zstd/lib/compress/zstd_compress_internal.h
mgrice 812e8f2a16 perf improvements for zstd decode (#1668)
* perf improvements for zstd decode

tldr: 7.5% average decode speedup on silesia corpus at compression levels 1-3 (sandy bridge)

Background: while investigating zstd perf differences between clang and gcc I noticed that even though gcc is vectorizing the loop in in wildcopy, it was not being done as well as could be done by hand.  The sites where wildcopy is invoked have an interesting distribution of lengths to be copied.  The loop trip count is rarely above 1, yet long copies are common enough to make their performance important.The code in zstd_decompress.c to invoke wildcopy handles the latter well but the gcc autovectorizer introduces a needlessly expensive startup check for vectorization.

See how GCC autovectorizes the loop here:
https://godbolt.org/z/apr0x0

Here is the code after this diff has been applied: (left hand side is the good one, right is with vectorizer on)
After: https://godbolt.org/z/OwO4F8

Note that autovectorization still does not do a good job on the optimized version, so it's turned off\
 via attribute and flag.  I found that neither attribute nor command-line flag were entirely successful in turning off vectorization, which is why there were both.

    silesia benchmark data - second triad of each file is with the original code:

    file      orig        compressedratio     encode              decode           change
    1#dickens   10192446->   4268865(2.388),       198.9MB/s           709.6MB/s
    2#dickens   10192446->   3876126(2.630),       128.7MB/s           552.5MB/s
    3#dickens   10192446->   3682956(2.767),       104.6MB/s             537MB/s
    1#dickens   10192446->   4268865(2.388),       195.4MB/s           659.5MB/s     7.60%
    2#dickens   10192446->   3876126(2.630),         127MB/s           516.3MB/s     7.01%
    3#dickens   10192446->   3682956(2.767),         105MB/s           479.5MB/s    11.99%
    1#mozilla   51220480->  20117517(2.546),       285.4MB/s           734.9MB/s
    2#mozilla   51220480->  19067018(2.686),       220.8MB/s           686.3MB/s
    3#mozilla   51220480->  18508283(2.767),       152.2MB/s           669.4MB/s
    1#mozilla   51220480->  20117517(2.546),       283.4MB/s           697.9MB/s     5.30%
    2#mozilla   51220480->  19067018(2.686),       225.9MB/s             665MB/s     3.20%
    3#mozilla   51220480->  18508283(2.767),       154.5MB/s           640.6MB/s     4.50%
    1#mr         9970564->   3840242(2.596),       262.4MB/s           899.8MB/s
    2#mr         9970564->   3600976(2.769),       181.2MB/s           717.9MB/s
    3#mr         9970564->   3563987(2.798),       116.3MB/s             620MB/s
    1#mr         9970564->   3840242(2.596),       253.2MB/s           827.3MB/s     8.76%
    2#mr         9970564->   3600976(2.769),       177.4MB/s           655.4MB/s     9.54%
    3#mr         9970564->   3563987(2.798),       111.2MB/s           564.2MB/s     9.89%
    1#nci       33553445->   2849306(11.78),       575.2MB/s ,        1335.8MB/s
    2#nci       33553445->   2890166(11.61),       509.3MB/s ,        1238.1MB/s
    3#nci       33553445->   2857408(11.74),         431MB/s ,        1210.7MB/s
    1#nci       33553445->   2849306(11.78),       565.4MB/s ,        1220.2MB/s     9.47%
    2#nci       33553445->   2890166(11.61),       508.2MB/s ,        1128.4MB/s     9.72%
    3#nci       33553445->   2857408(11.74),       429.1MB/s ,        1097.7MB/s    10.29%
    1#ooffice    6152192->   3590954(1.713),       231.4MB/s ,         662.6MB/s
    2#ooffice    6152192->   3323931(1.851),       162.8MB/s ,         592.6MB/s
    3#ooffice    6152192->   3145625(1.956),        99.9MB/s ,         549.6MB/s
    1#ooffice    6152192->   3590954(1.713),       224.7MB/s ,         624.2MB/s     6.15%
