zstd/programs/fuzzer.c
2016-06-27 15:28:45 +02:00

874 lines
39 KiB
C

/*
Fuzzer test tool for zstd
Copyright (C) Yann Collet 2014-2016
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You can contact the author at :
- ZSTD homepage : http://www.zstd.net
*/
/*-************************************
* Compiler specific
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# define _CRT_SECURE_NO_WARNINGS /* fgets */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
/*-************************************
* Includes
**************************************/
#include <stdlib.h> /* free */
#include <stdio.h> /* fgets, sscanf */
#include <sys/timeb.h> /* timeb */
#include <string.h> /* strcmp */
#include <time.h> /* clock_t */
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressContinue, ZSTD_compressBlock */
#include "zstd.h" /* ZSTD_VERSION_STRING, ZSTD_getErrorCode */
#include "zdict.h" /* ZDICT_trainFromBuffer */
#include "datagen.h" /* RDG_genBuffer */
#include "mem.h"
#define XXH_STATIC_LINKING_ONLY
#include "xxhash.h" /* XXH64 */
/*-************************************
* Constants
**************************************/
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
static const U32 FUZ_compressibility_default = 50;
static const U32 nbTestsDefault = 30000;
/*-************************************
* Display Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static U32 g_displayLevel = 2;
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if ((FUZ_clockSpan(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
{ g_displayClock = clock(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stdout); } }
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 150 / 1000;
static clock_t g_displayClock = 0;
/*-*******************************************************
* Fuzzer functions
*********************************************************/
#define MIN(a,b) ((a)<(b)?(a):(b))
static clock_t FUZ_clockSpan(clock_t cStart)
{
return clock() - cStart; /* works even when overflow; max span ~ 30mn */
}
#define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r)))
static unsigned FUZ_rand(unsigned* src)
{
static const U32 prime1 = 2654435761U;
static const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
static unsigned FUZ_highbit32(U32 v32)
{
unsigned nbBits = 0;
if (v32==0) return 0;
while (v32) v32 >>= 1, nbBits++;
return nbBits;
}
#define CHECK_V(var, fn) size_t const var = fn; if (ZSTD_isError(var)) goto _output_error
#define CHECK(fn) { CHECK_V(err, fn); }
#define CHECKPLUS(var, fn, more) { CHECK_V(var, fn); more; }
static int basicUnitTests(U32 seed, double compressibility)
{
size_t const CNBuffSize = 5 MB;
void* const CNBuffer = malloc(CNBuffSize);
void* const compressedBuffer = malloc(ZSTD_compressBound(CNBuffSize));
void* const decodedBuffer = malloc(CNBuffSize);
int testResult = 0;
U32 testNb=0;
size_t cSize;
/* Create compressible noise */
if (!CNBuffer || !compressedBuffer || !decodedBuffer) {
DISPLAY("Not enough memory, aborting\n");
testResult = 1;
goto _end;
}
RDG_genBuffer(CNBuffer, CNBuffSize, compressibility, 0., seed);
/* Basic tests */
DISPLAYLEVEL(4, "test%3i : compress %u bytes : ", testNb++, (U32)CNBuffSize);
CHECKPLUS(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(CNBuffSize),
CNBuffer, CNBuffSize, 1),
cSize=r );
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(4, "test%3i : decompress %u bytes : ", testNb++, (U32)CNBuffSize);
CHECKPLUS( r , ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize),
if (r != CNBuffSize) goto _output_error);
