AuroraRuntime/Include/Aurora/Memory/Heap.hpp
Reece Wilson 1ff9feb303 [+] Initial heap stat counter API
[+] Upcoming failure categories
[+] Updated SysPushXXX prototypes
[*] Restore bandwidth OnTick position for extrapolate (using current frame stats, ref to last) fractional lerps into the future with ref to average
[*] Compression.cpp AuList<AuUInt8> upgrade was incomplete & could've been improved with modern apis
2022-12-08 19:34:15 +00:00

196 lines
6.5 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: Heap.hpp
Date: 2021-6-9
Author: Reece
***/
#pragma once
namespace Aurora::Memory
{
struct Heap
{
virtual AuSPtr<Heap> AllocateDivision(AuUInt32 heap, AuUInt32 alignment = 32) = 0;
virtual Types::size_t GetChunkSize(const void *head) = 0;
virtual HeapStats &GetStats() = 0;
template<typename T = void *>
T ZAlloc(Types::size_t length)
{
return reinterpret_cast<T>(_ZAlloc(length));
}
template<typename T = void *>
T ZAlloc(Types::size_t length, Types::size_t align)
{
return reinterpret_cast<T>(_ZAlloc(length, align));
}
template<typename T>
T *ZAlloc()
{
return reinterpret_cast<T *>(_ZAlloc(sizeof(T)));
}
template<typename T>
T *NewArray(Types::size_t count)
{
return ZAlloc<T *>(count * sizeof(T));
}
template<typename T>
T *NewArray(Types::size_t count, Types::size_t align)
{
return ZAlloc<T *>(count * sizeof(T), align);
}
/// Fast, unsafe alloc
template<typename T = void *>
T FAlloc(Types::size_t length)
{
return reinterpret_cast<T>(_FAlloc(length));
}
template<typename T = void *>
T FAlloc(Types::size_t length, Types::size_t align)
{
return reinterpret_cast<T>(_FAlloc(length, align));
}
template<typename T>
T ZRealloc(T in, Types::size_t length)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(in), length));
}
template<typename T>
T ZRealloc(T in, Types::size_t length, Types::size_t alloc)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(in), length), alloc);
}
template<typename T>
T FRealloc(T in, Types::size_t length)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(in), length));
}
template<typename T>
T FRealloc(T in, Types::size_t length, Types::size_t alloc)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(in), length), alloc);
}
template<typename T>
void Free(T in)
{
_Free(reinterpret_cast<void *>(in));
}
template <class T, class ...Args>
AuSPtr<T> NewClass(T &ref, Args &&...args)
{
void * pPtr;
if constexpr (AuIsClass_v<T>)
{
pPtr = this->FAlloc<void *>(sizeof(T));
if (pPtr)
{
new (pPtr) T(AuForward<Args &&>(args)...);
}
}
else
{
pPtr = this->ZAlloc<void *>(sizeof(T));
}
if (!pPtr)
{
return {};
}
return ToSmartPointer(pPtr, true);
}
/**
* @brief
* @param in
* A pointer owned by the heap
* @param pinThis
* If you attempt to destroy a heap, or allow a shared ptr to free the heap w/o freeing all allocations, the heap will dangle and a telemetry warning will be sent.
* pinThis isn't strictly needed unless you wish to slience heap freed before allocation warnings.
* A memory management model whereby you dont pin the parent heap will prevent circular references from taking over; in contrast, the alternative will need well defined object disposal
* One could keep heap references weak outside of your heap manager and always pin this - or you could pin nothing and be careful with object disposal order
* @return
*/
template<typename T>
AuSPtr<T> ToSmartPointer(T *in, bool pinThis)
{
if (in == nullptr) return {};
auto heapHandle = pinThis ? GetSelfReference() : AuSPtr<Heap> {};
return AuSPtr<T>(in,
[heapHandle, in, this](T *delt)
{
if constexpr (AuIsClass_v<T>)
{
delt->~T();
}
this->Free(delt);
});
}
template<typename T>
static AuSPtr<T> ToSmartPointer(AuSPtr<Heap> heap, T *in, bool pinHeap = true)
{
auto handle = pinHeap ? heap : AuSPtr<Heap> {};
auto ptr = heap.get(); // so long as in is a valid pointer within the heap, this is fine
return AuSPtr<T>(in,
[handle, ptr](T *delt)
{
if constexpr (AuIsClass_v<T>)
{
delt->~T();
}
ptr->Free(delt);
});
}
private:
virtual AuSPtr<Heap> GetSelfReference() = 0; // may return empty/default. not all heaps are sharable.
virtual AU_ALLOC void *_ZAlloc(Types::size_t uLength) = 0;
virtual AU_ALLOC void *_ZAlloc(Types::size_t uLength, Types::size_t align) = 0;
virtual AU_ALLOC void *_FAlloc(Types::size_t uLength) = 0;
virtual AU_ALLOC void *_FAlloc(Types::size_t uLength, Types::size_t align) = 0;
virtual AU_ALLOC void *_ZRealloc(void *pBase, Types::size_t uLength, Types::size_t uAlign) = 0;
virtual AU_ALLOC void *_ZRealloc(void *pBase, Types::size_t uLength) = 0;
virtual AU_ALLOC void *_FRealloc(void *pBase, Types::size_t uLength, Types::size_t uAlign) = 0;
virtual AU_ALLOC void *_FRealloc(void *pBase, Types::size_t uLength) = 0;
virtual void _Free(void* pBase) = 0;
};
/**
Returns a heap interface backed by the default allocator
*/
AUKN_SHARED_API(GetDefaultDiscontiguousHeap, Heap);
/**
Allocates Fize amount of memory
NOTE -> Heaps are guaranteed to outlive its' allocations; heap are the one object that own themselves
Destructions are mere suggestions, however, requesting termination before a heap has released all of its memory will result in a telemetry mayday
@return a heap backed by allocated memory
*/
AUKN_SHARED_API(AllocHeap, Heap, AuUInt uLength);
AUKN_SHARED_API(RequestHeapOfRegion, Heap, void *pPtr, AuUInt uLength);
AUKN_SHARED_API(AllocHeapMimalloc, Heap, AuUInt uLength);
}