zstd/tests/zstreamtest.c
Yann Collet 2e23333094 ZSTDMT can now work in non-blocking mode with 1 thread
it still fallbacks to single-thread blocking invocation
when input is small (<1job)
or when invoking ZSTDMT_compress(), which is blocking.

Also : fixed a bug in new block-granular compression routine.
2018-01-16 15:28:43 -08:00

1937 lines
91 KiB
C

/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Compiler specific
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# define _CRT_SECURE_NO_WARNINGS /* fgets */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */
#endif
/*-************************************
* Includes
**************************************/
#include <stdlib.h> /* free */
#include <stdio.h> /* fgets, sscanf */
#include <string.h> /* strcmp */
#include <assert.h> /* assert */
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_maxCLevel, ZSTD_customMem, ZSTD_getDictID_fromFrame */
#include "zstd.h" /* ZSTD_compressBound */
#include "zstd_errors.h" /* ZSTD_error_srcSize_wrong */
#include "zstdmt_compress.h"
#include "zdict.h" /* ZDICT_trainFromBuffer */
#include "datagen.h" /* RDG_genBuffer */
#define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#include "xxhash.h" /* XXH64_* */
#include "seqgen.h"
#include "util.h"
/*-************************************
* Constants
**************************************/
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
static const U32 nbTestsDefault = 10000;
static const U32 g_cLevelMax_smallTests = 10;
#define COMPRESSIBLE_NOISE_LENGTH (10 MB)
#define FUZ_COMPRESSIBILITY_DEFAULT 50
static const U32 prime32 = 2654435761U;
/*-************************************
* Display Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { \
DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stderr); }
static U32 g_displayLevel = 2;
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
#define DISPLAYUPDATE(l, ...) if (g_displayLevel>=l) { \
if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (g_displayLevel>=4)) \
{ g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
if (g_displayLevel>=4) fflush(stderr); } }
static U64 g_clockTime = 0;
/*-*******************************************************
* Fuzzer functions
*********************************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b)?(a):(b))
#define MAX(a,b) ((a)>(b)?(a):(b))
/*! FUZ_rand() :
@return : a 27 bits random value, from a 32-bits `seed`.
`seed` is also modified */
#define FUZ_rotl32(x,r) ((x << r) | (x >> (32 - r)))
unsigned int FUZ_rand(unsigned int* seedPtr)
{
static const U32 prime2 = 2246822519U;
U32 rand32 = *seedPtr;
rand32 *= prime32;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*seedPtr = rand32;
return rand32 >> 5;
}
#define CHECK(cond, ...) { \
if (cond) { \
DISPLAY("Error => "); \
DISPLAY(__VA_ARGS__); \
DISPLAY(" (seed %u, test nb %u, line %u) \n", \
seed, testNb, __LINE__); \
goto _output_error; \
} }
#define CHECK_Z(f) { \
size_t const err = f; \
CHECK(ZSTD_isError(err), "%s : %s ", \
#f, ZSTD_getErrorName(err)); \
}
/*======================================================
* Basic Unit tests
======================================================*/
typedef struct {
void* start;
size_t size;
size_t filled;
} buffer_t;
static const buffer_t g_nullBuffer = { NULL, 0 , 0 };
static buffer_t FUZ_createDictionary(const void* src, size_t srcSize, size_t blockSize, size_t requestedDictSize)
{
buffer_t dict = { NULL, 0, 0 };
size_t const nbBlocks = (srcSize + (blockSize-1)) / blockSize;
size_t* const blockSizes = (size_t*) malloc(nbBlocks * sizeof(size_t));
if (!blockSizes) return dict;
dict.start = malloc(requestedDictSize);
if (!dict.start) { free(blockSizes); return dict; }
{ size_t nb;
for (nb=0; nb<nbBlocks-1; nb++) blockSizes[nb] = blockSize;
blockSizes[nbBlocks-1] = srcSize - (blockSize * (nbBlocks-1));
}
{ size_t const dictSize = ZDICT_trainFromBuffer(dict.start, requestedDictSize, src, blockSizes, (unsigned)nbBlocks);
free(blockSizes);
if (ZDICT_isError(dictSize)) { free(dict.start); return g_nullBuffer; }
dict.size = requestedDictSize;
dict.filled = dictSize;
return dict; /* how to return dictSize ? */
}
}
static void FUZ_freeDictionary(buffer_t dict)
{
free(dict.start);
}
/* Round trips data and updates xxh with the decompressed data produced */
static size_t SEQ_roundTrip(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx,
XXH64_state_t* xxh, void* data, size_t size,
ZSTD_EndDirective endOp)
{
static BYTE compressed[1024];
static BYTE uncompressed[1024];
ZSTD_inBuffer cin = {data, size, 0};
size_t cret;
do {
ZSTD_outBuffer cout = {compressed, sizeof(compressed), 0};
ZSTD_inBuffer din = {compressed, 0, 0};
ZSTD_outBuffer dout = {uncompressed, 0, 0};
cret = ZSTD_compress_generic(cctx, &cout, &cin, endOp);
if (ZSTD_isError(cret))
return cret;
din.size = cout.pos;
while (din.pos < din.size || (endOp == ZSTD_e_end && cret == 0)) {
size_t dret;
dout.pos = 0;
dout.size = sizeof(uncompressed);
dret = ZSTD_decompressStream(dctx, &dout, &din);
if (ZSTD_isError(dret))
return dret;
XXH64_update(xxh, dout.dst, dout.pos);
if (dret == 0)
break;
}
} while (cin.pos < cin.size || (endOp != ZSTD_e_continue && cret != 0));
return 0;
}
/* Generates some data and round trips it */
static size_t SEQ_generateRoundTrip(ZSTD_CCtx* cctx, ZSTD_DCtx* dctx,
XXH64_state_t* xxh, SEQ_stream* seq,
SEQ_gen_type type, unsigned value)
{
static BYTE data[1024];
size_t gen;
do {
SEQ_outBuffer sout = {data, sizeof(data), 0};
size_t ret;
gen = SEQ_gen(seq, type, value, &sout);
ret = SEQ_roundTrip(cctx, dctx, xxh, sout.dst, sout.pos, ZSTD_e_continue);
if (ZSTD_isError(ret))
return ret;
} while (gen != 0);
return 0;
}
static int basicUnitTests(U32 seed, double compressibility)
{
size_t const CNBufferSize = COMPRESSIBLE_NOISE_LENGTH;
void* CNBuffer = malloc(CNBufferSize);
size_t const skippableFrameSize = 200 KB;
size_t const compressedBufferSize = (8 + skippableFrameSize) + ZSTD_compressBound(COMPRESSIBLE_NOISE_LENGTH);
void* compressedBuffer = malloc(compressedBufferSize);
size_t const decodedBufferSize = CNBufferSize;
void* decodedBuffer = malloc(decodedBufferSize);
size_t cSize;
int testResult = 0;
U32 testNb = 1;
ZSTD_CStream* zc = ZSTD_createCStream();
ZSTD_DStream* zd = ZSTD_createDStream();
ZSTDMT_CCtx* mtctx = ZSTDMT_createCCtx(2);
ZSTD_inBuffer inBuff, inBuff2;
ZSTD_outBuffer outBuff;
buffer_t dictionary = g_nullBuffer;
size_t const dictSize = 128 KB;
unsigned dictID = 0;
/* Create compressible test buffer */
if (!CNBuffer || !compressedBuffer || !decodedBuffer || !zc || !zd) {
DISPLAY("Not enough memory, aborting \n");
goto _output_error;
}
RDG_genBuffer(CNBuffer, CNBufferSize, compressibility, 0., seed);
/* Create dictionary */
DISPLAYLEVEL(3, "creating dictionary for unit tests \n");
dictionary = FUZ_createDictionary(CNBuffer, CNBufferSize / 2, 8 KB, 40 KB);
if (!dictionary.start) {
DISPLAY("Error creating dictionary, aborting \n");
goto _output_error;
}
dictID = ZDICT_getDictID(dictionary.start, dictionary.filled);
/* Basic compression test */
DISPLAYLEVEL(3, "test%3i : compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
CHECK_Z( ZSTD_initCStream(zc, 1 /* cLevel */) );
outBuff.dst = (char*)(compressedBuffer);
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
DISPLAYLEVEL(3, "OK (%u bytes)\n", (U32)outBuff.pos);
/* generate skippable frame */
MEM_writeLE32(compressedBuffer, ZSTD_MAGIC_SKIPPABLE_START);
MEM_writeLE32(((char*)compressedBuffer)+4, (U32)skippableFrameSize);
cSize = skippableFrameSize + 8;
/* Basic compression test using dict */
DISPLAYLEVEL(3, "test%3i : skipframe + compress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
CHECK_Z( ZSTD_initCStream_usingDict(zc, CNBuffer, dictSize, 1 /* cLevel */) );
outBuff.dst = (char*)(compressedBuffer)+cSize;
assert(compressedBufferSize > cSize);
outBuff.size = compressedBufferSize - cSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
cSize += outBuff.pos;
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100);
/* context size functions */
DISPLAYLEVEL(3, "test%3i : estimate CStream size : ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBufferSize, dictSize);
size_t const cstreamSize = ZSTD_estimateCStreamSize_usingCParams(cParams);