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : check decompressed result : ", testNb++);
{ size_t u;
for (u=0; u<CNBuffSize; u++) {
if (((BYTE*)decodedBuffer)[u] != ((BYTE*)CNBuffer)[u]) goto _output_error;;
} }
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : decompress with 1 missing byte : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize-1);
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode((size_t)r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : decompress with 1 too much byte : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, compressedBuffer, cSize+1);
if (!ZSTD_isError(r)) goto _output_error;
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
/* Dictionary and CCtx Duplication tests */
{ ZSTD_CCtx* const ctxOrig = ZSTD_createCCtx();
ZSTD_CCtx* const ctxDuplicated = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
static const size_t dictSize = 551;
DISPLAYLEVEL(4, "test%3i : copy context too soon : ", testNb++);
{ size_t const copyResult = ZSTD_copyCCtx(ctxDuplicated, ctxOrig);
if (!ZSTD_isError(copyResult)) goto _output_error; } /* error must be detected */
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : load dictionary into context : ", testNb++);
CHECK( ZSTD_compressBegin_usingDict(ctxOrig, CNBuffer, dictSize, 2) );
CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig) );
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : compress with flat dictionary : ", testNb++);
cSize = 0;
CHECKPLUS(r, ZSTD_compressContinue(ctxOrig, compressedBuffer, ZSTD_compressBound(CNBuffSize),
(const char*)CNBuffer + dictSize, CNBuffSize - dictSize),
cSize += r);
CHECKPLUS(r, ZSTD_compressEnd(ctxOrig, (char*)compressedBuffer+cSize, ZSTD_compressBound(CNBuffSize)-cSize),
cSize += r);
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(4, "test%3i : frame built with flat dictionary should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
CNBuffer, dictSize),
if (r != CNBuffSize - dictSize) goto _output_error);
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : compress with duplicated context : ", testNb++);
{ size_t const cSizeOrig = cSize;
cSize = 0;
CHECKPLUS(r, ZSTD_compressContinue(ctxDuplicated, compressedBuffer, ZSTD_compressBound(CNBuffSize),
(const char*)CNBuffer + dictSize, CNBuffSize - dictSize),
cSize += r);
CHECKPLUS(r, ZSTD_compressEnd(ctxDuplicated, (char*)compressedBuffer+cSize, ZSTD_compressBound(CNBuffSize)-cSize),
cSize += r);
if (cSize != cSizeOrig) goto _output_error; /* should be identical ==> have same size */
}
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(4, "test%3i : frame built with duplicated context should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
CNBuffer, dictSize),
if (r != CNBuffSize - dictSize) goto _output_error);
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : check content size on duplicated context : ", testNb++);
{ size_t const testSize = CNBuffSize / 3;
{ ZSTD_parameters p = ZSTD_getParams(2, testSize, dictSize);
p.fParams.contentSizeFlag = 1;
CHECK( ZSTD_compressBegin_advanced(ctxOrig, CNBuffer, dictSize, p, testSize-1) );
}
CHECK( ZSTD_copyCCtx(ctxDuplicated, ctxOrig) );
CHECKPLUS(r, ZSTD_compressContinue(ctxDuplicated, compressedBuffer, ZSTD_compressBound(testSize),
(const char*)CNBuffer + dictSize, CNBuffSize - dictSize),
cSize = r);
{ ZSTD_frameParams fp;
if (ZSTD_getFrameParams(&fp, compressedBuffer, cSize)) goto _output_error;
if ((fp.frameContentSize != testSize) && (fp.frameContentSize != 0)) goto _output_error;
} }