    2#ooffice    6152192->   3323931 (1.851),        155MB/s ,         564.5MB/s     4.98%
    3#ooffice    6152192->   3145625(1.956),       101.1MB/s ,         521.2MB/s     5.45%
    1#osdb      10085684->   3739042(2.697),       271.9MB/s           876.4MB/s
    2#osdb      10085684->   3493875(2.887),       208.2MB/s             857MB/s
    3#osdb      10085684->   3515831(2.869),       135.3MB/s           805.4MB/s
    1#osdb      10085684->   3739042(2.697),       257.4MB/s           793.8MB/s    10.41%
    2#osdb      10085684->   3493875(2.887),       209.7MB/s           776.1MB/s    10.42%
    3#osdb      10085684->   3515831(2.869),       130.6MB/s           727.7MB/s    10.68%
    1#reymont    6627202->   2152771(3.078),       198.9MB/s           696.2MB/s
    2#reymont    6627202->   2071140(3.200),         170MB/s           595.2MB/s
    3#reymont    6627202->   1953597(3.392),       128.5MB/s           609.7MB/s
    1#reymont    6627202->   2152771(3.078),       199.6MB/s           655.2MB/s     6.26%
    2#reymont    6627202->   2071140(3.200),       168.2MB/s           554.4MB/s     7.36%
    3#reymont    6627202->   1953597(3.392),       128.7MB/s           557.4MB/s     9.38%
    1#samba     21606400->   5510994(3.921),       338.1MB/s            1066MB/s
    2#samba     21606400->   5240208(4.123),       258.7MB/s           992.3MB/s
    3#samba     21606400->   5003358(4.318),       200.2MB/s           991.1MB/s
    1#samba     21606400->   5510994(3.921),       330.8MB/s             974MB/s     9.45%
    2#samba     21606400->   5240208(4.123),       257.9MB/s           919.4MB/s     7.93%
    3#samba     21606400->   5003358(4.318),       198.5MB/s           908.9MB/s     9.04%
    1#sao        7251944->   6256401(1.159),       194.6MB/s           602.2MB/s
    2#sao        7251944->   5808761(1.248),       128.2MB/s           532.1MB/s
    3#sao        7251944->   5556318(1.305),          73MB/s           509.4MB/s
    1#sao        7251944->   6256401(1.159),       198.7MB/s           580.7MB/s     3.70%
    2#sao        7251944->   5808761(1.248),       129.1MB/s           502.7MB/s     5.85%
    3#sao        7251944->   5556318(1.305),        74.6MB/s           493.1MB/s     3.31%
    1#webster   41458703->  13692222(3.028),       222.3MB/s             752MB/s
    2#webster   41458703->  12842646(3.228),       157.6MB/s           532.2MB/s
    3#webster   41458703->  12191964(3.400),         124MB/s           468.5MB/s
    1#webster   41458703->  13692222(3.028),       219.7MB/s             697MB/s     7.89%
    2#webster   41458703->  12842646(3.228),       153.9MB/s           495.4MB/s     7.43%
    3#webster   41458703->  12191964(3.400),       124.8MB/s           444.8MB/s     5.33%
    1#xml        5345280->    696652(7.673),         485MB/s ,        1333.9MB/s
    2#xml        5345280->    681492(7.843),       405.2MB/s ,        1237.5MB/s
    3#xml        5345280->    639057(8.364),       328.5MB/s ,        1281.3MB/s
    1#xml        5345280->    696652(7.673),       473.1MB/s ,        1232.4MB/s     8.24%
    2#xml        5345280->    681492(7.843),       398.6MB/s ,        1145.9MB/s     7.99%
    3#xml        5345280->    639057(8.364),       327.1MB/s ,          1175MB/s     9.05%
    1#x-ray      8474240->   6772557(1.251),       521.3MB/s           762.6MB/s
    2#x-ray      8474240->   6684531(1.268),       230.5MB/s           688.5MB/s
    3#x-ray      8474240->   6166679(1.374),        68.7MB/s           478.8MB/s
    1#x-ray      8474240->   6772557(1.251),       502.8MB/s           736.7MB/s     3.52%
    2#x-ray      8474240->   6684531(1.268),       224.4MB/s             662MB/s     4.00%
    3#x-ray      8474240->   6166679(1.374),        67.3MB/s           437.8MB/s     9.37%