size_t const cdictSize = ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); /* uses ZSTD_initCStream_usingDict() */
if (ZSTD_isError(cstreamSize)) goto _output_error;
if (ZSTD_isError(cdictSize)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)(cstreamSize + cdictSize));
}
DISPLAYLEVEL(3, "test%3i : check actual CStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_CStream(zc);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
/* Attempt bad compression parameters */
DISPLAYLEVEL(3, "test%3i : use bad compression parameters : ", testNb++);
{ size_t r;
ZSTD_parameters params = ZSTD_getParams(1, 0, 0);
params.cParams.searchLength = 2;
r = ZSTD_initCStream_advanced(zc, NULL, 0, params, 0);
if (!ZSTD_isError(r)) goto _output_error;
DISPLAYLEVEL(3, "init error : %s \n", ZSTD_getErrorName(r));
}
/* skippable frame test */
DISPLAYLEVEL(3, "test%3i : decompress skippable frame : ", testNb++);
CHECK_Z( ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize) );
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
DISPLAYLEVEL(5, " ( ZSTD_decompressStream => %u ) ", (U32)r);
if (r != 0) goto _output_error;
}
if (outBuff.pos != 0) goto _output_error; /* skippable frame output len is 0 */
DISPLAYLEVEL(3, "OK \n");
/* Basic decompression test */
inBuff2 = inBuff;
DISPLAYLEVEL(3, "test%3i : decompress %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize);
CHECK_Z( ZSTD_setDStreamParameter(zd, DStream_p_maxWindowSize, 1000000000) ); /* large limit */
{ size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* Re-use without init */
DISPLAYLEVEL(3, "test%3i : decompress again without init (re-use previous settings): ", testNb++);
outBuff.pos = 0;
{ size_t const remaining = ZSTD_decompressStream(zd, &outBuff, &inBuff2);
if (remaining != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* check regenerated data is byte exact */
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t i;
for (i=0; i<CNBufferSize; i++) {
if (((BYTE*)decodedBuffer)[i] != ((BYTE*)CNBuffer)[i]) goto _output_error;
} }
DISPLAYLEVEL(3, "OK \n");
/* context size functions */
DISPLAYLEVEL(3, "test%3i : estimate DStream size : ", testNb++);
{ ZSTD_frameHeader fhi;
const void* cStart = (char*)compressedBuffer + (skippableFrameSize + 8);
size_t const gfhError = ZSTD_getFrameHeader(&fhi, cStart, cSize);
if (gfhError!=0) goto _output_error;
DISPLAYLEVEL(5, " (windowSize : %u) ", (U32)fhi.windowSize);
{ size_t const s = ZSTD_estimateDStreamSize(fhi.windowSize)
/* uses ZSTD_initDStream_usingDict() */
+ ZSTD_estimateDDictSize(dictSize, ZSTD_dlm_byCopy);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
} }
DISPLAYLEVEL(3, "test%3i : check actual DStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_DStream(zd);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
/* Byte-by-byte decompression test */
DISPLAYLEVEL(3, "test%3i : decompress byte-by-byte : ", testNb++);
{ /* skippable frame */
size_t r = 1;
ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize);
inBuff.src = compressedBuffer;
outBuff.dst = decodedBuffer;
inBuff.pos = 0;
outBuff.pos = 0;
while (r) { /* skippable frame */
inBuff.size = inBuff.pos + 1;
outBuff.size = outBuff.pos + 1;
r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error;
}
/* normal frame */
ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize);
r=1;
while (r) {
inBuff.size = inBuff.pos + 1;
outBuff.size = outBuff.pos + 1;
r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(r)) goto _output_error;
}
}
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != cSize) goto _output_error; /* should have read the entire frame */
DISPLAYLEVEL(3, "OK \n");
/* check regenerated data is byte exact */
DISPLAYLEVEL(3, "test%3i : check decompressed result : ", testNb++);
{ size_t i;
for (i=0; i<CNBufferSize; i++) {
if (((BYTE*)decodedBuffer)[i] != ((BYTE*)CNBuffer)[i]) goto _output_error;;
} }
DISPLAYLEVEL(3, "OK \n");
/* _srcSize compression test */
DISPLAYLEVEL(3, "test%3i : compress_srcSize %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
ZSTD_initCStream_srcSize(zc, 1, CNBufferSize);
outBuff.dst = (char*)(compressedBuffer);
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
{ unsigned long long origSize = ZSTD_findDecompressedSize(outBuff.dst, outBuff.pos);
if ((size_t)origSize != CNBufferSize) goto _output_error; } /* exact original size must be present */
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/COMPRESSIBLE_NOISE_LENGTH*100);
/* wrong _srcSize compression test */
DISPLAYLEVEL(3, "test%3i : wrong srcSize : %u bytes : ", testNb++, COMPRESSIBLE_NOISE_LENGTH-1);
ZSTD_initCStream_srcSize(zc, 1, CNBufferSize-1);
outBuff.dst = (char*)(compressedBuffer);
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (ZSTD_getErrorCode(r) != ZSTD_error_srcSize_wrong) goto _output_error; /* must fail : wrong srcSize */
DISPLAYLEVEL(3, "OK (error detected : %s) \n", ZSTD_getErrorName(r)); }
/* Complex context re-use scenario */
DISPLAYLEVEL(3, "test%3i : context re-use : ", testNb++);
ZSTD_freeCStream(zc);
zc = ZSTD_createCStream();
if (zc==NULL) goto _output_error; /* memory allocation issue */
/* use 1 */
{ size_t const inSize = 513;
DISPLAYLEVEL(5, "use1 ");
ZSTD_initCStream_advanced(zc, NULL, 0, ZSTD_getParams(19, inSize, 0), inSize); /* needs btopt + search3 to trigger hashLog3 */
inBuff.src = CNBuffer;
inBuff.size = inSize;
inBuff.pos = 0;
outBuff.dst = (char*)(compressedBuffer)+cSize;
outBuff.size = ZSTD_compressBound(inSize);
outBuff.pos = 0;
DISPLAYLEVEL(5, "compress1 ");
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
DISPLAYLEVEL(5, "end1 ");
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
}
/* use 2 */
{ size_t const inSize = 1025; /* will not continue, because tables auto-adjust and are therefore different size */
DISPLAYLEVEL(5, "use2 ");
ZSTD_initCStream_advanced(zc, NULL, 0, ZSTD_getParams(19, inSize, 0), inSize); /* needs btopt + search3 to trigger hashLog3 */
inBuff.src = CNBuffer;
inBuff.size = inSize;
inBuff.pos = 0;
outBuff.dst = (char*)(compressedBuffer)+cSize;
outBuff.size = ZSTD_compressBound(inSize);
outBuff.pos = 0;
DISPLAYLEVEL(5, "compress2 ");
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
DISPLAYLEVEL(5, "end2 ");
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
}
DISPLAYLEVEL(3, "OK \n");
/* CDict scenario */
DISPLAYLEVEL(3, "test%3i : digested dictionary : ", testNb++);
{ ZSTD_CDict* const cdict = ZSTD_createCDict(dictionary.start, dictionary.filled, 1 /*byRef*/ );
size_t const initError = ZSTD_initCStream_usingCDict(zc, cdict);
DISPLAYLEVEL(5, "ZSTD_initCStream_usingCDict result : %u ", (U32)initError);
if (ZSTD_isError(initError)) goto _output_error;
cSize = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
DISPLAYLEVEL(5, "- starting ZSTD_compressStream ");
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
DISPLAYLEVEL(5, "- ZSTD_endStream result : %u ", (U32)r);
if (r != 0) goto _output_error; /* error, or some data not flushed */
}
cSize = outBuff.pos;
ZSTD_freeCDict(cdict);
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100);
}
DISPLAYLEVEL(3, "test%3i : check CStream size : ", testNb++);
{ size_t const s = ZSTD_sizeof_CStream(zc);
if (ZSTD_isError(s)) goto _output_error;
DISPLAYLEVEL(3, "OK (%u bytes) \n", (U32)s);
}
DISPLAYLEVEL(4, "test%3i : check Dictionary ID : ", testNb++);
{ unsigned const dID = ZSTD_getDictID_fromFrame(compressedBuffer, cSize);
if (dID != dictID) goto _output_error;
DISPLAYLEVEL(4, "OK (%u) \n", dID);
}
/* DDict scenario */
DISPLAYLEVEL(3, "test%3i : decompress %u bytes with digested dictionary : ", testNb++, (U32)CNBufferSize);
{ ZSTD_DDict* const ddict = ZSTD_createDDict(dictionary.start, dictionary.filled);
size_t const initError = ZSTD_initDStream_usingDDict(zd, ddict);
if (ZSTD_isError(initError)) goto _output_error;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (r != 0) goto _output_error; } /* should reach end of frame == 0; otherwise, some data left, or an error */
if (outBuff.pos != CNBufferSize) goto _output_error; /* should regenerate the same amount */
if (inBuff.pos != inBuff.size) goto _output_error; /* should have read the entire frame */
ZSTD_freeDDict(ddict);
DISPLAYLEVEL(3, "OK \n");
}
/* test ZSTD_setDStreamParameter() resilience */