DISPLAYLEVEL(4, "OK \n");
ZSTD_freeCCtx(ctxOrig);
ZSTD_freeCCtx(ctxDuplicated);
ZSTD_freeDCtx(dctx);
}
/* Dictionary and dictBuilder tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
size_t dictSize = 16 KB;
void* dictBuffer = malloc(dictSize);
size_t const totalSampleSize = 1 MB;
size_t const sampleUnitSize = 8 KB;
U32 const nbSamples = (U32)(totalSampleSize / sampleUnitSize);
size_t* const samplesSizes = (size_t*) malloc(nbSamples * sizeof(size_t));
if (dictBuffer==NULL || samplesSizes==NULL) {
free(dictBuffer);
free(samplesSizes);
goto _output_error;
}
DISPLAYLEVEL(4, "test%3i : dictBuilder : ", testNb++);
{ U32 u; for (u=0; u<nbSamples; u++) samplesSizes[u] = sampleUnitSize; }
dictSize = ZDICT_trainFromBuffer(dictBuffer, dictSize,
CNBuffer, samplesSizes, nbSamples);
if (ZDICT_isError(dictSize)) goto _output_error;
DISPLAYLEVEL(4, "OK, created dictionary of size %u \n", (U32)dictSize);
DISPLAYLEVEL(4, "test%3i : compress with dictionary : ", testNb++);
cSize = ZSTD_compress_usingDict(cctx, compressedBuffer, ZSTD_compressBound(CNBuffSize),
CNBuffer, CNBuffSize,
dictBuffer, dictSize, 4);
if (ZSTD_isError(cSize)) goto _output_error;
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(4, "test%3i : frame built with dictionary should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : compress without dictID : ", testNb++);
{ ZSTD_parameters p = ZSTD_getParams(3, CNBuffSize, dictSize);
p.fParams.noDictIDFlag = 1;
cSize = ZSTD_compress_advanced(cctx, compressedBuffer, ZSTD_compressBound(CNBuffSize),
CNBuffer, CNBuffSize,
dictBuffer, dictSize, p);
if (ZSTD_isError(cSize)) goto _output_error;
}
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBuffSize*100);
DISPLAYLEVEL(4, "test%3i : frame built without dictID should be decompressible : ", testNb++);
CHECKPLUS(r, ZSTD_decompress_usingDict(dctx,
decodedBuffer, CNBuffSize,
compressedBuffer, cSize,
dictBuffer, dictSize),
if (r != CNBuffSize) goto _output_error);
DISPLAYLEVEL(4, "OK \n");
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
free(dictBuffer);
free(samplesSizes);
}
/* Decompression defense tests */
DISPLAYLEVEL(4, "test%3i : Check input length for magic number : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 3);
if (!ZSTD_isError(r)) goto _output_error;
if (r != (size_t)-ZSTD_error_srcSize_wrong) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : Check magic Number : ", testNb++);
((char*)(CNBuffer))[0] = 1;
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBuffSize, CNBuffer, 4);
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
/* block API tests */
{ ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
static const size_t blockSize = 100 KB;
static const size_t dictSize = 16 KB;
size_t cSize2;
/* basic block compression */
DISPLAYLEVEL(4, "test%3i : Block compression test : ", testNb++);
CHECK( ZSTD_compressBegin(cctx, 5) );
cSize = ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), CNBuffer, blockSize);
if (ZSTD_isError(cSize)) goto _output_error;
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : Block decompression test : ", testNb++);
CHECK( ZSTD_decompressBegin(dctx) );
{ CHECK_V(r, ZSTD_decompressBlock(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
if (r != blockSize) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
/* dictionary block compression */
DISPLAYLEVEL(4, "test%3i : Dictionary Block compression test : ", testNb++);
CHECK( ZSTD_compressBegin_usingDict(cctx, CNBuffer, dictSize, 5) );
cSize = ZSTD_compressBlock(cctx, compressedBuffer, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize, blockSize);
