zstd/contrib/adaptive-compression/adapt.c

1083 lines
39 KiB
C

/**
* Copyright (c) 2017-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free */
#include <pthread.h> /* pthread functions */
#include <string.h> /* memset */
#include "zstd_internal.h"
#include "util.h"
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define PRINT(...) fprintf(stdout, __VA_ARGS__)
#define DEBUG(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
#define FILE_CHUNK_SIZE 4 << 20
#define MAX_NUM_JOBS 2
#define stdinmark "/*stdin*\\"
#define stdoutmark "/*stdout*\\"
#define MAX_PATH 256
#define DEFAULT_DISPLAY_LEVEL 1
#define DEFAULT_COMPRESSION_LEVEL 6
#define MAX_COMPRESSION_LEVEL_CHANGE 2
#define CONVERGENCE_LOWER_BOUND 5
#define CLEVEL_DECREASE_COOLDOWN 5
#define CHANGE_BY_TWO_THRESHOLD 0.1
#define CHANGE_BY_ONE_THRESHOLD 0.65
#ifndef DEBUG_MODE
static int g_displayLevel = DEFAULT_DISPLAY_LEVEL;
#else
static int g_displayLevel = DEBUG_MODE;
#endif
static unsigned g_compressionLevel = DEFAULT_COMPRESSION_LEVEL;
static UTIL_time_t g_startTime;
static size_t g_streamedSize = 0;
static unsigned g_useProgressBar = 1;
static UTIL_freq_t g_ticksPerSecond;
static unsigned g_forceCompressionLevel = 0;
static unsigned g_minCLevel = 1;
static unsigned g_maxCLevel = 22;
typedef struct {
void* start;
size_t size;
size_t capacity;
} buffer_t;
typedef struct {
size_t filled;
buffer_t buffer;
} inBuff_t;
typedef struct {
buffer_t src;
buffer_t dst;
unsigned compressionLevel;
unsigned jobID;
unsigned lastJobPlusOne;
size_t compressedSize;
size_t dictSize;
} jobDescription;
typedef struct {
pthread_mutex_t pMutex;
int noError;
} mutex_t;
typedef struct {
pthread_cond_t pCond;
int noError;
} cond_t;
typedef struct {
unsigned compressionLevel;
unsigned numActiveThreads;
unsigned numJobs;
unsigned nextJobID;
unsigned threadError;
/*
* JobIDs for the next jobs to be created, compressed, and written
*/
unsigned jobReadyID;
unsigned jobCompressedID;
unsigned jobWriteID;
unsigned allJobsCompleted;
/*
* counter for how many jobs in a row the compression level has not changed
* if the counter becomes >= CONVERGENCE_LOWER_BOUND, the next time the
* compression level tries to change (by non-zero amount) resets the counter
* to 1 and does not apply the change
*/
unsigned convergenceCounter;
/*
* cooldown counter in order to prevent rapid successive decreases in compression level
* whenever compression level is decreased, cooldown is set to CLEVEL_DECREASE_COOLDOWN
* whenever adaptCompressionLevel() is called and cooldown != 0, it is decremented
* as long as cooldown != 0, the compression level cannot be decreased
*/
unsigned cooldown;
/*
* XWaitYCompletion
* Range from 0.0 to 1.0
* if the value is not 1.0, then this implies that thread X waited on thread Y to finish
* and thread Y was XWaitYCompletion finished at the time of the wait (i.e. compressWaitWriteCompletion=0.5
* implies that the compression thread waited on the write thread and it was only 50% finished writing a job)
*/
double createWaitCompressionCompletion;
double compressWaitCreateCompletion;
double compressWaitWriteCompletion;
double writeWaitCompressionCompletion;
/*
* Completion values
* Range from 0.0 to 1.0
* Jobs are divided into mini-chunks in order to measure completion
* these values are updated each time a thread finishes its operation on the
* mini-chunk (i.e. finishes writing out, compressing, etc. this mini-chunk).
