zstd/tests/paramgrill.c
2018-06-04 10:16:05 -07:00

1135 lines
42 KiB
C

/*
* Copyright (c) 2015-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Dependencies
**************************************/
#include "util.h" /* Compiler options, UTIL_GetFileSize */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <string.h> /* strcmp */
#include <math.h> /* log */
#include <time.h>
#include <assert.h>
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_estimateCCtxSize */
#include "zstd.h"
#include "datagen.h"
#include "xxhash.h"
#include "util.h"
/*-************************************
* Constants
**************************************/
#define PROGRAM_DESCRIPTION "ZSTD parameters tester"
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s ***\n", PROGRAM_DESCRIPTION, ZSTD_VERSION_STRING, (int)(sizeof(void*)*8), AUTHOR
#define KB *(1<<10)
#define MB *(1<<20)
#define GB *(1ULL<<30)
#define NBLOOPS 2
#define TIMELOOP (2 * SEC_TO_MICRO)
#define NB_LEVELS_TRACKED 22 /* ensured being >= ZSTD_maxCLevel() in BMK_init_level_constraints() */
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
#define COMPRESSIBILITY_DEFAULT 0.50
static const double g_grillDuration_s = 99999; /* about 27 hours */
static const U64 g_maxParamTime = 15 * SEC_TO_MICRO;
static const U64 g_maxVariationTime = 60 * SEC_TO_MICRO;
static const int g_maxNbVariations = 64;
/*-************************************
* Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#undef MIN
#undef MAX
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define MAX(a,b) ( (a) > (b) ? (a) : (b) )
/*-************************************
* Benchmark Parameters
**************************************/
static U32 g_nbIterations = NBLOOPS;
static double g_compressibility = COMPRESSIBILITY_DEFAULT;
static U32 g_blockSize = 0;
static U32 g_rand = 1;
static U32 g_singleRun = 0;
static U32 g_target = 0;
static U32 g_noSeed = 0;
static ZSTD_compressionParameters g_params = { 0, 0, 0, 0, 0, 0, ZSTD_greedy };
void BMK_SetNbIterations(int nbLoops)
{
g_nbIterations = nbLoops;
DISPLAY("- %u iterations -\n", g_nbIterations);
}
/*-*******************************************************
* Private functions
*********************************************************/
/* accuracy in seconds only, span can be multiple years */
static double BMK_timeSpan(time_t tStart) { return difftime(time(NULL), tStart); }
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
if (requiredMem > maxMemory) requiredMem = maxMemory;
requiredMem += 2*step;
while (!testmem) {
requiredMem -= step;
testmem = malloc ((size_t)requiredMem);
}
free (testmem);
return (size_t) (requiredMem - step);
}
static U32 FUZ_rotl32(U32 x, U32 r)
{
return ((x << r) | (x >> (32 - r)));
}
U32 FUZ_rand(U32* src)
{
const U32 prime1 = 2654435761U;
const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
* from zstdcli.c
*/
static unsigned longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
/*-*******************************************************
* Bench functions
*********************************************************/
typedef struct {
size_t cSize;
double cSpeed; /* bytes / sec */
double dSpeed;
} BMK_result_t;
typedef struct
{
const char* srcPtr;
size_t srcSize;
char* cPtr;
size_t cRoom;
size_t cSize;
char* resPtr;
size_t resSize;
} blockParam_t;
static size_t
BMK_benchParam(BMK_result_t* resultPtr,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx,
const ZSTD_compressionParameters cParams)
{
const size_t blockSize = g_blockSize ? g_blockSize : srcSize;
const U32 nbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize);
blockParam_t* const blockTable = (blockParam_t*) malloc(nbBlocks * sizeof(blockParam_t));
const size_t maxCompressedSize = (size_t)nbBlocks * ZSTD_compressBound(blockSize);
void* const compressedBuffer = malloc(maxCompressedSize);
void* const resultBuffer = malloc(srcSize);
ZSTD_parameters params;
U32 Wlog = cParams.windowLog;
U32 Clog = cParams.chainLog;
