Go to file
Nick Terrell af866b3a58 Split block compresser out of long range matcher
* `ZSTD_ldm_generateSequences()` generates the LDM sequences and
  stores them in a table. It should work with any chunk size, but
  is currently only called one block at a time.
* `ZSTD_ldm_blockCompress()` emits the pre-defined sequences, and
  instead of encoding the literals directly, it passes them to a
  secondary block compressor. The code to handle chunk sizes greater
  than the block size is currently commented out, since it is unused.
  The next PR will uncomment exercise this code.
* During optimal parsing, ensure LDM `minMatchLength` is at least
  `targetLength`. Also don't emit repcode matches in the LDM block
  compressor. Enabling the LDM with the optimal parser now actually improves
  the compression ratio.
* The compression ratio is very similar to before. It is very slightly
  different, because the repcode handling is slightly different. If I remove
  immediate repcode checking in both branches the compressed size is exactly
  the same.
* The speed looks to be the same or better than before.

Up Next (in a separate PR)
--------------------------

Allow sequence generation to happen prior to compression, and produce more
than a block worth of sequences. Expose some API for zstdmt to consume.
This will test out some currently untested code in
`ZSTD_ldm_blockCompress()`.
2018-02-22 15:18:41 -08:00
build CMake: fixed multithreading build on Windows 2018-01-17 10:27:52 +03:00
contrib meson: allow -Dlegacy_support=true, fix -Dlegacy_support=0 2017-12-29 10:18:33 -08:00
doc Merge branch 'dev' into flexibleLevel 2018-02-10 11:54:49 -08:00
examples fixed streaming_memory_usage example 2018-02-07 23:42:09 -08:00
lib Split block compresser out of long range matcher 2018-02-22 15:18:41 -08:00
programs fixed minor conversion warning 2018-02-20 16:52:28 -08:00
tests fullbench includes assert.h 2018-02-21 11:42:23 -08:00
zlibWrapper Update BUCK files 2017-10-25 12:47:57 -07:00
.buckconfig Update builds to not support legacy v01-v03 2017-03-13 14:44:08 -07:00
.buckversion Add BUCK files for Nuclide support 2017-01-27 10:43:12 -08:00
.gitattributes zstd.exe has FileVersion and ProductVersion 2016-09-13 13:53:43 +02:00
.gitignore updated .gitignore for new cmake script 2017-03-21 17:52:42 -07:00
.travis.yml Merge pull request #987 from facebook/checkTag 2018-01-16 11:52:32 -08:00
appveyor.yml windows ci : removed fullbench-dll from appveyor 2017-12-27 19:27:54 +01:00
circle.yml circleci: removed -m32 tests 2017-12-01 18:34:22 -08:00
CONTRIBUTING.md added GPLv2 license 2017-08-18 16:32:08 -07:00
COPYING added GPLv2 license 2017-08-18 16:32:08 -07:00
LICENSE added boilerplate 2016-08-30 11:06:28 -07:00
Makefile add zcat symlink support, suggested by @wtarreau 2018-01-19 11:26:35 -08:00
NEWS version bump to v1.3.3 2017-12-14 16:11:20 -08:00
README.md fixed logo path 2018-02-10 21:05:48 -08:00
TESTING.md Add testing description 2017-03-09 16:05:23 -08:00

Zstandard

Zstandard, or zstd as short version, is a fast lossless compression algorithm, targeting real-time compression scenarios at zlib-level and better compression ratios. It's backed by a very fast entropy stage, provided by Huff0 and FSE library.

The project is provided as an open-source BSD-licensed C library, and a command line utility producing and decoding .zst, .gz, .xz and .lz4 files. Should your project require another programming language, a list of known ports and bindings is provided on Zstandard homepage.

Development branch status : Build Status Build status Build status

Benchmarks

For reference, several fast compression algorithms were tested and compared on a server running Linux Debian (Linux version 4.8.0-1-amd64), with a Core i7-6700K CPU @ 4.0GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with GCC 6.3.0, on the Silesia compression corpus.