DISPLAYLEVEL(3, "test%3i : wrong parameter for ZSTD_setDStreamParameter(): ", testNb++);
{ size_t const r = ZSTD_setDStreamParameter(zd, (ZSTD_DStreamParameter_e)999, 1); /* large limit */
if (!ZSTD_isError(r)) goto _output_error; }
DISPLAYLEVEL(3, "OK \n");
/* Memory restriction */
DISPLAYLEVEL(3, "test%3i : maxWindowSize < frame requirement : ", testNb++);
ZSTD_initDStream_usingDict(zd, CNBuffer, dictSize);
CHECK_Z( ZSTD_setDStreamParameter(zd, DStream_p_maxWindowSize, 1000) ); /* too small limit */
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
inBuff.src = compressedBuffer;
inBuff.size = cSize;
inBuff.pos = 0;
{ size_t const r = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (!ZSTD_isError(r)) goto _output_error; /* must fail : frame requires > 100 bytes */
DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r)); }
DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_usingCDict_advanced with masked dictID : ", testNb++);
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, CNBufferSize, dictionary.filled);
ZSTD_frameParameters const fParams = { 1 /* contentSize */, 1 /* checksum */, 1 /* noDictID */};
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dm_auto, cParams, ZSTD_defaultCMem);
size_t const initError = ZSTD_initCStream_usingCDict_advanced(zc, cdict, fParams, CNBufferSize);
if (ZSTD_isError(initError)) goto _output_error;
cSize = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTD_endStream(zc, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
cSize = outBuff.pos;
ZSTD_freeCDict(cdict);
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100);
}
DISPLAYLEVEL(3, "test%3i : try retrieving dictID from frame : ", testNb++);
{ U32 const did = ZSTD_getDictID_fromFrame(compressedBuffer, cSize);
if (did != 0) goto _output_error;
}
DISPLAYLEVEL(3, "OK (not detected) \n");
DISPLAYLEVEL(3, "test%3i : decompress without dictionary : ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize);
if (!ZSTD_isError(r)) goto _output_error; /* must fail : dictionary not used */
DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r));
}
DISPLAYLEVEL(3, "test%3i : compress with ZSTD_CCtx_refPrefix : ", testNb++);
CHECK_Z( ZSTD_CCtx_refPrefix(zc, dictionary.start, dictionary.filled) );
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compress_generic(zc, &outBuff, &inBuff, ZSTD_e_end) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
cSize = outBuff.pos;
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100);
DISPLAYLEVEL(3, "test%3i : decompress with dictionary : ", testNb++);
{ size_t const r = ZSTD_decompress_usingDict(zd,
decodedBuffer, CNBufferSize,
compressedBuffer, cSize,
dictionary.start, dictionary.filled);
if (ZSTD_isError(r)) goto _output_error; /* must fail : dictionary not used */
DISPLAYLEVEL(3, "OK \n");
}
DISPLAYLEVEL(3, "test%3i : decompress without dictionary (should fail): ", testNb++);
{ size_t const r = ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize);
if (!ZSTD_isError(r)) goto _output_error; /* must fail : dictionary not used */
DISPLAYLEVEL(3, "OK (%s)\n", ZSTD_getErrorName(r));
}
DISPLAYLEVEL(3, "test%3i : compress again with ZSTD_compress_generic : ", testNb++);
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTD_compress_generic(zc, &outBuff, &inBuff, ZSTD_e_end) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
cSize = outBuff.pos;
DISPLAYLEVEL(3, "OK (%u bytes : %.2f%%)\n", (U32)cSize, (double)cSize/CNBufferSize*100);
DISPLAYLEVEL(3, "test%3i : decompress without dictionary (should work): ", testNb++);
CHECK_Z( ZSTD_decompress(decodedBuffer, CNBufferSize, compressedBuffer, cSize) );
DISPLAYLEVEL(3, "OK \n");
/* Empty srcSize */
DISPLAYLEVEL(3, "test%3i : ZSTD_initCStream_advanced with pledgedSrcSize=0 and dict : ", testNb++);
{ ZSTD_parameters params = ZSTD_getParams(5, 0, 0);
params.fParams.contentSizeFlag = 1;
CHECK_Z( ZSTD_initCStream_advanced(zc, dictionary.start, dictionary.filled, params, 0 /* pledgedSrcSize==0 means "empty" when params.fParams.contentSizeFlag is set */) );
} /* cstream advanced shall write content size = 0 */
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = 0;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error;
cSize = outBuff.pos;
if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != 0) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : pledgedSrcSize == 0 behaves properly : ", testNb++);
{ ZSTD_parameters params = ZSTD_getParams(5, 0, 0);
params.fParams.contentSizeFlag = 1;
CHECK_Z( ZSTD_initCStream_advanced(zc, NULL, 0, params, 0) );
} /* cstream advanced shall write content size = 0 */
inBuff.src = CNBuffer;
inBuff.size = 0;
inBuff.pos = 0;
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error;
cSize = outBuff.pos;
if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != 0) goto _output_error;
ZSTD_resetCStream(zc, 0); /* resetCStream should treat 0 as unknown */
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = 0;
inBuff.pos = 0;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
if (ZSTD_endStream(zc, &outBuff) != 0) goto _output_error;
cSize = outBuff.pos;
if (ZSTD_findDecompressedSize(compressedBuffer, cSize) != ZSTD_CONTENTSIZE_UNKNOWN) goto _output_error;
DISPLAYLEVEL(3, "OK \n");
/* Basic multithreading compression test */
DISPLAYLEVEL(3, "test%3i : compress %u bytes with multiple threads : ", testNb++, COMPRESSIBLE_NOISE_LENGTH);
{ ZSTD_parameters const params = ZSTD_getParams(1, 0, 0);
CHECK_Z( ZSTDMT_initCStream_advanced(mtctx, CNBuffer, dictSize, params, CNBufferSize) );
}
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = CNBufferSize;
inBuff.pos = 0;
CHECK_Z( ZSTDMT_compressStream_generic(mtctx, &outBuff, &inBuff, ZSTD_e_end) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
{ size_t const r = ZSTDMT_endStream(mtctx, &outBuff);
if (r != 0) goto _output_error; } /* error, or some data not flushed */
DISPLAYLEVEL(3, "OK \n");
/* Complex multithreading + dictionary test */
{ U32 const nbThreads = 2;
size_t const jobSize = 4 * 1 MB;
size_t const srcSize = jobSize * nbThreads; /* we want each job to have predictable size */
size_t const segLength = 2 KB;
size_t const offset = 600 KB; /* must be larger than window defined in cdict */
size_t const start = jobSize + (offset-1);
const BYTE* const srcToCopy = (const BYTE*)CNBuffer + start;
BYTE* const dst = (BYTE*)CNBuffer + start - offset;
DISPLAYLEVEL(3, "test%3i : compress %u bytes with multiple threads + dictionary : ", testNb++, (U32)srcSize);
CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_p_compressionLevel, 3) );
CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_p_nbThreads, 2) );
CHECK_Z( ZSTD_CCtx_setParameter(zc, ZSTD_p_jobSize, jobSize) );
assert(start > offset);
assert(start + segLength < COMPRESSIBLE_NOISE_LENGTH);
memcpy(dst, srcToCopy, segLength); /* create a long repetition at long distance for job 2 */
outBuff.dst = compressedBuffer;
outBuff.size = compressedBufferSize;
outBuff.pos = 0;
inBuff.src = CNBuffer;
inBuff.size = srcSize; assert(srcSize < COMPRESSIBLE_NOISE_LENGTH);
inBuff.pos = 0;
}
{ ZSTD_compressionParameters const cParams = ZSTD_getCParams(1, 4 KB, dictionary.filled); /* intentionnally lies on estimatedSrcSize, to push cdict into targeting a small window size */
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dm_fullDict, cParams, ZSTD_defaultCMem);
DISPLAYLEVEL(5, "cParams.windowLog = %u : ", cParams.windowLog);
CHECK_Z( ZSTD_CCtx_refCDict(zc, cdict) );
CHECK_Z( ZSTD_compress_generic(zc, &outBuff, &inBuff, ZSTD_e_end) );
CHECK_Z( ZSTD_CCtx_refCDict(zc, NULL) ); /* do not keep a reference to cdict, as its lifetime ends */
ZSTD_freeCDict(cdict);
}
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
cSize = outBuff.pos;
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : decompress large frame created from multiple threads + dictionary : ", testNb++);
{ ZSTD_DStream* const dstream = ZSTD_createDCtx();
ZSTD_frameHeader zfh;
ZSTD_getFrameHeader(&zfh, compressedBuffer, cSize);
DISPLAYLEVEL(5, "frame windowsize = %u : ", (U32)zfh.windowSize);
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
inBuff.src = compressedBuffer;
inBuff.pos = 0;
CHECK_Z( ZSTD_initDStream_usingDict(dstream, dictionary.start, dictionary.filled) );