U32 Hlog = cParams.hashLog;
U32 Slog = cParams.searchLog;
U32 Slength = cParams.searchLength;
U32 Tlength = cParams.targetLength;
ZSTD_strategy strat = cParams.strategy;
char name[30] = { 0 };
U64 crcOrig;
/* init result for early exit */
resultPtr->cSize = srcSize;
resultPtr->cSpeed = 0.;
resultPtr->dSpeed = 0.;
/* Memory allocation & restrictions */
snprintf(name, 30, "Sw%02uc%02uh%02us%02ul%1ut%03uS%1u", Wlog, Clog, Hlog, Slog, Slength, Tlength, strat);
if (!compressedBuffer || !resultBuffer || !blockTable) {
DISPLAY("\nError: not enough memory!\n");
free(compressedBuffer);
free(resultBuffer);
free(blockTable);
return 12;
}
/* Calculating input Checksum */
crcOrig = XXH64(srcBuffer, srcSize, 0);
/* Init blockTable data */
{ U32 i;
size_t remaining = srcSize;
const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)resultBuffer;
for (i=0; i<nbBlocks; i++) {
size_t thisBlockSize = MIN(remaining, blockSize);
blockTable[i].srcPtr = srcPtr;
blockTable[i].cPtr = cPtr;
blockTable[i].resPtr = resPtr;
blockTable[i].srcSize = thisBlockSize;
blockTable[i].cRoom = ZSTD_compressBound(thisBlockSize);
srcPtr += thisBlockSize;
cPtr += blockTable[i].cRoom;
resPtr += thisBlockSize;
remaining -= thisBlockSize;
} }
/* warmimg up memory */
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.10, 1);
/* Bench */
{ U32 loopNb;
size_t cSize = 0;
double fastestC = 100000000., fastestD = 100000000.;
double ratio = 0.;
UTIL_time_t const benchStart = UTIL_getTime();
DISPLAY("\r%79s\r", "");
memset(&params, 0, sizeof(params));
params.cParams = cParams;
for (loopNb = 1; loopNb <= g_nbIterations; loopNb++) {
int nbLoops;
U32 blockNb;
UTIL_time_t roundStart;
U64 roundClock;
{ U64 const benchTime = UTIL_clockSpanMicro(benchStart);
if (benchTime > g_maxParamTime) break; }
/* Compression */
DISPLAY("\r%1u-%s : %9u ->", loopNb, name, (U32)srcSize);
memset(compressedBuffer, 0xE5, maxCompressedSize);
nbLoops = 0;
UTIL_waitForNextTick();
roundStart = UTIL_getTime();
while (UTIL_clockSpanMicro(roundStart) < TIMELOOP) {
for (blockNb=0; blockNb<nbBlocks; blockNb++)
blockTable[blockNb].cSize = ZSTD_compress_advanced(ctx,
blockTable[blockNb].cPtr, blockTable[blockNb].cRoom,
blockTable[blockNb].srcPtr, blockTable[blockNb].srcSize,
NULL, 0,
params);
nbLoops++;
}
roundClock = UTIL_clockSpanMicro(roundStart);
cSize = 0;
for (blockNb=0; blockNb<nbBlocks; blockNb++)
cSize += blockTable[blockNb].cSize;
ratio = (double)srcSize / (double)cSize;
if ((double)roundClock < fastestC * SEC_TO_MICRO * nbLoops) fastestC = ((double)roundClock / SEC_TO_MICRO) / nbLoops;
DISPLAY("\r");
DISPLAY("%1u-%s : %9u ->", loopNb, name, (U32)srcSize);
DISPLAY(" %9u (%4.3f),%7.1f MB/s", (U32)cSize, ratio, (double)srcSize / fastestC / 1000000.);
resultPtr->cSize = cSize;
resultPtr->cSpeed = (double)srcSize / fastestC;
#if 1
/* Decompression */
memset(resultBuffer, 0xD6, srcSize);
nbLoops = 0;
UTIL_waitForNextTick();
roundStart = UTIL_getTime();
for ( ; UTIL_clockSpanMicro(roundStart) < TIMELOOP; nbLoops++) {
for (blockNb=0; blockNb<nbBlocks; blockNb++)
blockTable[blockNb].resSize = ZSTD_decompress(blockTable[blockNb].resPtr, blockTable[blockNb].srcSize,
blockTable[blockNb].cPtr, blockTable[blockNb].cSize);
}
roundClock = UTIL_clockSpanMicro(roundStart);
if ((double)roundClock < fastestD * SEC_TO_MICRO * nbLoops) fastestD = ((double)roundClock / SEC_TO_MICRO) / nbLoops;
DISPLAY("\r");
DISPLAY("%1u-%s : %9u -> ", loopNb, name, (U32)srcSize);
DISPLAY("%9u (%4.3f),%7.1f MB/s, ", (U32)cSize, ratio, (double)srcSize / fastestC / 1000000.);
DISPLAY("%7.1f MB/s", (double)srcSize / fastestD / 1000000.);
resultPtr->dSpeed = (double)srcSize / fastestD;
/* CRC Checking */
{ U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if (crcOrig!=crcCheck) {
unsigned u;
unsigned eBlockSize = (unsigned)(MIN(65536*2, blockSize));
DISPLAY("\n!!! WARNING !!! Invalid Checksum : %x != %x\n", (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