*/
double compressionCompletion;
double writeCompletion;
double createCompletion;
mutex_t jobCompressed_mutex;
cond_t jobCompressed_cond;
mutex_t jobReady_mutex;
cond_t jobReady_cond;
mutex_t allJobsCompleted_mutex;
cond_t allJobsCompleted_cond;
mutex_t jobWrite_mutex;
cond_t jobWrite_cond;
mutex_t compressionCompletion_mutex;
mutex_t createCompletion_mutex;
mutex_t writeCompletion_mutex;
size_t lastDictSize;
inBuff_t input;
jobDescription* jobs;
ZSTD_CCtx* cctx;
} adaptCCtx;
typedef struct {
adaptCCtx* ctx;
FILE* dstFile;
} outputThreadArg;
typedef struct {
FILE* srcFile;
adaptCCtx* ctx;
outputThreadArg* otArg;
} fcResources;
static void freeCompressionJobs(adaptCCtx* ctx)
{
unsigned u;
for (u=0; u<ctx->numJobs; u++) {
jobDescription job = ctx->jobs[u];
free(job.dst.start);
free(job.src.start);
}
}
static int destroyMutex(mutex_t* mutex)
{
if (mutex->noError) {
int const ret = pthread_mutex_destroy(&mutex->pMutex);
return ret;
}
return 0;
}
static int destroyCond(cond_t* cond)
{
if (cond->noError) {
int const ret = pthread_cond_destroy(&cond->pCond);
return ret;
}
return 0;
}
static int freeCCtx(adaptCCtx* ctx)
{
if (!ctx) return 0;
{
int error = 0;
error |= destroyMutex(&ctx->jobCompressed_mutex);
error |= destroyCond(&ctx->jobCompressed_cond);
error |= destroyMutex(&ctx->jobReady_mutex);
error |= destroyCond(&ctx->jobReady_cond);
error |= destroyMutex(&ctx->allJobsCompleted_mutex);
error |= destroyCond(&ctx->allJobsCompleted_cond);
error |= destroyMutex(&ctx->jobWrite_mutex);
error |= destroyCond(&ctx->jobWrite_cond);
error |= destroyMutex(&ctx->compressionCompletion_mutex);
error |= destroyMutex(&ctx->createCompletion_mutex);
error |= destroyMutex(&ctx->writeCompletion_mutex);
error |= ZSTD_isError(ZSTD_freeCCtx(ctx->cctx));
free(ctx->input.buffer.start);
if (ctx->jobs){
freeCompressionJobs(ctx);
free(ctx->jobs);
}
free(ctx);
return error;
}
}
static int initMutex(mutex_t* mutex)
{
int const ret = pthread_mutex_init(&mutex->pMutex, NULL);
mutex->noError = !ret;
return ret;
}
static int initCond(cond_t* cond)
{
int const ret = pthread_cond_init(&cond->pCond, NULL);
cond->noError = !ret;
return ret;
}
static int initCCtx(adaptCCtx* ctx, unsigned numJobs)
{
ctx->compressionLevel = g_compressionLevel;
{
int pthreadError = 0;
pthreadError |= initMutex(&ctx->jobCompressed_mutex);
pthreadError |= initCond(&ctx->jobCompressed_cond);
pthreadError |= initMutex(&ctx->jobReady_mutex);
pthreadError |= initCond(&ctx->jobReady_cond);
pthreadError |= initMutex(&ctx->allJobsCompleted_mutex);
pthreadError |= initCond(&ctx->allJobsCompleted_cond);
pthreadError |= initMutex(&ctx->jobWrite_mutex);
pthreadError |= initCond(&ctx->jobWrite_cond);
pthreadError |= initMutex(&ctx->compressionCompletion_mutex);
pthreadError |= initMutex(&ctx->createCompletion_mutex);
pthreadError |= initMutex(&ctx->writeCompletion_mutex);
if (pthreadError) return pthreadError;
}
ctx->numJobs = numJobs;
ctx->jobReadyID = 0;
ctx->jobCompressedID = 0;
ctx->jobWriteID = 0;
ctx->lastDictSize = 0;
ctx->createWaitCompressionCompletion = 1;
ctx->compressWaitCreateCompletion = 1;
ctx->compressWaitWriteCompletion = 1;
ctx->writeWaitCompressionCompletion = 1;
ctx->createCompletion = 1;
ctx->writeCompletion = 1;
ctx->compressionCompletion = 1;
ctx->convergenceCounter = 0;
ctx->cooldown = 0;
ctx->jobs = calloc(1, numJobs*sizeof(jobDescription));
if (!ctx->jobs) {
DISPLAY("Error: could not allocate space for jobs during context creation\n");
return 1;
}
/* initializing jobs */
{
unsigned jobNum;
for (jobNum=0; jobNum<numJobs; jobNum++) {
jobDescription* job = &ctx->jobs[jobNum];
job->src.start = malloc(2 * FILE_CHUNK_SIZE);
job->dst.start = malloc(ZSTD_compressBound(FILE_CHUNK_SIZE));
job->lastJobPlusOne = 0;
if (!job->src.start || !job->dst.start) {
DISPLAY("Could not allocate buffers for jobs\n");
return 1;
}
job->src.capacity = FILE_CHUNK_SIZE;
job->dst.capacity = ZSTD_compressBound(FILE_CHUNK_SIZE);
}
}
ctx->nextJobID = 0;
ctx->threadError = 0;
ctx->allJobsCompleted = 0;
ctx->cctx = ZSTD_createCCtx();
if (!ctx->cctx) {
