /* update for next sequence */
|
|
|
|
/* copy Match */
|
|
{
|
|
const BYTE* match = op - sequence.offset;
|
|
|
|
/* check */
|
|
if (sequence.offset > (size_t)op) return ERROR(corruption_detected); /* address space overflow test (this test seems kept by clang optimizer) */
|
|
//if (match > op) return ERROR(corruption_detected); /* address space overflow test (is clang optimizer removing this test ?) */
|
|
if (match < base) return ERROR(corruption_detected);
|
|
|
|
/* close range match, overlap */
|
|
if (sequence.offset < 8)
|
|
{
|
|
const int dec64 = dec64table[sequence.offset];
|
|
op[0] = match[0];
|
|
op[1] = match[1];
|
|
op[2] = match[2];
|
|
op[3] = match[3];
|
|
match += dec32table[sequence.offset];
|
|
ZSTD_copy4(op+4, match);
|
|
match -= dec64;
|
|
}
|
|
else
|
|
{
|
|
ZSTD_copy8(op, match);
|
|
}
|
|
op += 8; match += 8;
|
|
|
|
if (oMatchEnd > oend-12)
|
|
{
|
|
if (op < oend_8)
|
|
{
|
|
ZSTD_wildcopy(op, match, oend_8 - op);
|
|
match += oend_8 - op;
|
|
op = oend_8;
|
|
}
|
|
while (op < oMatchEnd) *op++ = *match++;
|
|
}
|
|
else
|
|
{
|
|
ZSTD_wildcopy(op, match, sequence.matchLength-8); /* works even if matchLength < 8 */
|
|
}
|
|
}
|
|
|
|
return oMatchEnd - ostart;
|
|
}
|
|
|
|
static size_t ZSTD_decompressSequences(
|
|
void* ctx,
|
|
void* dst, size_t maxDstSize,
|
|
const void* seqStart, size_t seqSize)
|
|
{
|
|
ZSTD_DCtx* dctx = (ZSTD_DCtx*)ctx;
|
|
const BYTE* ip = (const BYTE*)seqStart;
|
|
const BYTE* const iend = ip + seqSize;
|
|
BYTE* const ostart = (BYTE* const)dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const oend = ostart + maxDstSize;
|
|
size_t errorCode, dumpsLength;
|
|
const BYTE* litPtr = dctx->litPtr;
|
|
const BYTE* const litMax = litPtr + dctx->litBufSize;
|
|
const BYTE* const litEnd = litPtr + dctx->litSize;
|
|
int nbSeq;
|
|
const BYTE* dumps;
|
|
U32* DTableLL = dctx->LLTable;
|
|
U32* DTableML = dctx->MLTable;
|
|
U32* DTableOffb = dctx->OffTable;
|
|
BYTE* const base = (BYTE*) (dctx->base);
|
|
|
|
/* Build Decoding Tables */
|
|
errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
|
|
DTableLL, DTableML, DTableOffb,
|
|
ip, iend-ip);
|
|
if (ZSTD_isError(errorCode)) return errorCode;
|
|
ip += errorCode;
|
|
|
|
/* Regen sequences */
|
|
{
|
|
seq_t sequence;
|
|
seqState_t seqState;
|
|
|
|
memset(&sequence, 0, sizeof(sequence));
|
|
seqState.dumps = dumps;
|
|
seqState.dumpsEnd = dumps + dumpsLength;
|
|
seqState.prevOffset = 1;
|
|
errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
|
|
if (ERR_isError(errorCode)) return ERROR(corruption_detected);
|
|
FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
|
|
FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
|
|
FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
|
|
|
|
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (nbSeq>0) ; )
|
|
{
|
|
size_t oneSeqSize;
|
|
nbSeq--;
|
|
ZSTD_decodeSequence(&sequence, &seqState);
|
|
oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litMax, base, oend);
|
|
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
|
|
op += oneSeqSize;
|
|
}
|
|
|
|
/* check if reached exact end */
|
|
if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */
|
|
if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */
|
|
|
|
/* last literal segment */
|
|
{
|
|
size_t lastLLSize = litEnd - litPtr;
|
|
if (litPtr > litEnd) return ERROR(corruption_detected);
|
|
if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
|
|
if (op != litPtr) memmove(op, litPtr, lastLLSize);
|
|
op += lastLLSize;
|
|
}
|
|
}
|
|
|
|
return op-ostart;
|
|
}
|
|
|
|
|
|
static size_t ZSTD_decompressBlock(
|
|
void* ctx,
|
|
void* dst, size_t maxDstSize,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
/* blockType == blockCompressed */
|
|
const BYTE* ip = (const BYTE*)src;
|
|
|
|
/* Decode literals sub-block */
|
|
size_t litCSize = ZSTD_decodeLiteralsBlock(ctx, src, srcSize);
|
|
if (ZSTD_isError(litCSize)) return litCSize;
|
|
ip += litCSize;
|
|
srcSize -= litCSize;
|
|
|
|
return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize);
|
|
}
|
|
|
|
|
|
static size_t ZSTD_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
const BYTE* ip = (const BYTE*)src;
|
|
const BYTE* iend = ip + srcSize;
|
|
BYTE* const ostart = (BYTE* const)dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const oend = ostart + maxDstSize;
|
|
size_t remainingSize = srcSize;
|
|
U32 magicNumber;
|
|
blockProperties_t blockProperties;
|
|
|
|
/* Frame Header */
|
|
if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
|
|
magicNumber = MEM_readLE32(src);
|
|
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
|
|
ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize;
|
|
|
|
/* Loop on each block */
|
|
while (1)
|
|
{
|
|
size_t decodedSize=0;
|
|
size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
|
|
if (ZSTD_isError(cBlockSize)) return cBlockSize;
|
|
|
|
ip += ZSTD_blockHeaderSize;
|
|
remainingSize -= ZSTD_blockHeaderSize;
|
|
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
|
|
|
|
switch(blockProperties.blockType)
|
|
{
|
|
case bt_compressed:
|
|
decodedSize = ZSTD_decompressBlock(ctx, op, oend-op, ip, cBlockSize);
|
|
break;
|
|
case bt_raw :
|
|
decodedSize = ZSTD_copyUncompressedBlock(op, oend-op, ip, cBlockSize);
|
|
break;
|
|
case bt_rle :
|
|
return ERROR(GENERIC); /* not yet supported */
|
|
break;
|
|
case bt_end :
|
|
/* end of frame */
|
|
if (remainingSize) return ERROR(srcSize_wrong);
|
|
break;
|
|
default:
|
|
return ERROR(GENERIC); /* impossible */
|
|
}
|
|
if (cBlockSize == 0) break; /* bt_end */
|
|
|
|
if (ZSTD_isError(decodedSize)) return decodedSize;
|
|
op += decodedSize;
|
|
ip += cBlockSize;
|
|
remainingSize -= cBlockSize;
|
|
}
|
|
|
|
return op-ostart;
|
|
}
|
|
|
|
static size_t ZSTD_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
ZSTD_DCtx ctx;
|
|
ctx.base = dst;
|
|
return ZSTD_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize);
|
|
}
|
|
|
|
|
|
/*******************************
|
|
* Streaming Decompression API
|
|
*******************************/
|
|
|
|
static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
|
|
{
|
|
dctx->expected = ZSTD_frameHeaderSize;
|
|
dctx->phase = 0;
|
|
dctx->previousDstEnd = NULL;
|
|
dctx->base = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static ZSTD_DCtx* ZSTD_createDCtx(void)
|
|
{
|
|
ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
|
|
if (dctx==NULL) return NULL;
|
|
ZSTD_resetDCtx(dctx);
|
|
return dctx;
|
|
}
|
|
|
|
static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
|
|
{
|
|
free(dctx);
|
|
return 0;
|
|
}
|
|
|
|
static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
|
|
{
|
|
return dctx->expected;
|
|
}
|
|
|
|
static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
/* Sanity check */
|
|
if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
|
|
if (dst != ctx->previousDstEnd) /* not contiguous */
|
|
ctx->base = dst;
|
|
|
|
/* Decompress : frame header */
|
|
if (ctx->phase == 0)
|
|
{
|
|
/* Check frame magic header */
|
|
U32 magicNumber = MEM_readLE32(src);
|
|
if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown);
|
|
ctx->phase = 1;
|
|
ctx->expected = ZSTD_blockHeaderSize;
|
|
return 0;
|
|
}
|
|
|
|
/* Decompress : block header */
|
|
if (ctx->phase == 1)
|
|
{
|
|
blockProperties_t bp;
|
|
size_t blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
|
|
if (ZSTD_isError(blockSize)) return blockSize;
|
|
if (bp.blockType == bt_end)
|
|
{
|
|
ctx->expected = 0;
|
|
ctx->phase = 0;
|
|
}
|
|
else
|
|
{
|
|
ctx->expected = blockSize;
|
|
ctx->bType = bp.blockType;
|
|
ctx->phase = 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Decompress : block content */
|
|
{
|
|
size_t rSize;
|
|
switch(ctx->bType)
|
|
{
|
|
case bt_compressed:
|
|
rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize);
|
|
break;
|
|
case bt_raw :
|
|
rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize);
|
|
break;
|
|
case bt_rle :
|
|
return ERROR(GENERIC); /* not yet handled */
|
|
break;
|
|
case bt_end : /* should never happen (filtered at phase 1) */
|
|
rSize = 0;
|
|
break;
|
|
default:
|
|
return ERROR(GENERIC);
|
|
}
|
|
ctx->phase = 1;
|
|
ctx->expected = ZSTD_blockHeaderSize;
|
|
ctx->previousDstEnd = (void*)( ((char*)dst) + rSize);
|
|
return rSize;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/* wrapper layer */
|
|
|
|
unsigned ZSTDv02_isError(size_t code)
|
|
{
|
|
return ZSTD_isError(code);
|
|
}
|
|
|
|
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
|
|
const void* src, size_t compressedSize)
|
|
{
|
|
return ZSTD_decompress(dst, maxOriginalSize, src, compressedSize);
|
|
}
|
|
|
|
ZSTDv02_Dctx* ZSTDv02_createDCtx(void)
|
|
{
|
|
return (ZSTDv02_Dctx*)ZSTD_createDCtx();
|
|
}
|
|
|
|
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx)
|
|
{
|
|
return ZSTD_freeDCtx((ZSTD_DCtx*)dctx);
|
|
}
|
|
|
|
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx)
|
|
{
|
|
return ZSTD_resetDCtx((ZSTD_DCtx*)dctx);
|
|
}
|
|
|
|
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx)
|
|
{
|
|
return ZSTD_nextSrcSizeToDecompress((ZSTD_DCtx*)dctx);
|
|
}
|
|
|
|
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
return ZSTD_decompressContinue((ZSTD_DCtx*)dctx, dst, maxDstSize, src, srcSize);
|
|
}
|