if (ZSTD_isError(cSize)) goto _output_error;
cSize2 = ZSTD_compressBlock(cctx, (char*)compressedBuffer+cSize, ZSTD_compressBound(blockSize), (char*)CNBuffer+dictSize+blockSize, blockSize);
if (ZSTD_isError(cSize2)) goto _output_error;
DISPLAYLEVEL(4, "OK \n");
DISPLAYLEVEL(4, "test%3i : Dictionary Block decompression test : ", testNb++);
CHECK( ZSTD_decompressBegin_usingDict(dctx, CNBuffer, dictSize) );
{ CHECK_V( r, ZSTD_decompressBlock(dctx, decodedBuffer, CNBuffSize, compressedBuffer, cSize) );
if (r != blockSize) goto _output_error; }
{ CHECK_V( r, ZSTD_decompressBlock(dctx, (char*)decodedBuffer+blockSize, CNBuffSize, (char*)compressedBuffer+cSize, cSize2) );
if (r != blockSize) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
}
/* long rle test */
{ size_t sampleSize = 0;
DISPLAYLEVEL(4, "test%3i : Long RLE test : ", testNb++);
RDG_genBuffer(CNBuffer, sampleSize, compressibility, 0., seed+1);
memset((char*)CNBuffer+sampleSize, 'B', 256 KB - 1);
sampleSize += 256 KB - 1;
RDG_genBuffer((char*)CNBuffer+sampleSize, 96 KB, compressibility, 0., seed+2);
sampleSize += 96 KB;
cSize = ZSTD_compress(compressedBuffer, ZSTD_compressBound(sampleSize), CNBuffer, sampleSize, 1);
if (ZSTD_isError(cSize)) goto _output_error;
{ CHECK_V(regenSize, ZSTD_decompress(decodedBuffer, sampleSize, compressedBuffer, cSize));
if (regenSize!=sampleSize) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
}
/* All zeroes test (test bug #137) */
#define ZEROESLENGTH 100
DISPLAYLEVEL(4, "test%3i : compress %u zeroes : ", testNb++, ZEROESLENGTH);
memset(CNBuffer, 0, ZEROESLENGTH);
{ CHECK_V(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(ZEROESLENGTH), CNBuffer, ZEROESLENGTH, 1) );
cSize = r; }
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/ZEROESLENGTH*100);
DISPLAYLEVEL(4, "test%3i : decompress %u zeroes : ", testNb++, ZEROESLENGTH);
{ CHECK_V(r, ZSTD_decompress(decodedBuffer, ZEROESLENGTH, compressedBuffer, cSize) );
if (r != ZEROESLENGTH) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
/* nbSeq limit test */
#define _3BYTESTESTLENGTH 131000
#define NB3BYTESSEQLOG 9
#define NB3BYTESSEQ (1 << NB3BYTESSEQLOG)
#define NB3BYTESSEQMASK (NB3BYTESSEQ-1)
/* creates a buffer full of 3-bytes sequences */
{ BYTE _3BytesSeqs[NB3BYTESSEQ][3];
U32 rSeed = 1;
/* create batch of 3-bytes sequences */
{ int i; for (i=0; i < NB3BYTESSEQ; i++) {
_3BytesSeqs[i][0] = (BYTE)(FUZ_rand(&rSeed) & 255);
_3BytesSeqs[i][1] = (BYTE)(FUZ_rand(&rSeed) & 255);
_3BytesSeqs[i][2] = (BYTE)(FUZ_rand(&rSeed) & 255);
}}
/* randomly fills CNBuffer with prepared 3-bytes sequences */
{ int i; for (i=0; i < _3BYTESTESTLENGTH; i += 3) { /* note : CNBuffer size > _3BYTESTESTLENGTH+3 */
U32 const id = FUZ_rand(&rSeed) & NB3BYTESSEQMASK;
((BYTE*)CNBuffer)[i+0] = _3BytesSeqs[id][0];
((BYTE*)CNBuffer)[i+1] = _3BytesSeqs[id][1];
((BYTE*)CNBuffer)[i+2] = _3BytesSeqs[id][2];
} }}
DISPLAYLEVEL(4, "test%3i : compress lots 3-bytes sequences : ", testNb++);
{ CHECK_V(r, ZSTD_compress(compressedBuffer, ZSTD_compressBound(_3BYTESTESTLENGTH),
CNBuffer, _3BYTESTESTLENGTH, 19) );
cSize = r; }
DISPLAYLEVEL(4, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/_3BYTESTESTLENGTH*100);
DISPLAYLEVEL(4, "test%3i : decompress lots 3-bytes sequence : ", testNb++);
{ CHECK_V(r, ZSTD_decompress(decodedBuffer, _3BYTESTESTLENGTH, compressedBuffer, cSize) );
if (r != _3BYTESTESTLENGTH) goto _output_error; }
DISPLAYLEVEL(4, "OK \n");
_end:
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