DISPLAY("Error: could not allocate ZSTD_CCtx\n");
return 1;
}
ctx->input.filled = 0;
ctx->input.buffer.capacity = 2 * FILE_CHUNK_SIZE;
ctx->input.buffer.start = malloc(ctx->input.buffer.capacity);
if (!ctx->input.buffer.start) {
DISPLAY("Error: could not allocate input buffer\n");
return 1;
}
return 0;
}
static adaptCCtx* createCCtx(unsigned numJobs)
{
adaptCCtx* const ctx = calloc(1, sizeof(adaptCCtx));
if (ctx == NULL) {
DISPLAY("Error: could not allocate space for context\n");
return NULL;
}
{
int const error = initCCtx(ctx, numJobs);
if (error) {
freeCCtx(ctx);
return NULL;
}
return ctx;
}
}
static void signalErrorToThreads(adaptCCtx* ctx)
{
ctx->threadError = 1;
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
pthread_cond_signal(&ctx->jobReady_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
pthread_cond_signal(&ctx->jobCompressed_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
pthread_cond_signal(&ctx->jobWrite_cond.pCond);
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
pthread_cond_signal(&ctx->allJobsCompleted_cond.pCond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
}
static void waitUntilAllJobsCompleted(adaptCCtx* ctx)
{
if (!ctx) return;
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
while (ctx->allJobsCompleted == 0 && !ctx->threadError) {
pthread_cond_wait(&ctx->allJobsCompleted_cond.pCond, &ctx->allJobsCompleted_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
}
/* map completion percentages to values for changing compression level */
static unsigned convertCompletionToChange(double completion)
{
if (completion < CHANGE_BY_TWO_THRESHOLD) {
return 2;
}
else if (completion < CHANGE_BY_ONE_THRESHOLD) {
return 1;
}
else {
return 0;
}
}
/*
* Compression level is changed depending on which part of the compression process is lagging
* Currently, three theads exist for job creation, compression, and file writing respectively.
* adaptCompressionLevel() increments or decrements compression level based on which of the threads is lagging
* job creation or file writing lag => increased compression level
* compression thread lag => decreased compression level
* detecting which thread is lagging is done by keeping track of how many calls each thread makes to pthread_cond_wait
*/
static void adaptCompressionLevel(adaptCCtx* ctx)
{
double createWaitCompressionCompletion;
double compressWaitCreateCompletion;
double compressWaitWriteCompletion;
double writeWaitCompressionCompletion;
double const threshold = 0.00001;
unsigned const prevCompressionLevel = ctx->compressionLevel;
if (g_forceCompressionLevel) {
ctx->compressionLevel = g_compressionLevel;
return;
}
DEBUG(2, "adapting compression level %u\n", ctx->compressionLevel);
/* read and reset completion measurements */
pthread_mutex_lock(&ctx->compressionCompletion_mutex.pMutex);
DEBUG(2, "createWaitCompressionCompletion %f\n", ctx->createWaitCompressionCompletion);
DEBUG(2, "writeWaitCompressionCompletion %f\n", ctx->writeWaitCompressionCompletion);
createWaitCompressionCompletion = ctx->createWaitCompressionCompletion;
writeWaitCompressionCompletion = ctx->writeWaitCompressionCompletion;
pthread_mutex_unlock(&ctx->compressionCompletion_mutex.pMutex);
pthread_mutex_lock(&ctx->writeCompletion_mutex.pMutex);
DEBUG(2, "compressWaitWriteCompletion %f\n", ctx->compressWaitWriteCompletion);
compressWaitWriteCompletion = ctx->compressWaitWriteCompletion;
pthread_mutex_unlock(&ctx->writeCompletion_mutex.pMutex);
pthread_mutex_lock(&ctx->createCompletion_mutex.pMutex);
DEBUG(2, "compressWaitCreateCompletion %f\n", ctx->compressWaitCreateCompletion);
compressWaitCreateCompletion = ctx->compressWaitCreateCompletion;
pthread_mutex_unlock(&ctx->createCompletion_mutex.pMutex);
DEBUG(2, "convergence counter: %u\n", ctx->convergenceCounter);
/* adaptation logic */
if (ctx->cooldown) ctx->cooldown--;
if ((1-createWaitCompressionCompletion > threshold || 1-writeWaitCompressionCompletion > threshold) && ctx->cooldown == 0) {
/* create or write waiting on compression */
/* use whichever one waited less because it was slower */