inBuff.size = 1; /* avoid shortcut to single-pass mode */
CHECK_Z( ZSTD_decompressStream(dstream, &outBuff, &inBuff) );
inBuff.size = cSize;
CHECK_Z( ZSTD_decompressStream(dstream, &outBuff, &inBuff) );
if (inBuff.pos != inBuff.size) goto _output_error; /* entire input should be consumed */
ZSTD_freeDStream(dstream);
}
DISPLAYLEVEL(3, "OK \n");
DISPLAYLEVEL(3, "test%3i : check dictionary FSE tables can represent every code : ", testNb++);
{ unsigned const kMaxWindowLog = 24;
unsigned value;
ZSTD_compressionParameters cParams = ZSTD_getCParams(3, 1U << kMaxWindowLog, 1024);
ZSTD_CDict* cdict;
ZSTD_DDict* ddict;
SEQ_stream seq = SEQ_initStream(0x87654321);
SEQ_gen_type type;
XXH64_state_t xxh;
XXH64_reset(&xxh, 0);
cParams.windowLog = kMaxWindowLog;
cdict = ZSTD_createCDict_advanced(dictionary.start, dictionary.filled, ZSTD_dlm_byRef, ZSTD_dm_fullDict, cParams, ZSTD_defaultCMem);
ddict = ZSTD_createDDict(dictionary.start, dictionary.filled);
if (!cdict || !ddict) goto _output_error;
ZSTD_CCtx_reset(zc);
ZSTD_resetDStream(zd);
CHECK_Z(ZSTD_CCtx_refCDict(zc, cdict));
CHECK_Z(ZSTD_initDStream_usingDDict(zd, ddict));
CHECK_Z(ZSTD_setDStreamParameter(zd, DStream_p_maxWindowSize, 1U << kMaxWindowLog));
/* Test all values < 300 */
for (value = 0; value < 300; ++value) {
for (type = (SEQ_gen_type)0; type < SEQ_gen_max; ++type) {
CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value));
}
}
/* Test values 2^8 to 2^17 */
for (value = (1 << 8); value < (1 << 17); value <<= 1) {
for (type = (SEQ_gen_type)0; type < SEQ_gen_max; ++type) {
CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value));
CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, type, value + (value >> 2)));
}
}
/* Test offset values up to the max window log */
for (value = 8; value <= kMaxWindowLog; ++value) {
CHECK_Z(SEQ_generateRoundTrip(zc, zd, &xxh, &seq, SEQ_gen_of, (1U << value) - 1));
}
CHECK_Z(SEQ_roundTrip(zc, zd, &xxh, NULL, 0, ZSTD_e_end));
CHECK(SEQ_digest(&seq) != XXH64_digest(&xxh), "SEQ XXH64 does not match");
ZSTD_freeCDict(cdict);
ZSTD_freeDDict(ddict);
}
DISPLAYLEVEL(3, "OK \n");
/* Overlen overwriting window data bug */
DISPLAYLEVEL(3, "test%3i : wildcopy doesn't overwrite potential match data : ", testNb++);
{ /* This test has a window size of 1024 bytes and consists of 3 blocks:
1. 'a' repeated 517 times
2. 'b' repeated 516 times
3. a compressed block with no literals and 3 sequence commands:
litlength = 0, offset = 24, match length = 24
litlength = 0, offset = 24, match length = 3 (this one creates an overlength write of length 2*WILDCOPY_OVERLENGTH - 3)
litlength = 0, offset = 1021, match length = 3 (this one will try to read from overwritten data if the buffer is too small) */
const char* testCase =
"\x28\xB5\x2F\xFD\x04\x00\x4C\x00\x00\x10\x61\x61\x01\x00\x00\x2A"
"\x80\x05\x44\x00\x00\x08\x62\x01\x00\x00\x2A\x20\x04\x5D\x00\x00"
"\x00\x03\x40\x00\x00\x64\x60\x27\xB0\xE0\x0C\x67\x62\xCE\xE0";
ZSTD_DStream* const zds = ZSTD_createDStream();
if (zds==NULL) goto _output_error;
CHECK_Z( ZSTD_initDStream(zds) );
inBuff.src = testCase;
inBuff.size = 47;
inBuff.pos = 0;
outBuff.dst = decodedBuffer;
outBuff.size = CNBufferSize;
outBuff.pos = 0;
while (inBuff.pos < inBuff.size) {
CHECK_Z( ZSTD_decompressStream(zds, &outBuff, &inBuff) );
}
ZSTD_freeDStream(zds);
}
DISPLAYLEVEL(3, "OK \n");
_end:
FUZ_freeDictionary(dictionary);
ZSTD_freeCStream(zc);
ZSTD_freeDStream(zd);
ZSTDMT_freeCCtx(mtctx);
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
return testResult;
_output_error:
testResult = 1;
DISPLAY("Error detected in Unit tests ! \n");
goto _end;
}
/* ====== Fuzzer tests ====== */
static size_t findDiff(const void* buf1, const void* buf2, size_t max)
{
const BYTE* b1 = (const BYTE*)buf1;
const BYTE* b2 = (const BYTE*)buf2;
size_t u;
for (u=0; u<max; u++) {
if (b1[u] != b2[u]) break;
}
DISPLAY("Error at position %u / %u \n", (U32)u, (U32)max);
DISPLAY(" %02X %02X %02X :%02X: %02X %02X %02X %02X %02X \n",
b1[u-3], b1[u-2], b1[u-1], b1[u-0], b1[u+1], b1[u+2], b1[u+3], b1[u+4], b1[u+5]);
DISPLAY(" %02X %02X %02X :%02X: %02X %02X %02X %02X %02X \n",
b2[u-3], b2[u-2], b2[u-1], b2[u-0], b2[u+1], b2[u+2], b2[u+3], b2[u+4], b2[u+5]);
return u;
}
static size_t FUZ_rLogLength(U32* seed, U32 logLength)
{
size_t const lengthMask = ((size_t)1 << logLength) - 1;
return (lengthMask+1) + (FUZ_rand(seed) & lengthMask);
}
static size_t FUZ_randomLength(U32* seed, U32 maxLog)
{
U32 const logLength = FUZ_rand(seed) % maxLog;
return FUZ_rLogLength(seed, logLength);
}
/* Return value in range minVal <= v <= maxVal */
static U32 FUZ_randomClampedLength(U32* seed, U32 minVal, U32 maxVal)
{
U32 const mod = maxVal < minVal ? 1 : (maxVal + 1) - minVal;
return (U32)((FUZ_rand(seed) % mod) + minVal);
}
static int fuzzerTests(U32 seed, U32 nbTests, unsigned startTest, double compressibility, int bigTests)
{
U32 const maxSrcLog = bigTests ? 24 : 22;
static const U32 maxSampleLog = 19;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
BYTE* cNoiseBuffer[5];
size_t const copyBufferSize = srcBufferSize + (1<<maxSampleLog);
BYTE* const copyBuffer = (BYTE*)malloc (copyBufferSize);
size_t const cBufferSize = ZSTD_compressBound(srcBufferSize);
BYTE* const cBuffer = (BYTE*)malloc (cBufferSize);
size_t const dstBufferSize = srcBufferSize;
BYTE* const dstBuffer = (BYTE*)malloc (dstBufferSize);
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed;
ZSTD_CStream* zc = ZSTD_createCStream(); /* will be re-created sometimes */
ZSTD_DStream* zd = ZSTD_createDStream(); /* will be re-created sometimes */
ZSTD_DStream* const zd_noise = ZSTD_createDStream();
UTIL_time_t const startClock = UTIL_getTime();
const BYTE* dict = NULL; /* can keep same dict on 2 consecutive tests */
size_t dictSize = 0;
U32 oldTestLog = 0;
U32 const cLevelMax = bigTests ? (U32)ZSTD_maxCLevel() : g_cLevelMax_smallTests;
/* allocations */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] ||
!copyBuffer || !dstBuffer || !cBuffer || !zc || !zd || !zd_noise ,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
memset(copyBuffer, 0x65, copyBufferSize); /* make copyBuffer considered initialized */
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++)
FUZ_rand(&coreSeed);
/* test loop */
for ( ; (testNb <= nbTests) || (UTIL_clockSpanMicro(startClock) < g_clockTime) ; testNb++ ) {
U32 lseed;
const BYTE* srcBuffer;
size_t totalTestSize, totalGenSize, cSize;
XXH64_state_t xxhState;
U64 crcOrig;
U32 resetAllowed = 1;
size_t maxTestSize;
/* init */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
lseed = coreSeed ^ prime32;
/* states full reset (deliberately not synchronized) */
/* some issues can only happen when reusing states */
if ((FUZ_rand(&lseed) & 0xFF) == 131) {
ZSTD_freeCStream(zc);
zc = ZSTD_createCStream();
CHECK(zc==NULL, "ZSTD_createCStream : allocation error");
resetAllowed=0;
}
if ((FUZ_rand(&lseed) & 0xFF) == 132) {
ZSTD_freeDStream(zd);
zd = ZSTD_createDStream();
CHECK(zd==NULL, "ZSTD_createDStream : allocation error");
CHECK_Z( ZSTD_initDStream_usingDict(zd, NULL, 0) ); /* ensure at least one init */
}
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* compression init */
if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */
&& oldTestLog /* at least one test happened */ && resetAllowed) {
maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2);
maxTestSize = MIN(maxTestSize, srcBufferSize-16);
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? 0 : maxTestSize;
CHECK_Z( ZSTD_resetCStream(zc, pledgedSrcSize) );
}
} else {
U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const cLevelCandidate = ( FUZ_rand(&lseed) %
(ZSTD_maxCLevel() -
(MAX(testLog, dictLog) / 3)))
+ 1;
U32 const cLevel = MIN(cLevelCandidate, cLevelMax);
maxTestSize = FUZ_rLogLength(&lseed, testLog);
oldTestLog = testLog;
/* random dictionary selection */
dictSize = ((FUZ_rand(&lseed)&7)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0;
{ size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize);
dict = srcBuffer + dictStart;
}
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize;
ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize);
params.fParams.checksumFlag = FUZ_rand(&lseed) & 1;