return testResult;
_output_error:
testResult = 1;
DISPLAY("Error detected in Unit tests ! \n");
goto _end;
}
static size_t findDiff(const void* buf1, const void* buf2, size_t max)
{
const BYTE* b1 = (const BYTE*)buf1;
const BYTE* b2 = (const BYTE*)buf2;
size_t u;
for (u=0; u<max; u++) {
if (b1[u] != b2[u]) break;
}
return u;
}
static size_t FUZ_rLogLength(U32* seed, U32 logLength)
{
size_t const lengthMask = ((size_t)1 << logLength) - 1;
return (lengthMask+1) + (FUZ_rand(seed) & lengthMask);
}
static size_t FUZ_randomLength(U32* seed, U32 maxLog)
{
U32 const logLength = FUZ_rand(seed) % maxLog;
return FUZ_rLogLength(seed, logLength);
}
#undef CHECK
#define CHECK(cond, ...) if (cond) { DISPLAY("Error => "); DISPLAY(__VA_ARGS__); \
DISPLAY(" (seed %u, test nb %u) \n", seed, testNb); goto _output_error; }
static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, U32 const maxDurationS, double compressibility)
{
static const U32 maxSrcLog = 23;
static const U32 maxSampleLog = 22;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
size_t const dstBufferSize = (size_t)1<<maxSampleLog;
size_t const cBufferSize = ZSTD_compressBound(dstBufferSize);
BYTE* cNoiseBuffer[5];
BYTE* srcBuffer; /* jumping pointer */
BYTE* const cBuffer = (BYTE*) malloc (cBufferSize);
BYTE* const dstBuffer = (BYTE*) malloc (dstBufferSize);
BYTE* const mirrorBuffer = (BYTE*) malloc (dstBufferSize);
ZSTD_CCtx* const refCtx = ZSTD_createCCtx();
ZSTD_CCtx* const ctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed, lseed = 0;
clock_t const startClock = clock();
clock_t const maxClockSpan = maxDurationS * CLOCKS_PER_SEC;
/* allocation */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4]
|| !dstBuffer || !mirrorBuffer || !cBuffer || !refCtx || !ctx || !dctx,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
srcBuffer = cNoiseBuffer[2];
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++) FUZ_rand(&coreSeed);
/* main test loop */
for ( ; (testNb <= nbTests) || (FUZ_clockSpan(startClock) < maxClockSpan); testNb++ ) {
size_t sampleSize, maxTestSize, totalTestSize;
size_t cSize, totalCSize, totalGenSize;
XXH64_state_t xxhState;
U64 crcOrig;
BYTE* sampleBuffer;
const BYTE* dict;
size_t dictSize;
/* notification */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
{ U32 const prime1 = 2654435761U; lseed = coreSeed ^ prime1; }
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* select src segment */
sampleSize = FUZ_randomLength(&lseed, maxSampleLog);
/* create sample buffer (to catch read error with valgrind & sanitizers) */
sampleBuffer = (BYTE*)malloc(sampleSize);
CHECK(sampleBuffer==NULL, "not enough memory for sample buffer");
{ size_t const sampleStart = FUZ_rand(&lseed) % (srcBufferSize - sampleSize);
memcpy(sampleBuffer, srcBuffer + sampleStart, sampleSize); }
crcOrig = XXH64(sampleBuffer, sampleSize, 0);
/* compression tests */
{ unsigned const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (FUZ_highbit32((U32)sampleSize)/3))) + 1;
cSize = ZSTD_compressCCtx(ctx, cBuffer, cBufferSize, sampleBuffer, sampleSize, cLevel);
CHECK(ZSTD_isError(cSize), "ZSTD_compressCCtx failed");
/* compression failure test : too small dest buffer */
if (cSize > 3) {
const size_t missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */
const size_t tooSmallSize = cSize - missing;
const U32 endMark = 0x4DC2B1A9;
memcpy(dstBuffer+tooSmallSize, &endMark, 4);
{ size_t const errorCode = ZSTD_compressCCtx(ctx, dstBuffer, tooSmallSize, sampleBuffer, sampleSize, cLevel);