                                                                                     7.51%

* makefile changed to only pass -fno-tree-vectorize to gcc

* <Replace this line with a title. Use 1 line only, 67 chars or less>

Don't add "no-tree-vectorize" attribute on clang (which defines __GNUC__)

* fix for warning/error with subtraction of void* pointers

* fix c90 conformance issue - ISO C90 forbids mixed declarations and code

* Fix assert for negative diff, only when there is no overlap

* fix overflow revealed in fuzzing tests

* tweak for small speed increase
2019-07-11 18:31:07 -04:00

908 lines
36 KiB
C

/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This header contains definitions
* that shall **only** be used by modules within lib/compress.
*/
#ifndef ZSTD_COMPRESS_H
#define ZSTD_COMPRESS_H
/*-*************************************
* Dependencies
***************************************/
#include "zstd_internal.h"
#ifdef ZSTD_MULTITHREAD
# include "zstdmt_compress.h"
#endif
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
#define kSearchStrength 8
#define HASH_READ_SIZE 8
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
It's not a big deal though : candidate will just be sorted again.
Additionally, candidate position 1 will be lost.
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
/*-*************************************
* Context memory management
***************************************/
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
typedef struct ZSTD_prefixDict_s {
const void* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
} ZSTD_prefixDict;
typedef struct {
void* dictBuffer;
void const* dict;
size_t dictSize;
ZSTD_dictContentType_e dictContentType;
ZSTD_CDict* cdict;
} ZSTD_localDict;
typedef struct {
U32 CTable[HUF_CTABLE_SIZE_U32(255)];
HUF_repeat repeatMode;
} ZSTD_hufCTables_t;
typedef struct {
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
FSE_repeat offcode_repeatMode;
FSE_repeat matchlength_repeatMode;
FSE_repeat litlength_repeatMode;
} ZSTD_fseCTables_t;
typedef struct {
ZSTD_hufCTables_t huf;
ZSTD_fseCTables_t fse;
} ZSTD_entropyCTables_t;
typedef struct {
U32 off;
U32 len;
} ZSTD_match_t;
typedef struct {
int price;
U32 off;
U32 mlen;
U32 litlen;
U32 rep[ZSTD_REP_NUM];
} ZSTD_optimal_t;
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
typedef struct {
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
unsigned* litFreq; /* table of literals statistics, of size 256 */
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
U32 litSum; /* nb of literals */
U32 litLengthSum; /* nb of litLength codes */
U32 matchLengthSum; /* nb of matchLength codes */
U32 offCodeSum; /* nb of offset codes */
U32 litSumBasePrice; /* to compare to log2(litfreq) */
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
ZSTD_literalCompressionMode_e literalCompressionMode;
} optState_t;
typedef struct {
ZSTD_entropyCTables_t entropy;
U32 rep[ZSTD_REP_NUM];
} ZSTD_compressedBlockState_t;
typedef struct {
BYTE const* nextSrc; /* next block here to continue on current prefix */
BYTE const* base; /* All regular indexes relative to this position */
BYTE const* dictBase; /* extDict indexes relative to this position */
U32 dictLimit; /* below that point, need extDict */
U32 lowLimit; /* below that point, no more valid data */
} ZSTD_window_t;
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
struct ZSTD_matchState_t {
ZSTD_window_t window; /* State for window round buffer management */
U32 loadedDictEnd; /* index of end of dictionary, within context's referential. When dict referential is copied into active context (i.e. not attached), effectively same value as dictSize, since referential starts from zero */
U32 nextToUpdate; /* index from which to continue table update */
U32 hashLog3; /* dispatch table : larger == faster, more memory */
U32* hashTable;
U32* hashTable3;
U32* chainTable;
optState_t opt; /* optimal parser state */
const ZSTD_matchState_t* dictMatchState;
ZSTD_compressionParameters cParams;
};
typedef struct {
ZSTD_compressedBlockState_t* prevCBlock;
ZSTD_compressedBlockState_t* nextCBlock;
ZSTD_matchState_t matchState;
} ZSTD_blockState_t;
typedef struct {
U32 offset;
U32 checksum;
} ldmEntry_t;
typedef struct {
ZSTD_window_t window; /* State for the window round buffer management */
ldmEntry_t* hashTable;
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
U64 hashPower; /* Used to compute the rolling hash.
* Depends on ldmParams.minMatchLength */
} ldmState_t;
typedef struct {
U32 enableLdm; /* 1 if enable long distance matching */
U32 hashLog; /* Log size of hashTable */
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
U32 minMatchLength; /* Minimum match length */