if (((const BYTE*)srcBuffer)[u] != ((BYTE*)resultBuffer)[u]) {
printf("Decoding error at pos %u (block %u, pos %u) \n", u, u / eBlockSize, u % eBlockSize);
break;
} }
break;
} }
#endif
} }
/* End cleaning */
DISPLAY("\r");
free(compressedBuffer);
free(resultBuffer);
return 0;
}
const char* g_stratName[ZSTD_btultra+1] = {
"(none) ", "ZSTD_fast ", "ZSTD_dfast ",
"ZSTD_greedy ", "ZSTD_lazy ", "ZSTD_lazy2 ",
"ZSTD_btlazy2 ", "ZSTD_btopt ", "ZSTD_btultra "};
static void BMK_printWinner(FILE* f, U32 cLevel, BMK_result_t result, ZSTD_compressionParameters params, size_t srcSize)
{
DISPLAY("\r%79s\r", "");
fprintf(f," {%3u,%3u,%3u,%3u,%3u,%3u, %s }, ",
params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength,
params.targetLength, g_stratName[(U32)(params.strategy)]);
fprintf(f,
"/* level %2u */ /* R:%5.3f at %5.1f MB/s - %5.1f MB/s */\n",
cLevel, (double)srcSize / result.cSize, result.cSpeed / 1000000., result.dSpeed / 1000000.);
}
typedef struct {
BMK_result_t result;
ZSTD_compressionParameters params;
} winnerInfo_t;
static void BMK_printWinners2(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
int cLevel;
fprintf(f, "\n /* Proposed configurations : */ \n");
fprintf(f, " /* W, C, H, S, L, T, strat */ \n");
for (cLevel=0; cLevel <= NB_LEVELS_TRACKED; cLevel++)
BMK_printWinner(f, cLevel, winners[cLevel].result, winners[cLevel].params, srcSize);
}
static void BMK_printWinners(FILE* f, const winnerInfo_t* winners, size_t srcSize)
{
fseek(f, 0, SEEK_SET);
BMK_printWinners2(f, winners, srcSize);
fflush(f);
BMK_printWinners2(stdout, winners, srcSize);
}
typedef struct {
double cSpeed_min;
double dSpeed_min;
U32 windowLog_max;
ZSTD_strategy strategy_max;
} level_constraints_t;
static level_constraints_t g_level_constraint[NB_LEVELS_TRACKED+1];
static void BMK_init_level_constraints(int bytePerSec_level1)
{
assert(NB_LEVELS_TRACKED >= ZSTD_maxCLevel());
memset(g_level_constraint, 0, sizeof(g_level_constraint));
g_level_constraint[1].cSpeed_min = bytePerSec_level1;
g_level_constraint[1].dSpeed_min = 0.;
g_level_constraint[1].windowLog_max = 19;
g_level_constraint[1].strategy_max = ZSTD_fast;
/* establish speed objectives (relative to level 1) */
{ int l;
for (l=2; l<=NB_LEVELS_TRACKED; l++) {
g_level_constraint[l].cSpeed_min = (g_level_constraint[l-1].cSpeed_min * 49) / 64;
g_level_constraint[l].dSpeed_min = 0.;
g_level_constraint[l].windowLog_max = (l<20) ? 23 : l+5; /* only --ultra levels >= 20 can use windowlog > 23 */
g_level_constraint[l].strategy_max = (l<19) ? ZSTD_btopt : ZSTD_btultra; /* level 19 is allowed to use btultra */
} }
}
static int BMK_seed(winnerInfo_t* winners, const ZSTD_compressionParameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
BMK_result_t testResult;
int better = 0;
int cLevel;
BMK_benchParam(&testResult, srcBuffer, srcSize, ctx, params);
for (cLevel = 1; cLevel <= NB_LEVELS_TRACKED; cLevel++) {
if (testResult.cSpeed < g_level_constraint[cLevel].cSpeed_min)
continue; /* not fast enough for this level */
if (testResult.dSpeed < g_level_constraint[cLevel].dSpeed_min)
continue; /* not fast enough for this level */
if (params.windowLog > g_level_constraint[cLevel].windowLog_max)
continue; /* too much memory for this level */
if (params.strategy > g_level_constraint[cLevel].strategy_max)
continue; /* forbidden strategy for this level */
if (winners[cLevel].result.cSize==0) {
/* first solution for this cLevel */
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
continue;
}
if ((double)testResult.cSize <= ((double)winners[cLevel].result.cSize * (1. + (0.02 / cLevel))) ) {
/* Validate solution is "good enough" */
double W_ratio = (double)srcSize / testResult.cSize;
double O_ratio = (double)srcSize / winners[cLevel].result.cSize;
double W_ratioNote = log (W_ratio);
double O_ratioNote = log (O_ratio);
size_t W_DMemUsed = (1 << params.windowLog) + (16 KB);
size_t O_DMemUsed = (1 << winners[cLevel].params.windowLog) + (16 KB);