CHECK(!ZSTD_isError(errorCode), "ZSTD_compressCCtx should have failed ! (buffer too small : %u < %u)", (U32)tooSmallSize, (U32)cSize); }
{ U32 endCheck; memcpy(&endCheck, dstBuffer+tooSmallSize, 4);
CHECK(endCheck != endMark, "ZSTD_compressCCtx : dst buffer overflow"); }
} }
/* frame header decompression test */
{ ZSTD_frameParams dParams;
size_t const check = ZSTD_getFrameParams(&dParams, cBuffer, cSize);
CHECK(ZSTD_isError(check), "Frame Parameters extraction failed");
CHECK(dParams.frameContentSize != sampleSize, "Frame content size incorrect");
}
/* successful decompression test */
{ size_t const margin = (FUZ_rand(&lseed) & 1) ? 0 : (FUZ_rand(&lseed) & 31) + 1;
size_t const dSize = ZSTD_decompress(dstBuffer, sampleSize + margin, cBuffer, cSize);
CHECK(dSize != sampleSize, "ZSTD_decompress failed (%s) (srcSize : %u ; cSize : %u)", ZSTD_getErrorName(dSize), (U32)sampleSize, (U32)cSize);
{ U64 const crcDest = XXH64(dstBuffer, sampleSize, 0);
CHECK(crcOrig != crcDest, "decompression result corrupted (pos %u / %u)", (U32)findDiff(sampleBuffer, dstBuffer, sampleSize), (U32)sampleSize);
} }
free(sampleBuffer); /* no longer useful after this point */
/* truncated src decompression test */
{ size_t const missing = (FUZ_rand(&lseed) % (cSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */
size_t const tooSmallSize = cSize - missing;
void* cBufferTooSmall = malloc(tooSmallSize); /* valgrind will catch read overflows */
CHECK(cBufferTooSmall == NULL, "not enough memory !");
memcpy(cBufferTooSmall, cBuffer, tooSmallSize);
{ size_t const errorCode = ZSTD_decompress(dstBuffer, dstBufferSize, cBufferTooSmall, tooSmallSize);
CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed ! (truncated src buffer)"); }
free(cBufferTooSmall);
}
/* too small dst decompression test */
if (sampleSize > 3) {
size_t const missing = (FUZ_rand(&lseed) % (sampleSize-2)) + 1; /* no problem, as cSize > 4 (frameHeaderSizer) */
size_t const tooSmallSize = sampleSize - missing;
static const BYTE token = 0xA9;
dstBuffer[tooSmallSize] = token;
{ size_t const errorCode = ZSTD_decompress(dstBuffer, tooSmallSize, cBuffer, cSize);
CHECK(!ZSTD_isError(errorCode), "ZSTD_decompress should have failed : %u > %u (dst buffer too small)", (U32)errorCode, (U32)tooSmallSize); }
CHECK(dstBuffer[tooSmallSize] != token, "ZSTD_decompress : dst buffer overflow");
}
/* noisy src decompression test */
if (cSize > 6) {
/* insert noise into src */
{ U32 const maxNbBits = FUZ_highbit32((U32)(cSize-4));
size_t pos = 4; /* preserve magic number (too easy to detect) */
for (;;) {
/* keep some original src */
{ U32 const nbBits = FUZ_rand(&lseed) % maxNbBits;
size_t const mask = (1<<nbBits) - 1;
size_t const skipLength = FUZ_rand(&lseed) & mask;
pos += skipLength;
}
if (pos <= cSize) break;
/* add noise */
{ U32 const nbBitsCodes = FUZ_rand(&lseed) % maxNbBits;
U32 const nbBits = nbBitsCodes ? nbBitsCodes-1 : 0;
size_t const mask = (1<<nbBits) - 1;
size_t const rNoiseLength = (FUZ_rand(&lseed) & mask) + 1;
size_t const noiseLength = MIN(rNoiseLength, cSize-pos);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseLength);
memcpy(cBuffer + pos, srcBuffer + noiseStart, noiseLength);
pos += noiseLength;
} } }
/* decompress noisy source */
{ U32 const endMark = 0xA9B1C3D6;
memcpy(dstBuffer+sampleSize, &endMark, 4);
{ size_t const decompressResult = ZSTD_decompress(dstBuffer, sampleSize, cBuffer, cSize);
/* result *may* be an unlikely success, but even then, it must strictly respect dst buffer boundaries */
CHECK((!ZSTD_isError(decompressResult)) && (decompressResult>sampleSize),
