AuroraRuntime/Source/AuProcAddresses.Linux.cpp

291 lines
8.7 KiB
C++

/***
Copyright (C) 2023 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: AuProcAddresses.Linux.cpp
Date: 2023-8-11
Author: Reece
***/
#include <RuntimeInternal.hpp>
#include <sys/syscall.h>
#include <linux/futex.h>
#define AURORA_IS_GLIBC
#if !defined(__NR_close_range)
#define __NR_close_range 436
#endif
namespace Aurora
{
#define read_barrier() __asm__ __volatile__("lfence" ::: "memory")
static const auto kAioRingMagic = 0xa10a10a1u;
void InitLinuxAddresses()
{
}
template <typename... T>
long syscallFuckYou(T &&... args)
{
// sysdeps/unix/sysv/linux/x86_64/syscall.S
// Fuck Freetards
long iFuckResult = syscall(AuForward<T &&>(args)...);
#if defined(AURORA_IS_GLIBC)
if (iFuckResult == -1 &&
errno > 0)
{
return (0 - errno);
}
#else
// TODO: if defined UNIX has a libc wrapper. why would we assume there's a CRT to begin with?
errno = (0 - iFuckResult);
#endif
return iFuckResult;
// Imagine going out of your way to define a varadic syscall wrapper that works without any special formatting parameters,
// works across all abis, just to fuck it into uselessness by returning -ENOSYS and -1 spuriously.
// Nooo we cant just have all the != 0 and if (n >= 0) checks pass, we must enforce `error == -1` is true everywhere as a convention!!!
// People trying to interface with the kernel directly must never know what the kernel actually said!!!
// Look through all their (GNU) garbage hand written assembly *and* C macros, you'll see its litered with SYSCALL_ERROR_LABEL,
// because i swear to god it looks like cmpq and jae are the only instructions they know how to use.
// Worse, its rationalized as and I quote,
// "Linus said he will make sure the no syscall returns a value in -1 .. -4095 as a valid result so we can safely test with -4095"
// So these copy/pasted instructions are hard-coding a "linus said so once"-based test, and now Linux-like OSes are forever limited to 4k errors?
// I guess it's like the other FUTEX issue where every single thead and every single process under Linux is bound to one ABI defined by glib,
// and the kernels stance on the matter is, I quote "must only be changed if the change is first communicated with the glibc folks."
// That meaning, it doesn't matter because they're just going to half-ass things together holding hands.
// Daily reminder, Lin-shit is half-assed HW abstraction layer held together with forced driver source sharing and glibc+freeedesktop hopes and dreams.
// Fucking retards, I swear
}
int pidfd_getfd(int pidfd, int targetfd,
unsigned int flags)
{
return syscallFuckYou(__NR_pidfd_getfd, pidfd, targetfd, flags);
}
int pidfd_open(pid_t pid, unsigned int flags)
{
return syscallFuckYou(__NR_pidfd_open, pid, flags);
}
long set_robust_list(struct robust_list_head *head, size_t len)
{
return syscallFuckYou(__NR_set_robust_list, head, len);
}
long get_robust_list(int pid, struct robust_list_head **head_ptr, size_t *len_ptr)
{
return syscallFuckYou(__NR_get_robust_list, pid, head_ptr, len_ptr);
}
static int futex(uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout,
uint32_t *uaddr2, uint32_t val3)
{
return syscallFuckYou(__NR_futex, uaddr, futex_op, val, timeout, uaddr2, val3);
}
int futex_wait(uint32_t *addr, uint32_t expected)
{
return futex(addr, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, expected, 0, 0, 0);
}
int futex_wait(uint32_t *addr, uint32_t expected, const struct timespec *timeout)
{
if (timeout)
{
return futex(addr, FUTEX_WAIT_BITSET | FUTEX_PRIVATE_FLAG, expected, timeout, 0, FUTEX_BITSET_MATCH_ANY);