Compressor name Ratio Compression Decompress.
zstd 1.1.3 -1 2.877 430 MB/s 1110 MB/s
zlib 1.2.8 -1 2.743 110 MB/s 400 MB/s
brotli 0.5.2 -0 2.708 400 MB/s 430 MB/s
quicklz 1.5.0 -1 2.238 550 MB/s 710 MB/s
lzo1x 2.09 -1 2.108 650 MB/s 830 MB/s
lz4 1.7.5 2.101 720 MB/s 3600 MB/s
snappy 1.1.3 2.091 500 MB/s 1650 MB/s
lzf 3.6 -1 2.077 400 MB/s 860 MB/s

Zstd can also offer stronger compression ratios at the cost of compression speed. Speed vs Compression trade-off is configurable by small increments. Decompression speed is preserved and remains roughly the same at all settings, a property shared by most LZ compression algorithms, such as zlib or lzma.

The following tests were run on a server running Linux Debian (Linux version 4.8.0-1-amd64) with a Core i7-6700K CPU @ 4.0GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with GCC 6.3.0, on the Silesia compression corpus.

Compression Speed vs Ratio Decompression Speed
Compression Speed vs Ratio Decompression Speed

A few other algorithms can produce higher compression ratios at slower speeds, falling outside of the graph. For a larger picture including slow modes, click on this link.

The case for Small Data compression

Previous charts provide results applicable to typical file and stream scenarios (several MB). Small data comes with different perspectives.

The smaller the amount of data to compress, the more difficult it is to compress. This problem is common to all compression algorithms, and reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new data set, there is no "past" to build upon.

To solve this situation, Zstd offers a training mode, which can be used to tune the algorithm for a selected type of data. Training Zstandard is achieved by providing it with a few samples (one file per sample). The result of this training is stored in a file called "dictionary", which must be loaded before compression and decompression. Using this dictionary, the compression ratio achievable on small data improves dramatically.

The following example uses the github-users sample set, created from github public API. It consists of roughly 10K records weighing about 1KB each.

Compression Ratio Compression Speed Decompression Speed
Compression Ratio Compression Speed Decompression Speed

These compression gains are achieved while simultaneously providing faster compression and decompression speeds.

Training works if there is some correlation in a family of small data samples. The more data-specific a dictionary is, the more efficient it is (there is no universal dictionary). Hence, deploying one dictionary per type of data will provide the greatest benefits. Dictionary gains are mostly effective in the first few KB. Then, the compression algorithm will gradually use previously decoded content to better compress the rest of the file.

Dictionary compression How To:

  1. Create the dictionary

zstd --train FullPathToTrainingSet/* -o dictionaryName

  1. Compress with dictionary

zstd -D dictionaryName FILE

  1. Decompress with dictionary

zstd -D dictionaryName --decompress FILE.zst

Build instructions

Makefile

If your system is compatible with standard make (or gmake), invoking make in root directory will generate zstd cli in root directory.

Other available options include:

  • make install : create and install zstd cli, library and man pages
  • make check : create and run zstd, tests its behavior on local platform

cmake

A cmake project generator is provided within build/cmake. It can generate Makefiles or other build scripts to create zstd binary, and libzstd dynamic and static libraries.

Meson

A Meson project is provided within contrib/meson.

Visual Studio (Windows)

Going into build directory, you will find additional possibilities:

  • Projects for Visual Studio 2005, 2008 and 2010.
    • VS2010 project is compatible with VS2012, VS2013 and VS2015.
  • Automated build scripts for Visual compiler by @KrzysFR , in build/VS_scripts, which will build zstd cli and libzstd library without any need to open Visual Studio solution.

Status

Zstandard is currently deployed within Facebook. It is used continuously to compress large amounts of data in multiple formats and use cases. Zstandard is considered safe for production environments.

License

Zstandard is dual-licensed under BSD and GPLv2.

Contributing

The "dev" branch is the one where all contributions are merged before reaching "master". If you plan to propose a patch, please commit into the "dev" branch, or its own feature branch. Direct commit to "master" are not permitted. For more information, please read CONTRIBUTING.