"ZSTD_decompress on noisy src : result is too large : %u > %u (dst buffer)", (U32)decompressResult, (U32)sampleSize);
}
{ U32 endCheck; memcpy(&endCheck, dstBuffer+sampleSize, 4);
CHECK(endMark!=endCheck, "ZSTD_decompress on noisy src : dst buffer overflow");
} } } /* noisy src decompression test */
/*===== Streaming compression test, scattered segments and dictionary =====*/
{ U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
int const cLevel = (FUZ_rand(&lseed) % (ZSTD_maxCLevel() - (testLog/3))) + 1;
maxTestSize = FUZ_rLogLength(&lseed, testLog);
if (maxTestSize >= dstBufferSize) maxTestSize = dstBufferSize-1;
dictSize = FUZ_randomLength(&lseed, maxSampleLog); /* needed also for decompression */
dict = srcBuffer + (FUZ_rand(&lseed) % (srcBufferSize - dictSize));
if (FUZ_rand(&lseed) & 0xF) {
size_t const errorCode = ZSTD_compressBegin_usingDict(refCtx, dict, dictSize, cLevel);
CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode));
} else {
ZSTD_compressionParameters const cPar = ZSTD_getCParams(cLevel, 0, dictSize);
ZSTD_frameParameters const fpar = { FUZ_rand(&lseed)&1 /* contentSizeFlag */,
!(FUZ_rand(&lseed)&3) /* contentChecksumFlag*/,
0 /*NodictID*/ }; /* note : since dictionary is fake, dictIDflag has no impact */
ZSTD_parameters p;
size_t errorCode;
p.cParams = cPar; p.fParams = fpar;
errorCode = ZSTD_compressBegin_advanced(refCtx, dict, dictSize, p, 0);
CHECK (ZSTD_isError(errorCode), "ZSTD_compressBegin_advanced error : %s", ZSTD_getErrorName(errorCode));
}
{ size_t const errorCode = ZSTD_copyCCtx(ctx, refCtx);
CHECK (ZSTD_isError(errorCode), "ZSTD_copyCCtx error : %s", ZSTD_getErrorName(errorCode)); }
}
XXH64_reset(&xxhState, 0);
{ U32 const nbChunks = (FUZ_rand(&lseed) & 127) + 2;
U32 n;
for (totalTestSize=0, cSize=0, n=0 ; n<nbChunks ; n++) {
size_t const segmentSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const segmentStart = FUZ_rand(&lseed) % (srcBufferSize - segmentSize);
if (cBufferSize-cSize < ZSTD_compressBound(segmentSize)) break; /* avoid invalid dstBufferTooSmall */
if (totalTestSize+segmentSize > maxTestSize) break;
{ size_t const compressResult = ZSTD_compressContinue(ctx, cBuffer+cSize, cBufferSize-cSize, srcBuffer+segmentStart, segmentSize);
CHECK (ZSTD_isError(compressResult), "multi-segments compression error : %s", ZSTD_getErrorName(compressResult));
cSize += compressResult;
}
XXH64_update(&xxhState, srcBuffer+segmentStart, segmentSize);
memcpy(mirrorBuffer + totalTestSize, srcBuffer+segmentStart, segmentSize);
totalTestSize += segmentSize;
} }
{ size_t const flushResult = ZSTD_compressEnd(ctx, cBuffer+cSize, cBufferSize-cSize);
CHECK (ZSTD_isError(flushResult), "multi-segments epilogue error : %s", ZSTD_getErrorName(flushResult));
cSize += flushResult;
}
crcOrig = XXH64_digest(&xxhState);
/* streaming decompression test */
if (dictSize<8) dictSize=0, dict=NULL; /* disable dictionary */
{ size_t const errorCode = ZSTD_decompressBegin_usingDict(dctx, dict, dictSize);
CHECK (ZSTD_isError(errorCode), "ZSTD_decompressBegin_usingDict error : %s", ZSTD_getErrorName(errorCode)); }
totalCSize = 0;
totalGenSize = 0;
while (totalCSize < cSize) {
size_t const inSize = ZSTD_nextSrcSizeToDecompress(dctx);
size_t const genSize = ZSTD_decompressContinue(dctx, dstBuffer+totalGenSize, dstBufferSize-totalGenSize, cBuffer+totalCSize, inSize);
CHECK (ZSTD_isError(genSize), "streaming decompression error : %s", ZSTD_getErrorName(genSize));
totalGenSize += genSize;
totalCSize += inSize;
}