params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1;
params.fParams.contentSizeFlag = FUZ_rand(&lseed) & 1;
CHECK_Z ( ZSTD_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize) );
} }
/* multi-segments compression test */
XXH64_reset(&xxhState, 0);
{ ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ;
U32 n;
for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) {
/* compress random chunks into randomly sized dst buffers */
{ size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const srcSize = MIN(maxTestSize-totalTestSize, randomSrcSize);
size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize);
ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 };
outBuff.size = outBuff.pos + dstBuffSize;
CHECK_Z( ZSTD_compressStream(zc, &outBuff, &inBuff) );
XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos);
memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos);
totalTestSize += inBuff.pos;
}
/* random flush operation, to mess around */
if ((FUZ_rand(&lseed) & 15) == 0) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
CHECK_Z( ZSTD_flushStream(zc, &outBuff) );
} }
/* final frame epilogue */
{ size_t remainingToFlush = (size_t)(-1);
while (remainingToFlush) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
remainingToFlush = ZSTD_endStream(zc, &outBuff);
CHECK (ZSTD_isError(remainingToFlush), "end error : %s", ZSTD_getErrorName(remainingToFlush));
} }
crcOrig = XXH64_digest(&xxhState);
cSize = outBuff.pos;
}
/* multi - fragments decompression test */
if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) {
CHECK_Z ( ZSTD_resetDStream(zd) );
} else {
CHECK_Z ( ZSTD_initDStream_usingDict(zd, dict, dictSize) );
}
{ size_t decompressionResult = 1;
ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
for (totalGenSize = 0 ; decompressionResult ; ) {
size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize);
inBuff.size = inBuff.pos + readCSrcSize;
outBuff.size = outBuff.pos + dstBuffSize;
decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_getErrorCode(decompressionResult) == ZSTD_error_checksum_wrong) {
DISPLAY("checksum error : \n");
findDiff(copyBuffer, dstBuffer, totalTestSize);
}
CHECK( ZSTD_isError(decompressionResult), "decompression error : %s",
ZSTD_getErrorName(decompressionResult) );
}
CHECK (decompressionResult != 0, "frame not fully decoded");
CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)",
(U32)outBuff.pos, (U32)totalTestSize);
CHECK (inBuff.pos != cSize, "compressed data should be fully read")
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize);
CHECK (crcDest!=crcOrig, "decompressed data corrupted");
} }
/*===== noisy/erroneous src decompression test =====*/
/* add some noise */
{ U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2;
U32 nn; for (nn=0; nn<nbNoiseChunks; nn++) {
size_t const randomNoiseSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const noiseSize = MIN((cSize/3) , randomNoiseSize);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseSize);
size_t const cStart = FUZ_rand(&lseed) % (cSize - noiseSize);
memcpy(cBuffer+cStart, srcBuffer+noiseStart, noiseSize);
} }
/* try decompression on noisy data */
CHECK_Z( ZSTD_initDStream(zd_noise) ); /* note : no dictionary */
{ ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
while (outBuff.pos < dstBufferSize) {
size_t const randomCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(dstBufferSize - outBuff.pos, randomDstSize);
size_t const adjustedCSrcSize = MIN(cSize - inBuff.pos, randomCSrcSize);
outBuff.size = outBuff.pos + adjustedDstSize;
inBuff.size = inBuff.pos + adjustedCSrcSize;
{ size_t const decompressError = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(decompressError)) break; /* error correctly detected */
/* No forward progress possible */
if (outBuff.pos < outBuff.size && inBuff.pos == cSize) break;
} } } }
DISPLAY("\r%u fuzzer tests completed \n", testNb);
_cleanup:
ZSTD_freeCStream(zc);
ZSTD_freeDStream(zd);
ZSTD_freeDStream(zd_noise);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(copyBuffer);
free(cBuffer);
free(dstBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/* Multi-threading version of fuzzer Tests */
static int fuzzerTests_MT(U32 seed, U32 nbTests, unsigned startTest, double compressibility, int bigTests)
{
const U32 maxSrcLog = bigTests ? 24 : 22;
static const U32 maxSampleLog = 19;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
BYTE* cNoiseBuffer[5];
size_t const copyBufferSize= srcBufferSize + (1<<maxSampleLog);
BYTE* const copyBuffer = (BYTE*)malloc (copyBufferSize);
size_t const cBufferSize = ZSTD_compressBound(srcBufferSize);
BYTE* const cBuffer = (BYTE*)malloc (cBufferSize);
size_t const dstBufferSize = srcBufferSize;
BYTE* const dstBuffer = (BYTE*)malloc (dstBufferSize);
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed;
U32 nbThreads = 2;
ZSTDMT_CCtx* zc = ZSTDMT_createCCtx(nbThreads); /* will be reset sometimes */
ZSTD_DStream* zd = ZSTD_createDStream(); /* will be reset sometimes */
ZSTD_DStream* const zd_noise = ZSTD_createDStream();
UTIL_time_t const startClock = UTIL_getTime();
const BYTE* dict=NULL; /* can keep same dict on 2 consecutive tests */
size_t dictSize = 0;
U32 oldTestLog = 0;
int const cLevelMax = bigTests ? (U32)ZSTD_maxCLevel()-1 : g_cLevelMax_smallTests;
U32 const nbThreadsMax = bigTests ? 4 : 2;
/* allocations */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] ||
!copyBuffer || !dstBuffer || !cBuffer || !zc || !zd || !zd_noise ,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
memset(copyBuffer, 0x65, copyBufferSize); /* make copyBuffer considered initialized */
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++)
FUZ_rand(&coreSeed);
/* test loop */
for ( ; (testNb <= nbTests) || (UTIL_clockSpanMicro(startClock) < g_clockTime) ; testNb++ ) {
U32 lseed;
const BYTE* srcBuffer;
size_t totalTestSize, totalGenSize, cSize;
XXH64_state_t xxhState;
U64 crcOrig;
U32 resetAllowed = 1;
size_t maxTestSize;
/* init */
if (testNb < nbTests) {
DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests);
} else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
lseed = coreSeed ^ prime32;
/* states full reset (deliberately not synchronized) */
/* some issues can only happen when reusing states */
if ((FUZ_rand(&lseed) & 0xFF) == 131) {
nbThreads = (FUZ_rand(&lseed) % nbThreadsMax) + 1;
DISPLAYLEVEL(5, "Creating new context with %u threads \n", nbThreads);
ZSTDMT_freeCCtx(zc);
zc = ZSTDMT_createCCtx(nbThreads);
CHECK(zc==NULL, "ZSTDMT_createCCtx allocation error")
resetAllowed=0;
}
if ((FUZ_rand(&lseed) & 0xFF) == 132) {
ZSTD_freeDStream(zd);
zd = ZSTD_createDStream();
CHECK(zd==NULL, "ZSTDMT_createCCtx allocation error")
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
}
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* compression init */
if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */
&& oldTestLog /* at least one test happened */ && resetAllowed) {
maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2);
if (maxTestSize >= srcBufferSize) maxTestSize = srcBufferSize-1;
{ int const compressionLevel = (FUZ_rand(&lseed) % 5) + 1;
DISPLAYLEVEL(5, "Init with compression level = %i \n", compressionLevel);
CHECK_Z( ZSTDMT_initCStream(zc, compressionLevel) );
}
} else {
U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog;
int const cLevelCandidate = ( FUZ_rand(&lseed)
% (ZSTD_maxCLevel() - (MAX(testLog, dictLog) / 2)) )
+ 1;
int const cLevelThreadAdjusted = cLevelCandidate - (nbThreads * 2) + 2; /* reduce cLevel when multiple threads to reduce memory consumption */
int const cLevelMin = MAX(cLevelThreadAdjusted, 1); /* no negative cLevel yet */
int const cLevel = MIN(cLevelMin, cLevelMax);
maxTestSize = FUZ_rLogLength(&lseed, testLog);
oldTestLog = testLog;
/* random dictionary selection */
dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0;
{ size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize);
dict = srcBuffer + dictStart;
}
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize;
ZSTD_parameters params = ZSTD_getParams(cLevel, pledgedSrcSize, dictSize);
DISPLAYLEVEL(5, "Init with windowLog = %u, pledgedSrcSize = %u, dictSize = %u \n",
params.cParams.windowLog, (U32)pledgedSrcSize, (U32)dictSize);