double W_DMemUsed_note = W_ratioNote * ( 40 + 9*cLevel) - log((double)W_DMemUsed);
double O_DMemUsed_note = O_ratioNote * ( 40 + 9*cLevel) - log((double)O_DMemUsed);
size_t W_CMemUsed = (1 << params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(params);
size_t O_CMemUsed = (1 << winners[cLevel].params.windowLog) + ZSTD_estimateCCtxSize_usingCParams(winners[cLevel].params);
double W_CMemUsed_note = W_ratioNote * ( 50 + 13*cLevel) - log((double)W_CMemUsed);
double O_CMemUsed_note = O_ratioNote * ( 50 + 13*cLevel) - log((double)O_CMemUsed);
double W_CSpeed_note = W_ratioNote * ( 30 + 10*cLevel) + log(testResult.cSpeed);
double O_CSpeed_note = O_ratioNote * ( 30 + 10*cLevel) + log(winners[cLevel].result.cSpeed);
double W_DSpeed_note = W_ratioNote * ( 20 + 2*cLevel) + log(testResult.dSpeed);
double O_DSpeed_note = O_ratioNote * ( 20 + 2*cLevel) + log(winners[cLevel].result.dSpeed);
if (W_DMemUsed_note < O_DMemUsed_note) {
/* uses too much Decompression memory for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_DMemUsed) / 1024 / 1024,
O_ratio, (double)(O_DMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CMemUsed_note < O_CMemUsed_note) {
/* uses too much memory for compression for too little benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_CMemUsed) / 1024 / 1024,
O_ratio, (double)(O_CMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CSpeed_note < O_CSpeed_note ) {
/* too large compression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Compression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, testResult.cSpeed / 1000000,
O_ratio, winners[cLevel].result.cSpeed / 1000000., cLevel);
continue;
}
if (W_DSpeed_note < O_DSpeed_note ) {
/* too large decompression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAY ("Decompression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, testResult.dSpeed / 1000000.,
O_ratio, winners[cLevel].result.dSpeed / 1000000., cLevel);
continue;
}
if (W_ratio < O_ratio)
DISPLAY("Solution %4.3f selected over %4.3f at level %i, due to better secondary statistics \n", W_ratio, O_ratio, cLevel);
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_printWinner(stdout, cLevel, testResult, params, srcSize);
better = 1;
} }
return better;
}
/* nullified useless params, to ensure count stats */
static ZSTD_compressionParameters* sanitizeParams(ZSTD_compressionParameters params)
{
g_params = params;
if (params.strategy == ZSTD_fast)
g_params.chainLog = 0, g_params.searchLog = 0;
if (params.strategy == ZSTD_dfast)
g_params.searchLog = 0;
if (params.strategy != ZSTD_btopt && params.strategy != ZSTD_btultra)
g_params.targetLength = 0;
return &g_params;
}
static void paramVariation(ZSTD_compressionParameters* ptr)
{
ZSTD_compressionParameters p;
U32 validated = 0;
while (!validated) {
U32 nbChanges = (FUZ_rand(&g_rand) & 3) + 1;
p = *ptr;
for ( ; nbChanges ; nbChanges--) {
const U32 changeID = FUZ_rand(&g_rand) % 14;
switch(changeID)
{
case 0:
p.chainLog++; break;
case 1:
p.chainLog--; break;
case 2:
p.hashLog++; break;
case 3:
p.hashLog--; break;
case 4:
p.searchLog++; break;
case 5:
p.searchLog--; break;
case 6:
p.windowLog++; break;
case 7:
p.windowLog--; break;
case 8:
p.searchLength++; break;
case 9:
p.searchLength--; break;
case 10:
p.strategy = (ZSTD_strategy)(((U32)p.strategy)+1); break;
case 11:
p.strategy = (ZSTD_strategy)(((U32)p.strategy)-1); break;
case 12:
p.targetLength *= 1 + ((double)(FUZ_rand(&g_rand)&255)) / 256.; break;
case 13:
p.targetLength /= 1 + ((double)(FUZ_rand(&g_rand)&255)) / 256.; break;
}
}
validated = !ZSTD_isError(ZSTD_checkCParams(p));
}
*ptr = p;
}
#define PARAMTABLELOG 25
#define PARAMTABLESIZE (1<<PARAMTABLELOG)
#define PARAMTABLEMASK (PARAMTABLESIZE-1)
static BYTE g_alreadyTested[PARAMTABLESIZE] = {0}; /* init to zero */
#define NB_TESTS_PLAYED(p) \
g_alreadyTested[(XXH64(sanitizeParams(p), sizeof(p), 0) >> 3) & PARAMTABLEMASK]
static void playAround(FILE* f, winnerInfo_t* winners,