CHECK (ZSTD_nextSrcSizeToDecompress(dctx) != 0, "frame not fully decoded");
CHECK (totalGenSize != totalTestSize, "streaming decompressed data : wrong size")
CHECK (totalCSize != cSize, "compressed data should be fully read")
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) {
size_t const errorPos = findDiff(mirrorBuffer, dstBuffer, totalTestSize);
CHECK (1, "streaming decompressed data corrupted : byte %u / %u (%02X!=%02X)",
(U32)errorPos, (U32)totalTestSize, dstBuffer[errorPos], mirrorBuffer[errorPos]);
} }
} /* for ( ; (testNb <= nbTests) */
DISPLAY("\r%u fuzzer tests completed \n", testNb-1);
_cleanup:
ZSTD_freeCCtx(refCtx);
ZSTD_freeCCtx(ctx);
ZSTD_freeDCtx(dctx);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(cBuffer);
free(dstBuffer);
free(mirrorBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/*_*******************************************************
* Command line
*********************************************************/
int FUZ_usage(const char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault);
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%u%%)\n", FUZ_compressibility_default);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
int main(int argc, const char** argv)
{
U32 seed=0;
int seedset=0;
int argNb;
int nbTests = nbTestsDefault;
int testNb = 0;
U32 proba = FUZ_compressibility_default;
int result=0;
U32 mainPause = 0;
U32 maxDuration = 0;
const char* programName = argv[0];
/* Check command line */
for (argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
if(!argument) continue; /* Protection if argument empty */
/* Handle commands. Aggregated commands are allowed */
if (argument[0]=='-') {
argument++;
while (*argument!=0) {
switch(*argument)
{
case 'h':
return FUZ_usage(programName);
case 'v':
argument++;
g_displayLevel=4;
break;
case 'q':
argument++;
g_displayLevel--;
break;
case 'p': /* pause at the end */
argument++;
mainPause = 1;
break;
case 'i':
argument++; maxDuration=0;
nbTests=0;
while ((*argument>='0') && (*argument<='9')) {
nbTests *= 10;
nbTests += *argument - '0';
argument++;
}
break;
case 'T':
argument++;
nbTests=0; maxDuration=0;
while ((*argument>='0') && (*argument<='9')) {
maxDuration *= 10;
maxDuration += *argument - '0';
argument++;
}
if (*argument=='m') maxDuration *=60, argument++;
if (*argument=='n') argument++;
break;
case 's':
argument++;
seed=0;
seedset=1;
while ((*argument>='0') && (*argument<='9')) {
seed *= 10;
seed += *argument - '0';
argument++;
}
break;
case 't':
argument++;
testNb=0;
while ((*argument>='0') && (*argument<='9')) {
testNb *= 10;
testNb += *argument - '0';
argument++;
}
break;
case 'P': /* compressibility % */
argument++;
proba=0;
while ((*argument>='0') && (*argument<='9')) {
proba *= 10;
proba += *argument - '0';
argument++;
}
if (proba>100) proba=100;
break;
default:
return FUZ_usage(programName);
} } } } /* for (argNb=1; argNb<argc; argNb++) */
/* Get Seed */
DISPLAY("Starting zstd tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION_STRING);
if (!seedset) {
time_t const t = time(NULL);
U32 const h = XXH32(&t, sizeof(t), 1);
seed = h % 10000;
}
DISPLAY("Seed = %u\n", seed);
if (proba!=FUZ_compressibility_default) DISPLAY("Compressibility : %u%%\n", proba);
if (nbTests < testNb) nbTests = testNb;
if (testNb==0)
result = basicUnitTests(0, ((double)proba) / 100); /* constant seed for predictability */
if (!result)
result = fuzzerTests(seed, nbTests, testNb, maxDuration, ((double)proba) / 100);
if (mainPause) {
int unused;
DISPLAY("Press Enter \n");
unused = getchar();
(void)unused;
}
return result;
}