U32 hashRateLog; /* Log number of entries to skip */
U32 windowLog; /* Window log for the LDM */
} ldmParams_t;
typedef struct {
U32 offset;
U32 litLength;
U32 matchLength;
} rawSeq;
typedef struct {
rawSeq* seq; /* The start of the sequences */
size_t pos; /* The position where reading stopped. <= size. */
size_t size; /* The number of sequences. <= capacity. */
size_t capacity; /* The capacity starting from `seq` pointer */
} rawSeqStore_t;
struct ZSTD_CCtx_params_s {
ZSTD_format_e format;
ZSTD_compressionParameters cParams;
ZSTD_frameParameters fParams;
int compressionLevel;
int forceWindow; /* force back-references to respect limit of
* 1<<wLog, even for dictionary */
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
* No target when targetCBlockSize == 0.
* There is no guarantee on compressed block size */
ZSTD_dictAttachPref_e attachDictPref;
ZSTD_literalCompressionMode_e literalCompressionMode;
/* Multithreading: used to pass parameters to mtctx */
int nbWorkers;
size_t jobSize;
int overlapLog;
int rsyncable;
/* Long distance matching parameters */
ldmParams_t ldmParams;
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
ZSTD_customMem customMem;
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
struct ZSTD_CCtx_s {
ZSTD_compressionStage_e stage;
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
ZSTD_CCtx_params requestedParams;
ZSTD_CCtx_params appliedParams;
U32 dictID;
int workSpaceOversizedDuration;
void* workSpace;
size_t workSpaceSize;
size_t blockSize;
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
unsigned long long consumedSrcSize;
unsigned long long producedCSize;
XXH64_state_t xxhState;
ZSTD_customMem customMem;
size_t staticSize;
seqStore_t seqStore; /* sequences storage ptrs */
ldmState_t ldmState; /* long distance matching state */
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
size_t maxNbLdmSequences;
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
ZSTD_blockState_t blockState;
U32* entropyWorkspace; /* entropy workspace of HUF_WORKSPACE_SIZE bytes */
/* streaming */
char* inBuff;
size_t inBuffSize;
size_t inToCompress;
size_t inBuffPos;
size_t inBuffTarget;
char* outBuff;
size_t outBuffSize;
size_t outBuffContentSize;
size_t outBuffFlushedSize;
ZSTD_cStreamStage streamStage;
U32 frameEnded;
/* Dictionary */
ZSTD_localDict localDict;
const ZSTD_CDict* cdict;
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
/* Multi-threading */
#ifdef ZSTD_MULTITHREAD
ZSTDMT_CCtx* mtctx;
#endif
};
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
typedef enum { ZSTD_noDict = 0, ZSTD_extDict = 1, ZSTD_dictMatchState = 2 } ZSTD_dictMode_e;
typedef size_t (*ZSTD_blockCompressor) (
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode);
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
{
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23,
24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24 };
static const U32 LL_deltaCode = 19;
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
}
/* ZSTD_MLcode() :
* note : mlBase = matchLength - MINMATCH;
* because it's the format it's stored in seqStore->sequences */
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
{
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
static const U32 ML_deltaCode = 36;
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
}
/*! ZSTD_storeSeq() :
* Store a sequence (literal length, literals, offset code and match length code) into seqStore_t.
* `offsetCode` : distance to match + 3 (values 1-3 are repCodes).
* `mlBase` : matchLength - MINMATCH
*/
MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase)
{
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
static const BYTE* g_start = NULL;
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode);
}
#endif
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
/* copy Literals */
assert(seqStorePtr->maxNbLit <= 128 KB);
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
ZSTD_wildcopy(seqStorePtr->lit, literals, litLength, ZSTD_no_overlap);
seqStorePtr->lit += litLength;
/* literal Length */
if (litLength>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 1;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].litLength = (U16)litLength;
/* match offset */
seqStorePtr->sequences[0].offset = offsetCode + 1;
/* match Length */
if (mlBase>0xFFFF) {
assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */
seqStorePtr->longLengthID = 2;
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
}
seqStorePtr->sequences[0].matchLength = (U16)mlBase;
seqStorePtr->sequences++;
}
/*-*************************************
* Match length counter