double const completion = MAX(createWaitCompressionCompletion, writeWaitCompressionCompletion);
unsigned const change = convertCompletionToChange(completion);
unsigned const boundChange = ctx->compressionLevel >= g_minCLevel ? MIN(change, ctx->compressionLevel - g_minCLevel) : 0;
if (ctx->convergenceCounter >= CONVERGENCE_LOWER_BOUND && boundChange != 0) {
/* reset convergence counter, might have been a spike */
ctx->convergenceCounter = 0;
DEBUG(2, "convergence counter reset, no change applied\n");
}
else if (boundChange != 0) {
ctx->compressionLevel -= boundChange;
ctx->cooldown = CLEVEL_DECREASE_COOLDOWN;
ctx->convergenceCounter = 1;
DEBUG(2, "create or write threads waiting on compression, tried to decrease compression level by %u\n\n", boundChange);
}
}
else if (1-compressWaitWriteCompletion > threshold || 1-compressWaitCreateCompletion > threshold) {
/* compress waiting on write */
double const completion = MIN(compressWaitWriteCompletion, compressWaitCreateCompletion);
unsigned const change = convertCompletionToChange(completion);
unsigned const boundChange = g_maxCLevel >= ctx->compressionLevel ? MIN(change, g_maxCLevel - ctx->compressionLevel) : 0;
if (ctx->convergenceCounter >= CONVERGENCE_LOWER_BOUND && boundChange != 0) {
/* reset convergence counter, might have been a spike */
ctx->convergenceCounter = 0;
DEBUG(2, "convergence counter reset, no change applied\n");
}
else if (boundChange != 0) {
ctx->compressionLevel += boundChange;
ctx->cooldown = 0;
ctx->convergenceCounter = 1;
DEBUG(2, "compress waiting on write or create, tried to increase compression level by %u\n\n", boundChange);
}
}
if (ctx->compressionLevel == prevCompressionLevel) {
ctx->convergenceCounter++;
}
}
static size_t getUseableDictSize(unsigned compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, 0);
unsigned const overlapLog = compressionLevel >= (unsigned)ZSTD_maxCLevel() ? 0 : 3;
size_t const overlapSize = 1 << (params.cParams.windowLog - overlapLog);
return overlapSize;
}
static void* compressionThread(void* arg)
{
adaptCCtx* const ctx = (adaptCCtx*)arg;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* const job = &ctx->jobs[currJobIndex];
DEBUG(2, "starting compression for job %u\n", currJob);
{
/* check if compression thread will have to wait */
unsigned willWaitForCreate = 0;
unsigned willWaitForWrite = 0;
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
if (currJob + 1 > ctx->jobReadyID) willWaitForCreate = 1;
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
if (currJob - ctx->jobWriteID >= ctx->numJobs) willWaitForWrite = 1;
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
pthread_mutex_lock(&ctx->createCompletion_mutex.pMutex);
if (willWaitForCreate) {
DEBUG(2, "compression will wait for create on job %u\n", currJob);
ctx->compressWaitCreateCompletion = ctx->createCompletion;
DEBUG(2, "create completion %f\n", ctx->compressWaitCreateCompletion);
}
else {
ctx->compressWaitCreateCompletion = 1;
}
pthread_mutex_unlock(&ctx->createCompletion_mutex.pMutex);
pthread_mutex_lock(&ctx->writeCompletion_mutex.pMutex);
if (willWaitForWrite) {
DEBUG(2, "compression will wait for write on job %u\n", currJob);
ctx->compressWaitWriteCompletion = ctx->writeCompletion;
DEBUG(2, "write completion %f\n", ctx->compressWaitWriteCompletion);
}
else {
ctx->compressWaitWriteCompletion = 1;
}
pthread_mutex_unlock(&ctx->writeCompletion_mutex.pMutex);
}
/* wait until job is ready */
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
while (currJob + 1 > ctx->jobReadyID && !ctx->threadError) {
pthread_cond_wait(&ctx->jobReady_cond.pCond, &ctx->jobReady_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
/* wait until job previously in this space is written */
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
while (currJob - ctx->jobWriteID >= ctx->numJobs && !ctx->threadError) {
pthread_cond_wait(&ctx->jobWrite_cond.pCond, &ctx->jobWrite_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
/* reset compression completion */
pthread_mutex_lock(&ctx->compressionCompletion_mutex.pMutex);
ctx->compressionCompletion = 0;