params.fParams.checksumFlag = FUZ_rand(&lseed) & 1;
params.fParams.noDictIDFlag = FUZ_rand(&lseed) & 1;
params.fParams.contentSizeFlag = FUZ_rand(&lseed) & 1;
DISPLAYLEVEL(5, "checksumFlag : %u \n", params.fParams.checksumFlag);
CHECK_Z( ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_overlapSectionLog, FUZ_rand(&lseed) % 12) );
CHECK_Z( ZSTDMT_setMTCtxParameter(zc, ZSTDMT_p_jobSize, FUZ_rand(&lseed) % (2*maxTestSize+1)) ); /* custome job size */
CHECK_Z( ZSTDMT_initCStream_advanced(zc, dict, dictSize, params, pledgedSrcSize) );
} }
/* multi-segments compression test */
XXH64_reset(&xxhState, 0);
{ ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ;
U32 n;
for (n=0, cSize=0, totalTestSize=0 ; totalTestSize < maxTestSize ; n++) {
/* compress random chunks into randomly sized dst buffers */
{ size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const srcSize = MIN (maxTestSize-totalTestSize, randomSrcSize);
size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize);
ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 };
outBuff.size = outBuff.pos + dstBuffSize;
DISPLAYLEVEL(6, "Sending %u bytes to compress \n", (U32)srcSize);
CHECK_Z( ZSTDMT_compressStream(zc, &outBuff, &inBuff) );
DISPLAYLEVEL(6, "%u bytes read by ZSTDMT_compressStream \n", (U32)inBuff.pos);
XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos);
memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos);
totalTestSize += inBuff.pos;
}
/* random flush operation, to mess around */
if ((FUZ_rand(&lseed) & 15) == 0) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
size_t const previousPos = outBuff.pos;
outBuff.size = outBuff.pos + adjustedDstSize;
DISPLAYLEVEL(5, "Flushing into dst buffer of size %u \n", (U32)adjustedDstSize);
CHECK_Z( ZSTDMT_flushStream(zc, &outBuff) );
assert(outBuff.pos >= previousPos);
DISPLAYLEVEL(6, "%u bytes flushed by ZSTDMT_flushStream \n", (U32)(outBuff.pos-previousPos));
} }
/* final frame epilogue */
{ size_t remainingToFlush = (size_t)(-1);
while (remainingToFlush) {
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
size_t const previousPos = outBuff.pos;
outBuff.size = outBuff.pos + adjustedDstSize;
DISPLAYLEVEL(5, "Ending into dst buffer of size %u \n", (U32)adjustedDstSize);
remainingToFlush = ZSTDMT_endStream(zc, &outBuff);
CHECK (ZSTD_isError(remainingToFlush), "ZSTDMT_endStream error : %s", ZSTD_getErrorName(remainingToFlush));
assert(outBuff.pos >= previousPos);
DISPLAYLEVEL(6, "%u bytes flushed by ZSTDMT_endStream \n", (U32)(outBuff.pos-previousPos));
DISPLAYLEVEL(5, "endStream : remainingToFlush : %u \n", (U32)remainingToFlush);
} }
crcOrig = XXH64_digest(&xxhState);
cSize = outBuff.pos;
DISPLAYLEVEL(5, "Frame completed : %u bytes \n", (U32)cSize);
}
/* multi - fragments decompression test */
if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) {
CHECK_Z( ZSTD_resetDStream(zd) );
} else {
CHECK_Z( ZSTD_initDStream_usingDict(zd, dict, dictSize) );
}
{ size_t decompressionResult = 1;
ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
for (totalGenSize = 0 ; decompressionResult ; ) {
size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize);
inBuff.size = inBuff.pos + readCSrcSize;
outBuff.size = outBuff.pos + dstBuffSize;
DISPLAYLEVEL(6, "ZSTD_decompressStream input %u bytes \n", (U32)readCSrcSize);
decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff);
CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult));
DISPLAYLEVEL(6, "inBuff.pos = %u \n", (U32)readCSrcSize);
}
CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize);
CHECK (inBuff.pos != cSize, "compressed data should be fully read (%u != %u)", (U32)inBuff.pos, (U32)cSize);
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize);
CHECK (crcDest!=crcOrig, "decompressed data corrupted");
} }
/*===== noisy/erroneous src decompression test =====*/
/* add some noise */
{ U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2;
U32 nn; for (nn=0; nn<nbNoiseChunks; nn++) {
size_t const randomNoiseSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const noiseSize = MIN((cSize/3) , randomNoiseSize);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseSize);
size_t const cStart = FUZ_rand(&lseed) % (cSize - noiseSize);
memcpy(cBuffer+cStart, srcBuffer+noiseStart, noiseSize);
} }
/* try decompression on noisy data */
CHECK_Z( ZSTD_initDStream(zd_noise) ); /* note : no dictionary */
{ ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
while (outBuff.pos < dstBufferSize) {
size_t const randomCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(dstBufferSize - outBuff.pos, randomDstSize);
size_t const adjustedCSrcSize = MIN(cSize - inBuff.pos, randomCSrcSize);
outBuff.size = outBuff.pos + adjustedDstSize;
inBuff.size = inBuff.pos + adjustedCSrcSize;
{ size_t const decompressError = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(decompressError)) break; /* error correctly detected */
/* No forward progress possible */
if (outBuff.pos < outBuff.size && inBuff.pos == cSize) break;
} } } }
DISPLAY("\r%u fuzzer tests completed \n", testNb);
_cleanup:
ZSTDMT_freeCCtx(zc);
ZSTD_freeDStream(zd);
ZSTD_freeDStream(zd_noise);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(copyBuffer);
free(cBuffer);
free(dstBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/** If useOpaqueAPI, sets param in cctxParams.
* Otherwise, sets the param in zc. */
static size_t setCCtxParameter(ZSTD_CCtx* zc, ZSTD_CCtx_params* cctxParams,
ZSTD_cParameter param, unsigned value,
U32 useOpaqueAPI)
{
if (useOpaqueAPI) {
return ZSTD_CCtxParam_setParameter(cctxParams, param, value);
} else {
return ZSTD_CCtx_setParameter(zc, param, value);
}
}
/* Tests for ZSTD_compress_generic() API */
static int fuzzerTests_newAPI(U32 seed, U32 nbTests, unsigned startTest, double compressibility, int bigTests, U32 const useOpaqueAPI)
{
U32 const maxSrcLog = bigTests ? 24 : 22;
static const U32 maxSampleLog = 19;
size_t const srcBufferSize = (size_t)1<<maxSrcLog;
BYTE* cNoiseBuffer[5];
size_t const copyBufferSize= srcBufferSize + (1<<maxSampleLog);
BYTE* const copyBuffer = (BYTE*)malloc (copyBufferSize);
size_t const cBufferSize = ZSTD_compressBound(srcBufferSize);
BYTE* const cBuffer = (BYTE*)malloc (cBufferSize);
size_t const dstBufferSize = srcBufferSize;
BYTE* const dstBuffer = (BYTE*)malloc (dstBufferSize);
U32 result = 0;
U32 testNb = 0;
U32 coreSeed = seed;
ZSTD_CCtx* zc = ZSTD_createCCtx(); /* will be reset sometimes */
ZSTD_DStream* zd = ZSTD_createDStream(); /* will be reset sometimes */
ZSTD_DStream* const zd_noise = ZSTD_createDStream();
UTIL_time_t const startClock = UTIL_getTime();
const BYTE* dict = NULL; /* can keep same dict on 2 consecutive tests */
size_t dictSize = 0;
U32 oldTestLog = 0;
U32 windowLogMalus = 0; /* can survive between 2 loops */
U32 const cLevelMax = bigTests ? (U32)ZSTD_maxCLevel()-1 : g_cLevelMax_smallTests;
U32 const nbThreadsMax = bigTests ? 4 : 2;
ZSTD_CCtx_params* cctxParams = ZSTD_createCCtxParams();
/* allocations */
cNoiseBuffer[0] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[1] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[2] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[3] = (BYTE*)malloc (srcBufferSize);
cNoiseBuffer[4] = (BYTE*)malloc (srcBufferSize);
CHECK (!cNoiseBuffer[0] || !cNoiseBuffer[1] || !cNoiseBuffer[2] || !cNoiseBuffer[3] || !cNoiseBuffer[4] ||
!copyBuffer || !dstBuffer || !cBuffer || !zc || !zd || !zd_noise ,
"Not enough memory, fuzzer tests cancelled");
/* Create initial samples */
RDG_genBuffer(cNoiseBuffer[0], srcBufferSize, 0.00, 0., coreSeed); /* pure noise */
RDG_genBuffer(cNoiseBuffer[1], srcBufferSize, 0.05, 0., coreSeed); /* barely compressible */
RDG_genBuffer(cNoiseBuffer[2], srcBufferSize, compressibility, 0., coreSeed);
RDG_genBuffer(cNoiseBuffer[3], srcBufferSize, 0.95, 0., coreSeed); /* highly compressible */
RDG_genBuffer(cNoiseBuffer[4], srcBufferSize, 1.00, 0., coreSeed); /* sparse content */
memset(copyBuffer, 0x65, copyBufferSize); /* make copyBuffer considered initialized */
CHECK_Z( ZSTD_initDStream_usingDict(zd, NULL, 0) ); /* ensure at least one init */
/* catch up testNb */
for (testNb=1; testNb < startTest; testNb++)
FUZ_rand(&coreSeed);
/* test loop */