***************************************/
static unsigned ZSTD_NbCommonBytes (size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanForward64( &r, (U64)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_ctzll((U64)val) >> 3);
# else
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
0, 3, 1, 3, 1, 4, 2, 7,
0, 2, 3, 6, 1, 5, 3, 5,
1, 3, 4, 4, 2, 5, 6, 7,
7, 0, 1, 2, 3, 3, 4, 6,
2, 6, 5, 5, 3, 4, 5, 6,
7, 1, 2, 4, 6, 4, 4, 5,
7, 2, 6, 5, 7, 6, 7, 7 };
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r=0;
_BitScanForward( &r, (U32)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_ctz((U32)val) >> 3);
# else
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
3, 2, 2, 1, 3, 2, 0, 1,
3, 3, 1, 2, 2, 2, 2, 0,
3, 1, 2, 0, 1, 0, 1, 1 };
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
# endif
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
# if defined(_MSC_VER) && defined(_WIN64)
unsigned long r = 0;
_BitScanReverse64( &r, val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (__builtin_clzll(val) >> 3);
# else
unsigned r;
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
r += (!val);
return r;
# endif
} else { /* 32 bits */
# if defined(_MSC_VER)
unsigned long r = 0;
_BitScanReverse( &r, (unsigned long)val );
return (unsigned)(r>>3);
# elif defined(__GNUC__) && (__GNUC__ >= 3)
return (__builtin_clz((U32)val) >> 3);
# else
unsigned r;
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
r += (!val);
return r;
# endif
} }
}
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
{
const BYTE* const pStart = pIn;
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
if (pIn < pInLoopLimit) {
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (diff) return ZSTD_NbCommonBytes(diff); }
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
while (pIn < pInLoopLimit) {
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
pIn += ZSTD_NbCommonBytes(diff);
return (size_t)(pIn - pStart);
} }
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
return (size_t)(pIn - pStart);
}
/** ZSTD_count_2segments() :
* can count match length with `ip` & `match` in 2 different segments.
* convention : on reaching mEnd, match count continue starting from iStart
*/
MEM_STATIC size_t
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
{
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
size_t const matchLength = ZSTD_count(ip, match, vEnd);
if (match + matchLength != mEnd) return matchLength;
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
}
/*-*************************************
* Hashes
***************************************/
static const U32 prime3bytes = 506832829U;
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
static const U32 prime4bytes = 2654435761U;
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
static const U64 prime5bytes = 889523592379ULL;
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
static const U64 prime6bytes = 227718039650203ULL;
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
static const U64 prime7bytes = 58295818150454627ULL;
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
{
switch(mls)
{
default:
case 4: return ZSTD_hash4Ptr(p, hBits);
case 5: return ZSTD_hash5Ptr(p, hBits);
case 6: return ZSTD_hash6Ptr(p, hBits);
case 7: return ZSTD_hash7Ptr(p, hBits);
case 8: return ZSTD_hash8Ptr(p, hBits);
}
}
/** ZSTD_ipow() :
* Return base^exponent.
*/
static U64 ZSTD_ipow(U64 base, U64 exponent)
{
U64 power = 1;
while (exponent) {
if (exponent & 1) power *= base;
exponent >>= 1;
base *= base;
}
return power;
}
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
/** ZSTD_rollingHash_append() :
* Add the buffer to the hash value.
*/
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
{
BYTE const* istart = (BYTE const*)buf;
size_t pos;
for (pos = 0; pos < size; ++pos) {
hash *= prime8bytes;
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
}
return hash;
}
/** ZSTD_rollingHash_compute() :
* Compute the rolling hash value of the buffer.
*/
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
{
return ZSTD_rollingHash_append(0, buf, size);
}
/** ZSTD_rollingHash_primePower() :
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
* over a window of length bytes.
*/
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
{
return ZSTD_ipow(prime8bytes, length - 1);
}
/** ZSTD_rollingHash_rotate() :
* Rotate the rolling hash by one byte.
*/
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
{
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
hash *= prime8bytes;
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
return hash;
}
/*-*************************************
* Round buffer management
***************************************/
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
#endif