pthread_mutex_unlock(&ctx->compressionCompletion_mutex.pMutex);
/* adapt compression level */
if (currJob) adaptCompressionLevel(ctx);
DEBUG(2, "job %u compressed with level %u\n", currJob, ctx->compressionLevel);
/* compress the data */
{
size_t const compressionBlockSize = ZSTD_BLOCKSIZE_MAX; /* 128 KB */
unsigned const cLevel = ctx->compressionLevel;
unsigned blockNum = 0;
size_t remaining = job->src.size;
size_t srcPos = 0;
size_t dstPos = 0;
/* reset compressed size */
job->compressedSize = 0;
DEBUG(2, "calling ZSTD_compressBegin()\n");
/* begin compression */
{
size_t const useDictSize = MIN(getUseableDictSize(cLevel), job->dictSize);
size_t const dictModeError = ZSTD_setCCtxParameter(ctx->cctx, ZSTD_p_forceRawDict, 1);
ZSTD_parameters params = ZSTD_getParams(cLevel, 0, useDictSize);
params.cParams.windowLog = 23;
{
size_t const initError = ZSTD_compressBegin_advanced(ctx->cctx, job->src.start + job->dictSize - useDictSize, useDictSize, params, 0);
size_t const windowSizeError = ZSTD_setCCtxParameter(ctx->cctx, ZSTD_p_forceWindow, 1);
if (ZSTD_isError(dictModeError) || ZSTD_isError(initError) || ZSTD_isError(windowSizeError)) {
DISPLAY("Error: something went wrong while starting compression\n");
signalErrorToThreads(ctx);
return arg;
}
}
}
DEBUG(2, "finished with ZSTD_compressBegin()\n");
do {
size_t const actualBlockSize = MIN(remaining, compressionBlockSize);
/* continue compression */
if (currJob != 0 || blockNum != 0) { /* not first block of first job flush/overwrite the frame header */
size_t const hSize = ZSTD_compressContinue(ctx->cctx, job->dst.start + dstPos, job->dst.capacity - dstPos, job->src.start + job->dictSize + srcPos, 0);
if (ZSTD_isError(hSize)) {
DISPLAY("Error: something went wrong while continuing compression\n");
job->compressedSize = hSize;
signalErrorToThreads(ctx);
return arg;
}
ZSTD_invalidateRepCodes(ctx->cctx);
}
{
size_t const ret = (job->lastJobPlusOne == currJob + 1 && remaining == actualBlockSize) ?
ZSTD_compressEnd (ctx->cctx, job->dst.start + dstPos, job->dst.capacity - dstPos, job->src.start + job->dictSize + srcPos, actualBlockSize) :
ZSTD_compressContinue(ctx->cctx, job->dst.start + dstPos, job->dst.capacity - dstPos, job->src.start + job->dictSize + srcPos, actualBlockSize);
if (ZSTD_isError(ret)) {
DISPLAY("Error: something went wrong during compression: %s\n", ZSTD_getErrorName(ret));
signalErrorToThreads(ctx);
return arg;
}
job->compressedSize += ret;
remaining -= actualBlockSize;
srcPos += actualBlockSize;
dstPos += ret;
blockNum++;
/* update completion */
pthread_mutex_lock(&ctx->compressionCompletion_mutex.pMutex);
ctx->compressionCompletion = 1 - (double)remaining/job->src.size;
pthread_mutex_unlock(&ctx->compressionCompletion_mutex.pMutex);
}
} while (remaining != 0);
job->dst.size = job->compressedSize;
}
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
ctx->jobCompressedID++;
pthread_cond_broadcast(&ctx->jobCompressed_cond.pCond);
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
if (job->lastJobPlusOne == currJob + 1 || ctx->threadError) {
/* finished compressing all jobs */
break;
}
DEBUG(2, "finished compressing job %u\n", currJob);
currJob++;
}
return arg;
}
static void displayProgress(unsigned cLevel, unsigned last)
{
if (!g_useProgressBar) return;
{
UTIL_time_t currTime;
UTIL_getTime(&currTime);
double const timeElapsed = (double)(UTIL_getSpanTimeMicro(g_ticksPerSecond, g_startTime, currTime) / 1000.0);
double const sizeMB = (double)g_streamedSize / (1 << 20);
double const avgCompRate = sizeMB * 1000 / timeElapsed;
fprintf(stderr, "\r| Comp. Level: %2u | Time Elapsed: %7.2f s | Data Size: %7.1f MB | Avg Comp. Rate: %6.2f MB/s |", cLevel, timeElapsed/1000.0, sizeMB, avgCompRate);
if (last) {
fprintf(stderr, "\n");
}
else {
fflush(stderr);
}
}
}
static void* outputThread(void* arg)
{
outputThreadArg* const otArg = (outputThreadArg*)arg;
adaptCCtx* const ctx = otArg->ctx;
FILE* const dstFile = otArg->dstFile;
unsigned currJob = 0;
for ( ; ; ) {
unsigned const currJobIndex = currJob % ctx->numJobs;
