Go to file
2016-02-07 03:53:12 +01:00
contrib/cmake fixed cmake 2016-01-21 16:08:01 +01:00
dictBuilder fixed clang warnings 2016-02-01 00:03:10 +01:00
images updated NEWS 2016-01-21 13:33:05 +01:00
lib a bugfix for backward matches 2016-02-06 15:18:26 +01:00
programs fix big-endian compression error 2016-02-07 03:53:12 +01:00
visual/2013 fixed visual project 2016-02-03 01:15:43 +01:00
.gitattributes Added : *.png are binary files 2015-01-31 10:57:57 +01:00
.gitignore gitignore 2016-02-04 16:02:05 +01:00
.travis.yml CMake minimal version 2.8.7 test 2016-01-13 00:18:49 +06:00
Makefile add basic tests 2016-01-28 15:39:52 +01:00
NEWS Updated documentation 2016-02-05 15:24:57 +01:00
README.md typo 2016-02-05 16:04:10 +01:00

Zstd, short for Zstandard, is a fast lossless compression algorithm, targeting real-time compression scenarios at zlib-level compression ratio.

It is provided as a BSD-license package, hosted on Github.

Branch Status
master Build Status
dev Build Status

As a reference, several fast compression algorithms were tested and compared to zlib on a Core i7-3930K CPU @ 4.5GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with gcc 5.2.1, on the Silesia compression corpus.

Name Ratio C.speed D.speed
MB/s MB/s
zstd 0.4.7 -1 2.875 330 890
zlib 1.2.8 -1 2.730 95 360
brotli -0 2.708 220 430
QuickLZ 1.5 2.237 510 605
LZO 2.09 2.106 610 870
LZ4 r131 2.101 620 3100
Snappy 1.1.3 2.091 480 1600
LZF 3.6 2.077 375 790

Zstd can also offer stronger compression ratio at the cost of compression speed. Speed vs Compression trade-off is configurable by small increment. Decompression speed is preserved and remain roughly the same at all settings, a property shared by most LZ compression algorithms, such as zlib.

The following test is run on a Core i7-3930K CPU @ 4.5GHz, using lzbench, an open-source in-memory benchmark by @inikep compiled with gcc 5.2.1, on the Silesia compression corpus.

Compression Speed vs Ratio Decompression Speed
Compression Speed vs Ratio Decompression Speed

The case for Small Data compression

The above chart is applicable to large files or large streams scenarios (200 MB in this case). Small data (< 64 KB) come with different perspectives. The smaller the amount of data to compress, the more difficult it is to achieve any significant compression. On reaching the 1 KB region, it becomes almost impossible to compress anything. This problem is common to all compression algorithms, and throwing CPU power at it achieves no significant gains.

The reason is, compression algorithms learn from past data how to compress future data. But at the beginning of a new file, there is no "past" to build upon.

Starting with 0.5, Zstd now offers a Dictionary Builder tool. It can be used to train the algorithm to fit a selected type of data, by providing it with some samples. The result is a file (or a byte buffer) called "dictionary", which can be loaded before compression and decompression. By using this dictionary, the compression ratio achievable on small data improves dramatically :

Collection Name Direct compression Dictionary Compression Gains Average unit Range
Small JSON records x1.331 - x1.366 x5.860 - x6.830 ~ x4.7 300 200 - 400
Mercurial events x2.322 - x2.538 x3.377 - x4.462 ~ x1.5 1.5 KB 20 - 200 KB
Large JSON docs x3.813 - x4.043 x8.935 - x13.366 ~ x2.8 6 KB 800 - 20 KB

It has to be noted that these compression gains are achieved without any speed loss, and even some faster decompression processing.

Dictionary work if there is some correlation in a family of small data (there is no universal dictionary). Hence, deploying one dictionary per type of data will provide the greater benefits.

Large documents will benefit proportionally less, since dictionary gains are mostly effective in the first few KB. Then there is enough history to build upon, and the compression algorithm can rely on it to compress the rest of the file.

Status

Zstd has not yet reached "stable format" status. It doesn't guarantee yet that its current compression format will remain stable in future versions. During this period, it can still change to adapt new optimizations still being investigated. "Stable Format" is projected H1 2016, and will be tagged v1.0.

That being said, the library is now fairly robust, able to withstand hazards situations, including invalid inputs. It also features legacy support, so that documents compressed with current and previous version of zstd can still be decoded in the future. Library reliability has been tested using Fuzz Testing, with both internal tools and external ones. Therefore, Zstandard is considered safe for testings, even within production environments.

Branch Policy

The "dev" branch is the one where all contributions will be merged before reaching "master". If you plan to propose a patch, please commit into the "dev" branch or its own feature branch. Direct commit to "master" are not permitted.

Trivia

Zstd entropy stage is provided by Huff0 and FSE, from Finite State Entropy library.

Its memory requirement can be configured to fit into low-memory hardware configurations, or servers handling multiple connections/contexts in parallel.