}
else
{
return futex(addr, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, expected, timeout, 0, 0);
}
}
int futex_wait_shared(uint32_t *addr, uint32_t expected, const struct timespec *timeout)
{
if (timeout)
{
return futex(addr, FUTEX_WAIT_BITSET, expected, timeout, 0, FUTEX_BITSET_MATCH_ANY);
}
else
{
return futex(addr, FUTEX_WAIT, expected, timeout, 0, 0);
}
}
int futex_wake(uint32_t *addr, uint32_t nthreads)
{
return futex(addr, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, nthreads, 0, 0, 0);
}
int futex_wake_shared(uint32_t *addr, uint32_t nthreads)
{
return futex(addr, FUTEX_WAKE, nthreads, 0, 0, 0);
}
int futex_wait(volatile uint32_t *addr, uint32_t expected)
{
return futex((uint32_t *)addr, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, expected, 0, 0, 0);
}
int futex_wait(volatile uint32_t *addr, uint32_t expected, const struct timespec *timeout)
{
if (timeout)
{
return futex((uint32_t *)addr, FUTEX_WAIT_BITSET | FUTEX_PRIVATE_FLAG, expected, timeout, 0, FUTEX_BITSET_MATCH_ANY);
}
else
{
return futex((uint32_t *)addr, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, expected, timeout, 0, 0);
}
}
int futex_wake(volatile uint32_t *addr, uint32_t nthreads)
{
return futex((uint32_t *)addr, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, nthreads, 0, 0, 0);
}
int io_setup(unsigned nr, aio_context_t *ctxp)
{
return syscallFuckYou(__NR_io_setup, nr, ctxp);
}
int io_destroy(aio_context_t ctx)
{
return syscallFuckYou(__NR_io_destroy, ctx);
}
int io_submit(aio_context_t ctx, long nr, struct iocb **iocbpp)
{
return syscallFuckYou(__NR_io_submit, ctx, nr, iocbpp);
}
#if 0
int io_getevents(aio_context_t ctx, long min_nr, long max_nr,
struct io_event *events,
struct timespec *timeout)
{
return syscall(__NR_io_getevents, ctx, min_nr, max_nr, events, timeout);
}
#endif
struct aio_ring
{
unsigned id;
unsigned nr;
unsigned head;
unsigned tail;
unsigned magic;
unsigned compat_features;
unsigned incompat_features;
unsigned header_length;
struct io_event events[0];
};
int io_getevents(aio_context_t ctx,
long min_nr, long max_nr,
struct io_event *events,
struct timespec *timeout)
{
int i {};
auto pRing = (struct aio_ring *)ctx;
if (!pRing ||
pRing->magic != kAioRingMagic)
{
goto do_syscall;
}
while (i < max_nr)
{
auto head = pRing->head;
if (head == pRing->tail)
{
break;
}
events[i++] = pRing->events[head];
read_barrier();
pRing->head = (head + 1) % pRing->nr;
}
if (!i &&
timeout &&
!timeout->tv_sec &&
!timeout->tv_nsec)
{
return 0;
}
if (i &&
i >= min_nr)
{
return i;
}
do_syscall:
int iKernelCount {};
if ((iKernelCount = syscallFuckYou(__NR_io_getevents,
ctx, min_nr - i,
max_nr - i,
&events[i], timeout)) > 0)
{
return i + iKernelCount;
}
else if (i)
{
return i;
}
else
{
return iKernelCount;
}
}
int io_cancel(aio_context_t ctx_id, struct iocb *iocb,
struct io_event *result)
{
return syscallFuckYou(__NR_io_cancel, ctx_id, iocb, result);
}
ssize_t sys_getrandom(void *pBuffer, size_t uLength)
{
static AuUInt32 gShouldNotGetRand {};
ssize_t ret {};
if (gShouldNotGetRand)
{
return -ENOSYS;
}
ret = syscallFuckYou(__NR_getrandom, pBuffer, uLength, 1);
if (ret == -ENOSYS)
{
gShouldNotGetRand = 1;
}
return ret;
}
int close_range(unsigned int first, unsigned int last,
unsigned int flags)
{
auto &platform = AuSwInfo::GetPlatformInfo();
if (platform.uKernelMajor > 5 ||
(platform.uKernelMajor == 5 && platform.uKernelMajor >= 9))
{
return syscallFuckYou(__NR_close_range, first, last, flags);
}
else
{
return -ENOSYS;
}
}
}