/* Max current allowed */
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
/* Maximum chunk size before overflow correction needs to be called again */
#define ZSTD_CHUNKSIZE_MAX \
( ((U32)-1) /* Maximum ending current index */ \
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
/**
* ZSTD_window_clear():
* Clears the window containing the history by simply setting it to empty.
*/
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
{
size_t const endT = (size_t)(window->nextSrc - window->base);
U32 const end = (U32)endT;
window->lowLimit = end;
window->dictLimit = end;
}
/**
* ZSTD_window_hasExtDict():
* Returns non-zero if the window has a non-empty extDict.
*/
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
{
return window.lowLimit < window.dictLimit;
}
/**
* ZSTD_matchState_dictMode():
* Inspects the provided matchState and figures out what dictMode should be
* passed to the compressor.
*/
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
{
return ZSTD_window_hasExtDict(ms->window) ?
ZSTD_extDict :
ms->dictMatchState != NULL ?
ZSTD_dictMatchState :
ZSTD_noDict;
}
/**
* ZSTD_window_needOverflowCorrection():
* Returns non-zero if the indices are getting too large and need overflow
* protection.
*/
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
void const* srcEnd)
{
U32 const current = (U32)((BYTE const*)srcEnd - window.base);
return current > ZSTD_CURRENT_MAX;
}
/**
* ZSTD_window_correctOverflow():
* Reduces the indices to protect from index overflow.
* Returns the correction made to the indices, which must be applied to every
* stored index.
*
* The least significant cycleLog bits of the indices must remain the same,
* which may be 0. Every index up to maxDist in the past must be valid.
* NOTE: (maxDist & cycleMask) must be zero.
*/
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
U32 maxDist, void const* src)
{
/* preemptive overflow correction:
* 1. correction is large enough:
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
*
* current - newCurrent
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
* > (3<<29) - (1<<chainLog)
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
* > 1<<29
*
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
* After correction, current is less than (1<<chainLog + 1<<windowLog).
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
* In 32-bit mode we are safe, because (chainLog <= 29), so
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
*/
U32 const cycleMask = (1U << cycleLog) - 1;
U32 const current = (U32)((BYTE const*)src - window->base);
U32 const newCurrent = (current & cycleMask) + maxDist;
U32 const correction = current - newCurrent;
assert((maxDist & cycleMask) == 0);
assert(current > newCurrent);
/* Loose bound, should be around 1<<29 (see above) */
assert(correction > 1<<28);
window->base += correction;
window->dictBase += correction;
window->lowLimit -= correction;
window->dictLimit -= correction;
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
window->lowLimit);
return correction;
}
/**
* ZSTD_window_enforceMaxDist():
* Updates lowLimit so that:
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
*
* It ensures index is valid as long as index >= lowLimit.
* This must be called before a block compression call.
*
* loadedDictEnd is only defined if a dictionary is in use for current compression.
* As the name implies, loadedDictEnd represents the index at end of dictionary.
* The value lies within context's referential, it can be directly compared to blockEndIdx.
*
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
* This is because dictionaries are allowed to be referenced fully
* as long as the last byte of the dictionary is in the window.
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
*
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
* In dictMatchState mode, lowLimit and dictLimit are the same,
* and the dictionary is below them.
* forceWindow and dictMatchState are therefore incompatible.
*/
MEM_STATIC void
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
/* - When there is no dictionary : loadedDictEnd == 0.
In which case, the test (blockEndIdx > maxDist) is merely to avoid
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
- When there is a standard dictionary :
Index referential is copied from the dictionary,
which means it starts from 0.
In which case, loadedDictEnd == dictSize,
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
since `blockEndIdx` also starts from zero.
- When there is an attached dictionary :
loadedDictEnd is expressed within the referential of the context,
so it can be directly compared against blockEndIdx.
*/
if (blockEndIdx > maxDist + loadedDictEnd) {