ZSTD_compressionParameters params,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
int nbVariations = 0;
UTIL_time_t const clockStart = UTIL_getTime();
while (UTIL_clockSpanMicro(clockStart) < g_maxVariationTime) {
ZSTD_compressionParameters p = params;
if (nbVariations++ > g_maxNbVariations) break;
paramVariation(&p);
/* exclude faster if already played params */
if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(p))-1))
continue;
/* test */
NB_TESTS_PLAYED(p)++;
if (!BMK_seed(winners, p, srcBuffer, srcSize, ctx)) continue;
/* improvement found => search more */
BMK_printWinners(f, winners, srcSize);
playAround(f, winners, p, srcBuffer, srcSize, ctx);
}
}
static ZSTD_compressionParameters randomParams(void)
{
ZSTD_compressionParameters p;
U32 validated = 0;
while (!validated) {
/* totally random entry */
p.chainLog = (FUZ_rand(&g_rand) % (ZSTD_CHAINLOG_MAX+1 - ZSTD_CHAINLOG_MIN)) + ZSTD_CHAINLOG_MIN;
p.hashLog = (FUZ_rand(&g_rand) % (ZSTD_HASHLOG_MAX+1 - ZSTD_HASHLOG_MIN)) + ZSTD_HASHLOG_MIN;
p.searchLog = (FUZ_rand(&g_rand) % (ZSTD_SEARCHLOG_MAX+1 - ZSTD_SEARCHLOG_MIN)) + ZSTD_SEARCHLOG_MIN;
p.windowLog = (FUZ_rand(&g_rand) % (ZSTD_WINDOWLOG_MAX+1 - ZSTD_WINDOWLOG_MIN)) + ZSTD_WINDOWLOG_MIN;
p.searchLength=(FUZ_rand(&g_rand) % (ZSTD_SEARCHLENGTH_MAX+1 - ZSTD_SEARCHLENGTH_MIN)) + ZSTD_SEARCHLENGTH_MIN;
p.targetLength=(FUZ_rand(&g_rand) % (512)) + ZSTD_TARGETLENGTH_MIN;
p.strategy = (ZSTD_strategy) (FUZ_rand(&g_rand) % (ZSTD_btultra +1));
validated = !ZSTD_isError(ZSTD_checkCParams(p));
}
return p;
}
static void BMK_selectRandomStart(
FILE* f, winnerInfo_t* winners,
const void* srcBuffer, size_t srcSize,
ZSTD_CCtx* ctx)
{
U32 const id = FUZ_rand(&g_rand) % (NB_LEVELS_TRACKED+1);
if ((id==0) || (winners[id].params.windowLog==0)) {
/* use some random entry */
ZSTD_compressionParameters const p = ZSTD_adjustCParams(randomParams(), srcSize, 0);
playAround(f, winners, p, srcBuffer, srcSize, ctx);
} else {
playAround(f, winners, winners[id].params, srcBuffer, srcSize, ctx);
}
}
static void BMK_benchOnce(ZSTD_CCtx* cctx, const void* srcBuffer, size_t srcSize)
{
BMK_result_t testResult;
g_params = ZSTD_adjustCParams(g_params, srcSize, 0);
BMK_benchParam(&testResult, srcBuffer, srcSize, cctx, g_params);
DISPLAY("\n");
return;
}
static void BMK_benchFullTable(ZSTD_CCtx* cctx, const void* srcBuffer, size_t srcSize)
{
ZSTD_compressionParameters params;
winnerInfo_t winners[NB_LEVELS_TRACKED+1];
const char* const rfName = "grillResults.txt";
FILE* const f = fopen(rfName, "w");
const size_t blockSize = g_blockSize ? g_blockSize : srcSize; /* cut by block or not ? */
/* init */
assert(g_singleRun==0);
memset(winners, 0, sizeof(winners));
if (f==NULL) { DISPLAY("error opening %s \n", rfName); exit(1); }
if (g_target) {
BMK_init_level_constraints(g_target*1000000);
} else {
/* baseline config for level 1 */
ZSTD_compressionParameters const l1params = ZSTD_getCParams(1, blockSize, 0);
BMK_result_t testResult;
BMK_benchParam(&testResult, srcBuffer, srcSize, cctx, l1params);
BMK_init_level_constraints((int)((testResult.cSpeed * 31) / 32));
}
/* populate initial solution */
{ const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
int i;
for (i=0; i<=maxSeeds; i++) {
params = ZSTD_getCParams(i, blockSize, 0);
BMK_seed(winners, params, srcBuffer, srcSize, cctx);
} }
BMK_printWinners(f, winners, srcSize);
/* start tests */
{ const time_t grillStart = time(NULL);
do {
BMK_selectRandomStart(f, winners, srcBuffer, srcSize, cctx);
} while (BMK_timeSpan(grillStart) < g_grillDuration_s);
}
/* end summary */
BMK_printWinners(f, winners, srcSize);
DISPLAY("grillParams operations completed \n");
/* clean up*/
fclose(f);
}
static void BMK_benchMem_usingCCtx(ZSTD_CCtx* cctx, const void* srcBuffer, size_t srcSize)
{
if (g_singleRun)
return BMK_benchOnce(cctx, srcBuffer, srcSize);
else
return BMK_benchFullTable(cctx, srcBuffer, srcSize);
}
static void BMK_benchMem(const void* srcBuffer, size_t srcSize)