jobDescription* const job = &ctx->jobs[currJobIndex];
unsigned willWaitForCompress = 0;
DEBUG(2, "starting write for job %u\n", currJob);
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
if (currJob + 1 > ctx->jobCompressedID) willWaitForCompress = 1;
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
pthread_mutex_lock(&ctx->compressionCompletion_mutex.pMutex);
if (willWaitForCompress) {
/* write thread is waiting on compression thread */
ctx->writeWaitCompressionCompletion = ctx->compressionCompletion;
DEBUG(2, "writer thread waiting for nextJob: %u, writeWaitCompressionCompletion %f\n", currJob, ctx->writeWaitCompressionCompletion);
}
else {
ctx->writeWaitCompressionCompletion = 1;
}
pthread_mutex_unlock(&ctx->compressionCompletion_mutex.pMutex);
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
while (currJob + 1 > ctx->jobCompressedID && !ctx->threadError) {
pthread_cond_wait(&ctx->jobCompressed_cond.pCond, &ctx->jobCompressed_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
/* reset write completion */
pthread_mutex_lock(&ctx->writeCompletion_mutex.pMutex);
ctx->writeCompletion = 0;
pthread_mutex_unlock(&ctx->writeCompletion_mutex.pMutex);
{
size_t const compressedSize = job->compressedSize;
size_t remaining = compressedSize;
if (ZSTD_isError(compressedSize)) {
DISPLAY("Error: an error occurred during compression\n");
signalErrorToThreads(ctx);
return arg;
}
{
size_t const blockSize = MAX(compressedSize >> 7, 1 << 10);
size_t pos = 0;
for ( ; ; ) {
size_t const writeSize = MIN(remaining, blockSize);
size_t const ret = fwrite(job->dst.start + pos, 1, writeSize, dstFile);
if (ret != writeSize) break;
pos += ret;
remaining -= ret;
/* update completion variable for writing */
pthread_mutex_lock(&ctx->writeCompletion_mutex.pMutex);
ctx->writeCompletion = 1 - (double)remaining/compressedSize;
pthread_mutex_unlock(&ctx->writeCompletion_mutex.pMutex);
if (remaining == 0) break;
}
if (pos != compressedSize) {
DISPLAY("Error: an error occurred during file write operation\n");
signalErrorToThreads(ctx);
return arg;
}
}
}
displayProgress(ctx->compressionLevel, job->lastJobPlusOne == currJob + 1);
pthread_mutex_lock(&ctx->jobWrite_mutex.pMutex);
ctx->jobWriteID++;
pthread_cond_signal(&ctx->jobWrite_cond.pCond);
pthread_mutex_unlock(&ctx->jobWrite_mutex.pMutex);
if (job->lastJobPlusOne == currJob + 1 || ctx->threadError) {
/* finished with all jobs */
pthread_mutex_lock(&ctx->allJobsCompleted_mutex.pMutex);
ctx->allJobsCompleted = 1;
pthread_cond_signal(&ctx->allJobsCompleted_cond.pCond);
pthread_mutex_unlock(&ctx->allJobsCompleted_mutex.pMutex);
break;
}
DEBUG(2, "finished writing job %u\n", currJob);
currJob++;
}
return arg;
}
static int createCompressionJob(adaptCCtx* ctx, size_t srcSize, int last)
{
unsigned const nextJob = ctx->nextJobID;
unsigned const nextJobIndex = nextJob % ctx->numJobs;
jobDescription* const job = &ctx->jobs[nextJobIndex];
job->compressionLevel = ctx->compressionLevel;
job->src.size = srcSize;
job->jobID = nextJob;
if (last) job->lastJobPlusOne = nextJob + 1;
{
/* swap buffer */
void* const copy = job->src.start;
job->src.start = ctx->input.buffer.start;
ctx->input.buffer.start = copy;
}
job->dictSize = ctx->lastDictSize;
ctx->nextJobID++;
/* if not on the last job, reuse data as dictionary in next job */
if (!last) {
size_t const oldDictSize = ctx->lastDictSize;
memcpy(ctx->input.buffer.start, job->src.start + oldDictSize, srcSize);
ctx->lastDictSize = srcSize;
ctx->input.filled = srcSize;
}
/* signal job ready */
pthread_mutex_lock(&ctx->jobReady_mutex.pMutex);
ctx->jobReadyID++;
pthread_cond_signal(&ctx->jobReady_cond.pCond);
pthread_mutex_unlock(&ctx->jobReady_mutex.pMutex);
return 0;
}
static int performCompression(adaptCCtx* ctx, FILE* const srcFile, outputThreadArg* otArg)
{
/* early error check to exit */
if (!ctx || !srcFile || !otArg) {
return 1;
}
/* create output thread */
{
pthread_t out;
if (pthread_create(&out, NULL, &outputThread, otArg)) {
DISPLAY("Error: could not create output thread\n");
signalErrorToThreads(ctx);
return 1;
}
}
/* create compression thread */