U32 const newLowLimit = blockEndIdx - maxDist;
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
if (window->dictLimit < window->lowLimit) {
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
window->dictLimit = window->lowLimit;
}
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/* Similar to ZSTD_window_enforceMaxDist(),
* but only invalidates dictionary
* when input progresses beyond window size. */
MEM_STATIC void
ZSTD_checkDictValidity(ZSTD_window_t* window,
const void* blockEnd,
U32 maxDist,
U32* loadedDictEndPtr,
const ZSTD_matchState_t** dictMatchStatePtr)
{
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
if (loadedDictEnd && (blockEndIdx > maxDist + loadedDictEnd)) {
/* On reaching window size, dictionaries are invalidated */
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
}
}
/**
* ZSTD_window_update():
* Updates the window by appending [src, src + srcSize) to the window.
* If it is not contiguous, the current prefix becomes the extDict, and we
* forget about the extDict. Handles overlap of the prefix and extDict.
* Returns non-zero if the segment is contiguous.
*/
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
void const* src, size_t srcSize)
{
BYTE const* const ip = (BYTE const*)src;
U32 contiguous = 1;
DEBUGLOG(5, "ZSTD_window_update");
/* Check if blocks follow each other */
if (src != window->nextSrc) {
/* not contiguous */
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
window->lowLimit = window->dictLimit;
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
window->dictLimit = (U32)distanceFromBase;
window->dictBase = window->base;
window->base = ip - distanceFromBase;
// ms->nextToUpdate = window->dictLimit;
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
contiguous = 0;
}
window->nextSrc = ip + srcSize;
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
if ( (ip+srcSize > window->dictBase + window->lowLimit)
& (ip < window->dictBase + window->dictLimit)) {
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
window->lowLimit = lowLimitMax;
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
}
return contiguous;
}
/* debug functions */
#if (DEBUGLEVEL>=2)
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
{
U32 const fp_accuracy = 8;
U32 const fp_multiplier = (1 << fp_accuracy);
U32 const newStat = rawStat + 1;
U32 const hb = ZSTD_highbit32(newStat);
U32 const BWeight = hb * fp_multiplier;
U32 const FWeight = (newStat << fp_accuracy) >> hb;
U32 const weight = BWeight + FWeight;
assert(hb + fp_accuracy < 31);
return (double)weight / fp_multiplier;
}
/* display a table content,
* listing each element, its frequency, and its predicted bit cost */
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
{
unsigned u, sum;
for (u=0, sum=0; u<=max; u++) sum += table[u];
DEBUGLOG(2, "total nb elts: %u", sum);
for (u=0; u<=max; u++) {
DEBUGLOG(2, "%2u: %5u (%.2f)",
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
}
}
#endif
#if defined (__cplusplus)
}
#endif
/* ==============================================================
* Private declarations
* These prototypes shall only be called from within lib/compress
* ============================================================== */
/* ZSTD_getCParamsFromCCtxParams() :
* cParams are built depending on compressionLevel, src size hints,
* LDM and manually set compression parameters.
*/
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize);
/*! ZSTD_initCStream_internal() :
* Private use only. Init streaming operation.
* expects params to be valid.
* must receive dict, or cdict, or none, but not both.
* @return : 0, or an error code */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize);
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
/*! ZSTD_getCParamsFromCDict() :
* as the name implies */
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
/* ZSTD_compressBegin_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
ZSTD_dictTableLoadMethod_e dtlm,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize);
/* ZSTD_compress_advanced_internal() :
* Private use only. To be called from zstdmt_compress.c. */
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params);
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
/* ZSTD_referenceExternalSequences() :
* Must be called before starting a compression operation.
* seqs must parse a prefix of the source.
* This cannot be used when long range matching is enabled.
* Zstd will use these sequences, and pass the literals to a secondary block
* compressor.
* @return : An error code on failure.
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
* access and data corruption.
*/
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
#endif /* ZSTD_COMPRESS_H */