{
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
if (cctx==NULL) { DISPLAY("ZSTD_createCCtx() failed \n"); exit(1); }
BMK_benchMem_usingCCtx(cctx, srcBuffer, srcSize);
ZSTD_freeCCtx(cctx);
}
static int benchSample(void)
{
const char* const name = "Sample 10MB";
size_t const benchedSize = 10000000;
void* origBuff = malloc(benchedSize);
if (!origBuff) { perror("not enough memory"); return 12; }
/* Fill buffer */
RDG_genBuffer(origBuff, benchedSize, g_compressibility, 0.0, 0);
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s %i%%: \n", name, (int)(g_compressibility*100));
BMK_benchMem(origBuff, benchedSize);
free(origBuff);
return 0;
}
/* benchFiles() :
* note: while this function takes a table of filenames,
* in practice, only the first filename will be used */
int benchFiles(const char** fileNamesTable, int nbFiles)
{
int fileIdx=0;
/* Loop for each file */
while (fileIdx<nbFiles) {
const char* const inFileName = fileNamesTable[fileIdx++];
FILE* const inFile = fopen( inFileName, "rb" );
U64 const inFileSize = UTIL_getFileSize(inFileName);
size_t benchedSize;
void* origBuff;
/* Check file existence */
if (inFile==NULL) {
DISPLAY( "Pb opening %s\n", inFileName);
return 11;
}
if (inFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Pb evaluating size of %s \n", inFileName);
fclose(inFile);
return 11;
}
/* Memory allocation */
benchedSize = BMK_findMaxMem(inFileSize*3) / 3;
if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize)
DISPLAY("Not enough memory for '%s' full size; testing %i MB only...\n", inFileName, (int)(benchedSize>>20));
origBuff = malloc(benchedSize);
if (origBuff==NULL) {
DISPLAY("\nError: not enough memory!\n");
fclose(inFile);
return 12;
}
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
{ size_t const readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize) {
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
} }
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s : \n", inFileName);
BMK_benchMem(origBuff, benchedSize);
/* clean */
free(origBuff);
}
return 0;
}
static void BMK_translateAdvancedParams(ZSTD_compressionParameters params)
{
DISPLAY("--zstd=windowLog=%u,chainLog=%u,hashLog=%u,searchLog=%u,searchLength=%u,targetLength=%u,strategy=%u \n",
params.windowLog, params.chainLog, params.hashLog, params.searchLog, params.searchLength, params.targetLength, (U32)(params.strategy));
}
/* optimizeForSize():
* targetSpeed : expressed in MB/s */
int optimizeForSize(const char* inFileName, U32 targetSpeed)
{
FILE* const inFile = fopen( inFileName, "rb" );
U64 const inFileSize = UTIL_getFileSize(inFileName);
size_t benchedSize = BMK_findMaxMem(inFileSize*3) / 3;
void* origBuff;
/* Init */
if (inFile==NULL) { DISPLAY( "Pb opening %s\n", inFileName); return 11; }
if (inFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Pb evaluatin size of %s \n", inFileName);
fclose(inFile);
return 11;
}
/* Memory allocation & restrictions */
if ((U64)benchedSize > inFileSize) benchedSize = (size_t)inFileSize;
if (benchedSize < inFileSize) {
DISPLAY("Not enough memory for '%s' \n", inFileName);
fclose(inFile);
return 11;
}
/* Alloc */
origBuff = malloc(benchedSize);
if(!origBuff) {
DISPLAY("\nError: not enough memory!\n");
fclose(inFile);
return 12;
}
/* Fill input buffer */
DISPLAY("Loading %s... \r", inFileName);
{ size_t const readSize = fread(origBuff, 1, benchedSize, inFile);
fclose(inFile);
if(readSize != benchedSize) {
DISPLAY("\nError: problem reading file '%s' !! \n", inFileName);
free(origBuff);
return 13;
} }
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("optimizing for %s - limit speed %u MB/s \n", inFileName, targetSpeed);
targetSpeed *= 1000000;
{ ZSTD_CCtx* const ctx = ZSTD_createCCtx();
winnerInfo_t winner;
BMK_result_t candidate;
const size_t blockSize = g_blockSize ? g_blockSize : benchedSize;
/* init */
if (ctx==NULL) { DISPLAY("\n ZSTD_createCCtx error \n"); free(origBuff); return 14;}
memset(&winner, 0, sizeof(winner));