{
pthread_t compression;
if (pthread_create(&compression, NULL, &compressionThread, ctx)) {
DISPLAY("Error: could not create compression thread\n");
signalErrorToThreads(ctx);
return 1;
}
}
{
unsigned currJob = 0;
/* creating jobs */
for ( ; ; ) {
size_t pos = 0;
size_t const readBlockSize = 1 << 15;
size_t remaining = FILE_CHUNK_SIZE;
unsigned const nextJob = ctx->nextJobID;
unsigned willWaitForCompress = 0;
DEBUG(2, "starting creation of job %u\n", currJob);
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
if (nextJob - ctx->jobCompressedID >= ctx->numJobs) willWaitForCompress = 1;
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
pthread_mutex_lock(&ctx->compressionCompletion_mutex.pMutex);
if (willWaitForCompress) {
/* creation thread is waiting, take measurement of completion */
ctx->createWaitCompressionCompletion = ctx->compressionCompletion;
DEBUG(2, "create thread waiting for nextJob: %u, createWaitCompressionCompletion %f\n", nextJob, ctx->createWaitCompressionCompletion);
}
else {
ctx->createWaitCompressionCompletion = 1;
}
pthread_mutex_unlock(&ctx->compressionCompletion_mutex.pMutex);
/* wait until the job has been compressed */
pthread_mutex_lock(&ctx->jobCompressed_mutex.pMutex);
while (nextJob - ctx->jobCompressedID >= ctx->numJobs && !ctx->threadError) {
pthread_cond_wait(&ctx->jobCompressed_cond.pCond, &ctx->jobCompressed_mutex.pMutex);
}
pthread_mutex_unlock(&ctx->jobCompressed_mutex.pMutex);
/* reset create completion */
pthread_mutex_lock(&ctx->createCompletion_mutex.pMutex);
ctx->createCompletion = 0;
pthread_mutex_unlock(&ctx->createCompletion_mutex.pMutex);
while (remaining != 0 && !feof(srcFile)) {
size_t const ret = fread(ctx->input.buffer.start + ctx->input.filled + pos, 1, readBlockSize, srcFile);
if (ret != readBlockSize && !feof(srcFile)) {
/* error could not read correct number of bytes */
DISPLAY("Error: problem occurred during read from src file\n");
signalErrorToThreads(ctx);
return 1;
}
pos += ret;
remaining -= ret;
pthread_mutex_lock(&ctx->createCompletion_mutex.pMutex);
ctx->createCompletion = 1 - (double)remaining/((size_t)FILE_CHUNK_SIZE);
pthread_mutex_unlock(&ctx->createCompletion_mutex.pMutex);
}
if (remaining != 0 && !feof(srcFile)) {
DISPLAY("Error: problem occurred during read from src file\n");
signalErrorToThreads(ctx);
return 1;
}
g_streamedSize += pos;
/* reading was fine, now create the compression job */
{
int const last = feof(srcFile);
int const error = createCompressionJob(ctx, pos, last);
if (error != 0) {
signalErrorToThreads(ctx);
return error;
}
}
DEBUG(2, "finished creating job %u\n", currJob);
currJob++;
if (feof(srcFile)) {
break;
}
}
}
/* success -- created all jobs */
return 0;
}
static fcResources createFileCompressionResources(const char* const srcFilename, const char* const dstFilenameOrNull)
{
fcResources fcr;
unsigned const stdinUsed = !strcmp(srcFilename, stdinmark);
FILE* const srcFile = stdinUsed ? stdin : fopen(srcFilename, "rb");
const char* const outFilenameIntermediate = (stdinUsed && !dstFilenameOrNull) ? stdoutmark : dstFilenameOrNull;
const char* outFilename = outFilenameIntermediate;
char fileAndSuffix[MAX_PATH];
size_t const numJobs = MAX_NUM_JOBS;
memset(&fcr, 0, sizeof(fcr));
if (!outFilenameIntermediate) {
if (snprintf(fileAndSuffix, MAX_PATH, "%s.zst", srcFilename) + 1 > MAX_PATH) {
DISPLAY("Error: output filename is too long\n");
return fcr;
}
outFilename = fileAndSuffix;
}
{
unsigned const stdoutUsed = !strcmp(outFilename, stdoutmark);
FILE* const dstFile = stdoutUsed ? stdout : fopen(outFilename, "wb");
fcr.otArg = malloc(sizeof(outputThreadArg));
if (!fcr.otArg) {
DISPLAY("Error: could not allocate space for output thread argument\n");
return fcr;
}
fcr.otArg->dstFile = dstFile;
}
/* checking for errors */
if (!fcr.otArg->dstFile || !srcFile) {
DISPLAY("Error: some file(s) could not be opened\n");
return fcr;
}
/* creating context */
fcr.ctx = createCCtx(numJobs);
fcr.otArg->ctx = fcr.ctx;
fcr.srcFile = srcFile;
return fcr;
}
static int freeFileCompressionResources(fcResources* fcr)
{
int ret = 0;