for ( ; (testNb <= nbTests) || (UTIL_clockSpanMicro(startClock) < g_clockTime) ; testNb++ ) {
U32 lseed;
const BYTE* srcBuffer;
size_t totalTestSize, totalGenSize, cSize;
XXH64_state_t xxhState;
U64 crcOrig;
U32 resetAllowed = 1;
size_t maxTestSize;
/* init */
if (nbTests >= testNb) { DISPLAYUPDATE(2, "\r%6u/%6u ", testNb, nbTests); }
else { DISPLAYUPDATE(2, "\r%6u ", testNb); }
FUZ_rand(&coreSeed);
lseed = coreSeed ^ prime32;
DISPLAYLEVEL(5, " *** Test %u *** \n", testNb);
/* states full reset (deliberately not synchronized) */
/* some issues can only happen when reusing states */
if ((FUZ_rand(&lseed) & 0xFF) == 131) {
DISPLAYLEVEL(5, "Creating new context \n");
ZSTD_freeCCtx(zc);
zc = ZSTD_createCCtx();
CHECK(zc==NULL, "ZSTD_createCCtx allocation error");
resetAllowed=0;
}
if ((FUZ_rand(&lseed) & 0xFF) == 132) {
ZSTD_freeDStream(zd);
zd = ZSTD_createDStream();
CHECK(zd==NULL, "ZSTD_createDStream allocation error");
ZSTD_initDStream_usingDict(zd, NULL, 0); /* ensure at least one init */
}
/* srcBuffer selection [0-4] */
{ U32 buffNb = FUZ_rand(&lseed) & 0x7F;
if (buffNb & 7) buffNb=2; /* most common : compressible (P) */
else {
buffNb >>= 3;
if (buffNb & 7) {
const U32 tnb[2] = { 1, 3 }; /* barely/highly compressible */
buffNb = tnb[buffNb >> 3];
} else {
const U32 tnb[2] = { 0, 4 }; /* not compressible / sparse */
buffNb = tnb[buffNb >> 3];
} }
srcBuffer = cNoiseBuffer[buffNb];
}
/* compression init */
CHECK_Z( ZSTD_CCtx_loadDictionary(zc, NULL, 0) ); /* cancel previous dict /*/
if ((FUZ_rand(&lseed)&1) /* at beginning, to keep same nb of rand */
&& oldTestLog /* at least one test happened */ && resetAllowed) {
maxTestSize = FUZ_randomLength(&lseed, oldTestLog+2);
if (maxTestSize >= srcBufferSize) maxTestSize = srcBufferSize-1;
{ int const compressionLevel = (FUZ_rand(&lseed) % 5) + 1;
CHECK_Z (setCCtxParameter(zc, cctxParams, ZSTD_p_compressionLevel, compressionLevel, useOpaqueAPI) );
}
} else {
U32 const testLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const dictLog = FUZ_rand(&lseed) % maxSrcLog;
U32 const cLevelCandidate = (FUZ_rand(&lseed) %
(ZSTD_maxCLevel() -
(MAX(testLog, dictLog) / 2))) +
1;
U32 const cLevel = MIN(cLevelCandidate, cLevelMax);
DISPLAYLEVEL(5, "t%u: base cLevel : %u \n", testNb, cLevel);
maxTestSize = FUZ_rLogLength(&lseed, testLog);
DISPLAYLEVEL(5, "t%u: maxTestSize : %u \n", testNb, (U32)maxTestSize);
oldTestLog = testLog;
/* random dictionary selection */
dictSize = ((FUZ_rand(&lseed)&63)==1) ? FUZ_rLogLength(&lseed, dictLog) : 0;
{ size_t const dictStart = FUZ_rand(&lseed) % (srcBufferSize - dictSize);
dict = srcBuffer + dictStart;
if (!dictSize) dict=NULL;
}
{ U64 const pledgedSrcSize = (FUZ_rand(&lseed) & 3) ? ZSTD_CONTENTSIZE_UNKNOWN : maxTestSize;
ZSTD_compressionParameters cParams = ZSTD_getCParams(cLevel, pledgedSrcSize, dictSize);
static const U32 windowLogMax = 24;
/* mess with compression parameters */
cParams.windowLog += (FUZ_rand(&lseed) & 3) - 1;
cParams.windowLog = MIN(windowLogMax, cParams.windowLog);
cParams.hashLog += (FUZ_rand(&lseed) & 3) - 1;
cParams.chainLog += (FUZ_rand(&lseed) & 3) - 1;
cParams.searchLog += (FUZ_rand(&lseed) & 3) - 1;
cParams.searchLength += (FUZ_rand(&lseed) & 3) - 1;
cParams.targetLength = (U32)((cParams.targetLength + 1 ) * (0.5 + ((double)(FUZ_rand(&lseed) & 127) / 128)));
cParams = ZSTD_adjustCParams(cParams, 0, 0);
if (FUZ_rand(&lseed) & 1) {
DISPLAYLEVEL(5, "t%u: windowLog : %u \n", testNb, cParams.windowLog);
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_windowLog, cParams.windowLog, useOpaqueAPI) );
assert(cParams.windowLog >= ZSTD_WINDOWLOG_MIN); /* guaranteed by ZSTD_adjustCParams() */
windowLogMalus = (cParams.windowLog - ZSTD_WINDOWLOG_MIN) / 5;
}
if (FUZ_rand(&lseed) & 1) {
DISPLAYLEVEL(5, "t%u: hashLog : %u \n", testNb, cParams.hashLog);
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_hashLog, cParams.hashLog, useOpaqueAPI) );
}
if (FUZ_rand(&lseed) & 1) {
DISPLAYLEVEL(5, "t%u: chainLog : %u \n", testNb, cParams.chainLog);
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_chainLog, cParams.chainLog, useOpaqueAPI) );
}
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_searchLog, cParams.searchLog, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_minMatch, cParams.searchLength, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_targetLength, cParams.targetLength, useOpaqueAPI) );
/* mess with long distance matching parameters */
if (bigTests) {
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_enableLongDistanceMatching, FUZ_rand(&lseed) & 63, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_ldmHashLog, FUZ_randomClampedLength(&lseed, ZSTD_HASHLOG_MIN, 23), useOpaqueAPI) );
if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_ldmMinMatch, FUZ_randomClampedLength(&lseed, ZSTD_LDM_MINMATCH_MIN, ZSTD_LDM_MINMATCH_MAX), useOpaqueAPI) );
if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_ldmBucketSizeLog, FUZ_randomClampedLength(&lseed, 0, ZSTD_LDM_BUCKETSIZELOG_MAX), useOpaqueAPI) );
if (FUZ_rand(&lseed) & 3) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_ldmHashEveryLog, FUZ_randomClampedLength(&lseed, 0, ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN), useOpaqueAPI) );
}
/* mess with frame parameters */
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_checksumFlag, FUZ_rand(&lseed) & 1, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_dictIDFlag, FUZ_rand(&lseed) & 1, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_contentSizeFlag, FUZ_rand(&lseed) & 1, useOpaqueAPI) );
if (FUZ_rand(&lseed) & 1) {
DISPLAYLEVEL(5, "t%u: pledgedSrcSize : %u \n", testNb, (U32)pledgedSrcSize);
CHECK_Z( ZSTD_CCtx_setPledgedSrcSize(zc, pledgedSrcSize) );
}
/* multi-threading parameters */
{ U32 const nbThreadsCandidate = (FUZ_rand(&lseed) & 4) + 1;
U32 const nbThreadsAdjusted = (windowLogMalus < nbThreadsCandidate) ? nbThreadsCandidate - windowLogMalus : 1;
U32 const nbThreads = MIN(nbThreadsAdjusted, nbThreadsMax);
DISPLAYLEVEL(5, "t%u: nbThreads : %u \n", testNb, nbThreads);
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_nbThreads, nbThreads, useOpaqueAPI) );
if (nbThreads > 1) {
U32 const jobLog = FUZ_rand(&lseed) % (testLog+1);
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_overlapSizeLog, FUZ_rand(&lseed) % 10, useOpaqueAPI) );
CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_jobSize, (U32)FUZ_rLogLength(&lseed, jobLog), useOpaqueAPI) );
}
}
if (FUZ_rand(&lseed) & 1) CHECK_Z( setCCtxParameter(zc, cctxParams, ZSTD_p_forceMaxWindow, FUZ_rand(&lseed) & 1, useOpaqueAPI) );
/* Apply parameters */
if (useOpaqueAPI) {
DISPLAYLEVEL(6," t%u: applying CCtxParams \n", testNb);
CHECK_Z (ZSTD_CCtx_setParametersUsingCCtxParams(zc, cctxParams) );
}
if (FUZ_rand(&lseed) & 1) {
if (FUZ_rand(&lseed) & 1) {
CHECK_Z( ZSTD_CCtx_loadDictionary(zc, dict, dictSize) );
} else {
CHECK_Z( ZSTD_CCtx_loadDictionary_byReference(zc, dict, dictSize) );
}
if (dict && dictSize) {
/* test that compression parameters are rejected (correctly) after loading a non-NULL dictionary */
if (useOpaqueAPI) {
size_t const setError = ZSTD_CCtx_setParametersUsingCCtxParams(zc, cctxParams);
CHECK(!ZSTD_isError(setError), "ZSTD_CCtx_setParametersUsingCCtxParams should have failed");
} else {
size_t const setError = ZSTD_CCtx_setParameter(zc, ZSTD_p_windowLog, cParams.windowLog-1);
CHECK(!ZSTD_isError(setError), "ZSTD_CCtx_setParameter should have failed");
}
}
} else {
CHECK_Z( ZSTD_CCtx_refPrefix(zc, dict, dictSize) );
}
} }
/* multi-segments compression test */
XXH64_reset(&xxhState, 0);
{ ZSTD_outBuffer outBuff = { cBuffer, cBufferSize, 0 } ;
for (cSize=0, totalTestSize=0 ; (totalTestSize < maxTestSize) ; ) {
/* compress random chunks into randomly sized dst buffers */
size_t const randomSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const srcSize = MIN(maxTestSize-totalTestSize, randomSrcSize);
size_t const srcStart = FUZ_rand(&lseed) % (srcBufferSize - srcSize);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog+1);
size_t const dstBuffSize = MIN(cBufferSize - cSize, randomDstSize);
ZSTD_EndDirective const flush = (FUZ_rand(&lseed) & 15) ? ZSTD_e_continue : ZSTD_e_flush;
ZSTD_inBuffer inBuff = { srcBuffer+srcStart, srcSize, 0 };
outBuff.size = outBuff.pos + dstBuffSize;