winner.result.cSize = (size_t)(-1);
/* find best solution from default params */
{ const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
int i;
for (i=1; i<=maxSeeds; i++) {
ZSTD_compressionParameters const CParams = ZSTD_getCParams(i, blockSize, 0);
BMK_benchParam(&candidate, origBuff, benchedSize, ctx, CParams);
if (candidate.cSpeed < targetSpeed)
break;
if ( (candidate.cSize < winner.result.cSize)
| ((candidate.cSize == winner.result.cSize) & (candidate.cSpeed > winner.result.cSpeed)) )
{
winner.params = CParams;
winner.result = candidate;
BMK_printWinner(stdout, i, winner.result, winner.params, benchedSize);
} }
}
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
BMK_translateAdvancedParams(winner.params);
/* start tests */
{ time_t const grillStart = time(NULL);
do {
ZSTD_compressionParameters params = winner.params;
paramVariation(&params);
if ((FUZ_rand(&g_rand) & 31) == 3) params = randomParams(); /* totally random config to improve search space */
params = ZSTD_adjustCParams(params, blockSize, 0);
/* exclude faster if already played set of params */
if (FUZ_rand(&g_rand) & ((1 << NB_TESTS_PLAYED(params))-1)) continue;
/* test */
NB_TESTS_PLAYED(params)++;
BMK_benchParam(&candidate, origBuff, benchedSize, ctx, params);
/* improvement found => new winner */
if ( (candidate.cSpeed > targetSpeed)
& ( (candidate.cSize < winner.result.cSize)
| ((candidate.cSize == winner.result.cSize) & (candidate.cSpeed > winner.result.cSpeed)) ) )
{
winner.params = params;
winner.result = candidate;
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
BMK_translateAdvancedParams(winner.params);
}
} while (BMK_timeSpan(grillStart) < g_grillDuration_s);
}
/* end summary */
BMK_printWinner(stdout, 99, winner.result, winner.params, benchedSize);
BMK_translateAdvancedParams(winner.params);
DISPLAY("grillParams size - optimizer completed \n");
/* clean up*/
ZSTD_freeCCtx(ctx);
}
free(origBuff);
return 0;
}
static void errorOut(const char* msg)
{
DISPLAY("%s \n", msg); exit(1);
}
/*! readU32FromChar() :
* @return : unsigned integer value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static unsigned readU32FromChar(const char** stringPtr)
{
const char errorMsg[] = "error: numeric value too large";
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = (((unsigned)(-1)) / 10) - 1;
if (result > max) errorOut(errorMsg);
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
if (result > maxK) errorOut(errorMsg);
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) errorOut(errorMsg);
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static int usage(const char* exename)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [arg] file\n", exename);
DISPLAY( "Arguments :\n");
DISPLAY( " file : path to the file used as reference (if none, generates a compressible sample)\n");
DISPLAY( " -H/-h : Help (this text + advanced options)\n");
return 0;
}
static int usage_advanced(void)
{
DISPLAY( "\nAdvanced options :\n");
DISPLAY( " -T# : set level 1 speed objective \n");
DISPLAY( " -B# : cut input into blocks of size # (default : single block) \n");
DISPLAY( " -i# : iteration loops [1-9](default : %i) \n", NBLOOPS);
DISPLAY( " -O# : find Optimized parameters for # MB/s compression speed (default : 0) \n");
DISPLAY( " -S : Single run \n");
DISPLAY( " --zstd : Single run, parameter selection same as zstdcli \n");
DISPLAY( " -P# : generated sample compressibility (default : %.1f%%) \n", COMPRESSIBILITY_DEFAULT * 100);
return 0;
}
static int badusage(const char* exename)
{
DISPLAY("Wrong parameters\n");
usage(exename);
return 1;
}
int main(int argc, const char** argv)
{
int i,
filenamesStart=0,
result;
const char* exename=argv[0];
const char* input_filename=0;
U32 optimizer = 0;
U32 main_pause = 0;
U32 targetSpeed = 0;
assert(argc>=1); /* for exename */
/* Welcome message */
DISPLAY(WELCOME_MESSAGE);
for(i=1; i<argc; i++) {
const char* argument = argv[i];
assert(argument != NULL);