waitUntilAllJobsCompleted(fcr->ctx);
ret |= (fcr->srcFile != NULL) ? fclose(fcr->srcFile) : 0;
ret |= (fcr->ctx != NULL) ? freeCCtx(fcr->ctx) : 0;
if (fcr->otArg) {
ret |= (fcr->otArg->dstFile != stdout) ? fclose(fcr->otArg->dstFile) : 0;
free(fcr->otArg);
/* no need to freeCCtx() on otArg->ctx because it should be the same context */
}
return ret;
}
static int compressFilename(const char* const srcFilename, const char* const dstFilenameOrNull)
{
int ret = 0;
fcResources fcr = createFileCompressionResources(srcFilename, dstFilenameOrNull);
UTIL_getTime(&g_startTime);
g_streamedSize = 0;
ret |= performCompression(fcr.ctx, fcr.srcFile, fcr.otArg);
ret |= freeFileCompressionResources(&fcr);
return ret;
}
static int compressFilenames(const char** filenameTable, unsigned numFiles, unsigned forceStdout)
{
int ret = 0;
unsigned fileNum;
for (fileNum=0; fileNum<numFiles; fileNum++) {
const char* filename = filenameTable[fileNum];
if (!forceStdout) {
ret |= compressFilename(filename, NULL);
}
else {
ret |= compressFilename(filename, stdoutmark);
}
}
return ret;
}
/*! readU32FromChar() :
@return : unsigned integer value read from input in `char` format
allows and interprets K, KB, KiB, M, MB and MiB suffix.
Will also modify `*stringPtr`, advancing it to position where it stopped reading.
Note : function result can overflow if digit string > MAX_UINT */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9'))
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
if ((**stringPtr=='K') || (**stringPtr=='M')) {
result <<= 10;
if (**stringPtr=='M') result <<= 10;
(*stringPtr)++ ;
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
static void help(void)
{
PRINT("Usage:\n");
PRINT(" ./multi [options] [file(s)]\n");
PRINT("\n");
PRINT("Options:\n");
PRINT(" -oFILE : specify the output file name\n");
PRINT(" -i# : provide initial compression level\n");
PRINT(" -h : display help/information\n");
PRINT(" -f : force the compression level to stay constant\n");
PRINT(" -c : force write to stdout\n");
PRINT(" -p : hide progress bar\n");
PRINT(" -q : quiet mode -- do not show progress bar or other information\n");
PRINT(" -l# : provide lower bound for compression level\n");
PRINT(" -u# : provide upper bound for compression level\n");
}
/* return 0 if successful, else return error */
int main(int argCount, const char* argv[])
{
const char* outFilename = NULL;
const char** filenameTable = (const char**)malloc(argCount*sizeof(const char*));
unsigned filenameIdx = 0;
unsigned forceStdout = 0;
int ret = 0;
int argNum;
filenameTable[0] = stdinmark;
UTIL_initTimer(&g_ticksPerSecond);
if (filenameTable == NULL) {
DISPLAY("Error: could not allocate sapce for filename table.\n");
return 1;
}
for (argNum=1; argNum<argCount; argNum++) {
const char* argument = argv[argNum];
/* output filename designated with "-o" */
if (argument[0]=='-' && strlen(argument) > 1) {
switch (argument[1]) {
case 'o':
argument += 2;
outFilename = argument;
break;
case 'i':
argument += 2;
g_compressionLevel = readU32FromChar(&argument);
break;
case 'h':
help();
goto _main_exit;
case 'p':
g_useProgressBar = 0;
break;
case 'c':
forceStdout = 1;
outFilename = stdoutmark;
break;
case 'f':
g_forceCompressionLevel = 1;
break;
case 'q':
g_useProgressBar = 0;
g_displayLevel = 0;
break;
case 'l':
argument += 2;
g_minCLevel = readU32FromChar(&argument);
break;
case 'u':
argument += 2;
g_maxCLevel = readU32FromChar(&argument);
break;
default:
DISPLAY("Error: invalid argument provided\n");
ret = 1;
goto _main_exit;
}
continue;
}
/* regular files to be compressed */
filenameTable[filenameIdx++] = argument;
}
/* error checking with number of files */
if (filenameIdx > 1 && (outFilename != NULL && strcmp(outFilename, stdoutmark))) {
DISPLAY("Error: multiple input files provided, cannot use specified output file\n");
ret = 1;
goto _main_exit;
}
/* compress files */
if (filenameIdx <= 1) {
ret |= compressFilename(filenameTable[0], outFilename);
}
else {
ret |= compressFilenames(filenameTable, filenameIdx, forceStdout);
}
_main_exit:
free(filenameTable);
return ret;
}