CHECK_Z( ZSTD_compress_generic(zc, &outBuff, &inBuff, flush) );
DISPLAYLEVEL(6, "t%u: compress consumed %u bytes (total : %u) \n",
testNb, (U32)inBuff.pos, (U32)(totalTestSize + inBuff.pos));
XXH64_update(&xxhState, srcBuffer+srcStart, inBuff.pos);
memcpy(copyBuffer+totalTestSize, srcBuffer+srcStart, inBuff.pos);
totalTestSize += inBuff.pos;
}
/* final frame epilogue */
{ size_t remainingToFlush = (size_t)(-1);
while (remainingToFlush) {
ZSTD_inBuffer inBuff = { NULL, 0, 0 };
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog+1);
size_t const adjustedDstSize = MIN(cBufferSize - cSize, randomDstSize);
outBuff.size = outBuff.pos + adjustedDstSize;
DISPLAYLEVEL(6, "End-flush into dst buffer of size %u \n", (U32)adjustedDstSize);
remainingToFlush = ZSTD_compress_generic(zc, &outBuff, &inBuff, ZSTD_e_end);
CHECK( ZSTD_isError(remainingToFlush),
"ZSTD_compress_generic w/ ZSTD_e_end error : %s",
ZSTD_getErrorName(remainingToFlush) );
} }
crcOrig = XXH64_digest(&xxhState);
cSize = outBuff.pos;
DISPLAYLEVEL(5, "Frame completed : %u bytes \n", (U32)cSize);
}
/* multi - fragments decompression test */
if (!dictSize /* don't reset if dictionary : could be different */ && (FUZ_rand(&lseed) & 1)) {
DISPLAYLEVEL(5, "resetting DCtx (dict:%08X) \n", (U32)(size_t)dict);
CHECK_Z( ZSTD_resetDStream(zd) );
} else {
DISPLAYLEVEL(5, "using dict of size %u \n", (U32)dictSize);
CHECK_Z( ZSTD_initDStream_usingDict(zd, dict, dictSize) );
}
{ size_t decompressionResult = 1;
ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
for (totalGenSize = 0 ; decompressionResult ; ) {
size_t const readCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const dstBuffSize = MIN(dstBufferSize - totalGenSize, randomDstSize);
inBuff.size = inBuff.pos + readCSrcSize;
outBuff.size = outBuff.pos + dstBuffSize;
DISPLAYLEVEL(6, "ZSTD_decompressStream input %u bytes (pos:%u/%u)\n",
(U32)readCSrcSize, (U32)inBuff.pos, (U32)cSize);
decompressionResult = ZSTD_decompressStream(zd, &outBuff, &inBuff);
CHECK (ZSTD_isError(decompressionResult), "decompression error : %s", ZSTD_getErrorName(decompressionResult));
DISPLAYLEVEL(6, "inBuff.pos = %u \n", (U32)readCSrcSize);
}
CHECK (outBuff.pos != totalTestSize, "decompressed data : wrong size (%u != %u)", (U32)outBuff.pos, (U32)totalTestSize);
CHECK (inBuff.pos != cSize, "compressed data should be fully read (%u != %u)", (U32)inBuff.pos, (U32)cSize);
{ U64 const crcDest = XXH64(dstBuffer, totalTestSize, 0);
if (crcDest!=crcOrig) findDiff(copyBuffer, dstBuffer, totalTestSize);
CHECK (crcDest!=crcOrig, "decompressed data corrupted");
} }
/*===== noisy/erroneous src decompression test =====*/
/* add some noise */
{ U32 const nbNoiseChunks = (FUZ_rand(&lseed) & 7) + 2;
U32 nn; for (nn=0; nn<nbNoiseChunks; nn++) {
size_t const randomNoiseSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const noiseSize = MIN((cSize/3) , randomNoiseSize);
size_t const noiseStart = FUZ_rand(&lseed) % (srcBufferSize - noiseSize);
size_t const cStart = FUZ_rand(&lseed) % (cSize - noiseSize);
memcpy(cBuffer+cStart, srcBuffer+noiseStart, noiseSize);
} }
/* try decompression on noisy data */
CHECK_Z( ZSTD_initDStream(zd_noise) ); /* note : no dictionary */
{ ZSTD_inBuffer inBuff = { cBuffer, cSize, 0 };
ZSTD_outBuffer outBuff= { dstBuffer, dstBufferSize, 0 };
while (outBuff.pos < dstBufferSize) {
size_t const randomCSrcSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const randomDstSize = FUZ_randomLength(&lseed, maxSampleLog);
size_t const adjustedDstSize = MIN(dstBufferSize - outBuff.pos, randomDstSize);
size_t const adjustedCSrcSize = MIN(cSize - inBuff.pos, randomCSrcSize);
outBuff.size = outBuff.pos + adjustedDstSize;
inBuff.size = inBuff.pos + adjustedCSrcSize;
{ size_t const decompressError = ZSTD_decompressStream(zd, &outBuff, &inBuff);
if (ZSTD_isError(decompressError)) break; /* error correctly detected */
/* Good so far, but no more progress possible */
if (outBuff.pos < outBuff.size && inBuff.pos == cSize) break;
} } } }
DISPLAY("\r%u fuzzer tests completed \n", testNb-1);
_cleanup:
ZSTD_freeCCtx(zc);
ZSTD_freeDStream(zd);
ZSTD_freeDStream(zd_noise);
ZSTD_freeCCtxParams(cctxParams);
free(cNoiseBuffer[0]);
free(cNoiseBuffer[1]);
free(cNoiseBuffer[2]);
free(cNoiseBuffer[3]);
free(cNoiseBuffer[4]);
free(copyBuffer);
free(cBuffer);
free(dstBuffer);
return result;
_output_error:
result = 1;
goto _cleanup;
}
/*-*******************************************************
* Command line
*********************************************************/
int FUZ_usage(const char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%u) \n", nbTestsDefault);
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_COMPRESSIBILITY_DEFAULT);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
typedef enum { simple_api, mt_api, advanced_api } e_api;
int main(int argc, const char** argv)
{
U32 seed = 0;
int seedset = 0;
int nbTests = nbTestsDefault;
int testNb = 0;
int proba = FUZ_COMPRESSIBILITY_DEFAULT;
int result = 0;
int mainPause = 0;
int bigTests = (sizeof(size_t) == 8);
e_api selected_api = simple_api;
const char* const programName = argv[0];
U32 useOpaqueAPI = 0;
int argNb;
/* Check command line */
for(argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
assert(argument != NULL);
/* Parsing commands. Aggregated commands are allowed */
if (argument[0]=='-') {
if (!strcmp(argument, "--mt")) { selected_api=mt_api; testNb += !testNb; continue; }
if (!strcmp(argument, "--newapi")) { selected_api=advanced_api; testNb += !testNb; continue; }
if (!strcmp(argument, "--opaqueapi")) { selected_api=advanced_api; testNb += !testNb; useOpaqueAPI = 1; continue; }
if (!strcmp(argument, "--no-big-tests")) { bigTests=0; continue; }
argument++;
while (*argument!=0) {
switch(*argument)
{
case 'h':
return FUZ_usage(programName);
case 'v':
argument++;
g_displayLevel++;
break;
case 'q':
argument++;
g_displayLevel--;
break;
case 'p': /* pause at the end */
argument++;
mainPause = 1;
break;
case 'i': /* limit tests by nb of iterations (default) */
argument++;
nbTests=0; g_clockTime=0;
while ((*argument>='0') && (*argument<='9')) {
nbTests *= 10;
nbTests += *argument - '0';
argument++;
}
break;
case 'T': /* limit tests by time */
argument++;
nbTests=0; g_clockTime=0;
while ((*argument>='0') && (*argument<='9')) {
g_clockTime *= 10;
g_clockTime += *argument - '0';
argument++;
}
if (*argument=='m') { /* -T1m == -T60 */
g_clockTime *=60, argument++;
if (*argument=='n') argument++; /* -T1mn == -T60 */
} else if (*argument=='s') argument++; /* -T10s == -T10 */
g_clockTime *= SEC_TO_MICRO;
break;
case 's': /* manually select seed */
argument++;
seedset=1;
seed=0;
while ((*argument>='0') && (*argument<='9')) {
seed *= 10;
seed += *argument - '0';
argument++;
}
break;
case 't': /* select starting test number */
argument++;
testNb=0;
while ((*argument>='0') && (*argument<='9')) {
testNb *= 10;
testNb += *argument - '0';
argument++;
}
break;
case 'P': /* compressibility % */
argument++;
proba=0;
while ((*argument>='0') && (*argument<='9')) {
proba *= 10;
proba += *argument - '0';
argument++;
}
if (proba<0) proba=0;
if (proba>100) proba=100;
break;
default:
return FUZ_usage(programName);
}
} } } /* for(argNb=1; argNb<argc; argNb++) */
/* Get Seed */
DISPLAY("Starting zstream tester (%i-bits, %s)\n", (int)(sizeof(size_t)*8), ZSTD_VERSION_STRING);
if (!seedset) {
time_t const t = time(NULL);
U32 const h = XXH32(&t, sizeof(t), 1);
seed = h % 10000;
}
DISPLAY("Seed = %u\n", seed);
if (proba!=FUZ_COMPRESSIBILITY_DEFAULT) DISPLAY("Compressibility : %i%%\n", proba);
if (nbTests<=0) nbTests=1;
if (testNb==0) {
result = basicUnitTests(0, ((double)proba) / 100); /* constant seed for predictability */
}
if (!result) {
switch(selected_api)
{
case simple_api :
result = fuzzerTests(seed, nbTests, testNb, ((double)proba) / 100, bigTests);
break;
case mt_api :
result = fuzzerTests_MT(seed, nbTests, testNb, ((double)proba) / 100, bigTests);
break;
case advanced_api :
result = fuzzerTests_newAPI(seed, nbTests, testNb, ((double)proba) / 100, bigTests, useOpaqueAPI);
break;
default :
assert(0); /* impossible */
}
}
if (mainPause) {
int unused;
DISPLAY("Press Enter \n");
unused = getchar();
(void)unused;
}
return result;
}