if(!strcmp(argument,"--no-seed")) { g_noSeed = 1; continue; }
/* Decode command (note : aggregated commands are allowed) */
if (longCommandWArg(&argument, "--zstd=")) {
g_singleRun = 1;
g_params = ZSTD_getCParams(2, g_blockSize, 0);
for ( ; ;) {
if (longCommandWArg(&argument, "windowLog=") || longCommandWArg(&argument, "wlog=")) { g_params.windowLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "chainLog=") || longCommandWArg(&argument, "clog=")) { g_params.chainLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "hashLog=") || longCommandWArg(&argument, "hlog=")) { g_params.hashLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "searchLog=") || longCommandWArg(&argument, "slog=")) { g_params.searchLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "searchLength=") || longCommandWArg(&argument, "slen=")) { g_params.searchLength = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "targetLength=") || longCommandWArg(&argument, "tlen=")) { g_params.targetLength = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "strategy=") || longCommandWArg(&argument, "strat=")) { g_params.strategy = (ZSTD_strategy)(readU32FromChar(&argument)); if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { g_params = ZSTD_getCParams(readU32FromChar(&argument), g_blockSize, 0); if (argument[0]==',') { argument++; continue; } else break; }
DISPLAY("invalid compression parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --zstd= format\n");
return 1; /* check the end of string */
}
//if not return, success
} else if (argument[0]=='-') {
argument++;
while (argument[0]!=0) {
switch(argument[0])
{
/* Display help on usage */
case 'h' :
case 'H': usage(exename); usage_advanced(); return 0;
/* Pause at the end (hidden option) */
case 'p': main_pause = 1; argument++; break;
/* Modify Nb Iterations */
case 'i':
argument++;
g_nbIterations = readU32FromChar(&argument);
break;
/* Sample compressibility (when no file provided) */
case 'P':
argument++;
{ U32 const proba32 = readU32FromChar(&argument);
g_compressibility = (double)proba32 / 100.;
}
break;
case 'O':
argument++;
optimizer = 1;
targetSpeed = readU32FromChar(&argument);
break;
/* Run Single conf */
case 'S':
g_singleRun = 1;
argument++;
g_params = ZSTD_getCParams(2, g_blockSize, 0);
for ( ; ; ) {
switch(*argument)
{
case 'w':
argument++;
g_params.windowLog = readU32FromChar(&argument);
continue;
case 'c':
argument++;
g_params.chainLog = readU32FromChar(&argument);
continue;
case 'h':
argument++;
g_params.hashLog = readU32FromChar(&argument);
continue;
case 's':
argument++;
g_params.searchLog = readU32FromChar(&argument);
continue;
case 'l': /* search length */
argument++;
g_params.searchLength = readU32FromChar(&argument);
continue;
case 't': /* target length */
argument++;
g_params.targetLength = readU32FromChar(&argument);
continue;
case 'S': /* strategy */
argument++;
g_params.strategy = (ZSTD_strategy)readU32FromChar(&argument);
continue;
case 'L':
{ int const cLevel = readU32FromChar(&argument);
g_params = ZSTD_getCParams(cLevel, g_blockSize, 0);
continue;
}
default : ;
}
break;
}
break;
/* target level1 speed objective, in MB/s */
case 'T':
argument++;
g_target = readU32FromChar(&argument);
break;
/* cut input into blocks */
case 'B':
argument++;
g_blockSize = readU32FromChar(&argument);
DISPLAY("using %u KB block size \n", g_blockSize>>10);
break;
/* Unknown command */
default : return badusage(exename);
}
}
continue;
} /* if (argument[0]=='-') */
/* first provided filename is input */
if (!input_filename) { input_filename=argument; filenamesStart=i; continue; }
}
if (filenamesStart==0) {
if (optimizer) {
DISPLAY("Optimizer Expects File")
return 1;
} else {
result = benchSample();
}
} else {
if (optimizer) {
result = optimizeForSize(input_filename, targetSpeed);
} else {
result = benchFiles(argv+filenamesStart, argc-filenamesStart);
} }
if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }
return result;
}