AuroraRuntime/Source/Threading/WaitFor.cpp
2022-01-19 18:37:09 +00:00

395 lines
12 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: WaitFor.cpp
Date: 2021-6-12
Author: Reece
***/
#include <Source/RuntimeInternal.hpp>
#include "WaitFor.hpp"
#if defined(AURORA_IS_LINUX_DERIVED)
#include <sched.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <time.h>
#endif
// Read the local header file for this file.
// The original idea was sane.
// The implemention, not so much...
// TODO: REWRITE!
namespace Aurora::Threading
{
static void YieldToSharedCore(long spin)
{
int loops = (1 << spin);
while (loops > 0)
{
#if (defined(AURORA_ARCH_X64) || defined(AURORA_ARCH_X86))
_mm_pause();
#endif
loops -= 1;
}
}
void YieldToOtherThread()
{
#if defined(AURORA_IS_MODERNNT_DERIVED)
SwitchToThread();
#elif defined(AURORA_IS_LINUX_DERIVED)
sched_yield();
#else
YieldToSharedCore(12);
#endif
}
template<AuMach Flags> // forcefully optiMize by templating a constant argument
static inline void _FastSnooze(long &count, AuUInt64 &startTime, AuUInt64 maxStallNS, int &alpha, int &bravo, bool &forceSpin) //, bool yieldFaster , long maxStallMS = 20)
{
// TODO: rewrite me
AuUInt64 now = Time::CurrentInternalClockNS();
// Begin least likely checks, we're getting on now
// Ironically we need to burn off some CPU cycles
AuUInt64 deltaNS = now - startTime;
#define SHOULD_SWITCH_ASAP(yieldDelayThresholdNs, roundTripNs)\
(static_cast<int>(Flags) & kYieldFlagsContextSwitchASAP)
// Validate we have at least one whole average of a context switch of overhead remaining
#define HAS_ENOUGH_TIME_FOR_TIMED_SLEEP(yieldDelayThresholdNs, roundTripNs)\
(maxStallNS >= (roundTripNs + deltaNS))
// The point of rewriting kernel-free userland thread components is to delegate everything to userland
// One key reason is single app performance. We should we not know how long to yield for, giving an undefined
// ...amount of time to other applications might be a bad thing. fuck. why cant we have rtos functionality :(
#define HAS_ENOUGH_TIME_FOR_INFINITE_SLEEP(yieldDelayThresholdNs, roundTripNs)\
((static_cast<int>(Flags)& kYieldFlagsContextSwitchForever) && (!maxStallNS))
// Perform a good faith guess at assuming we have enough overhead for a hard context switch
#define HAS_ENOUGH_TIME_OVERHEAD(yieldDelayThresholdNs, roundTripNs)\
(HAS_ENOUGH_TIME_FOR_INFINITE_SLEEP(yieldDelayThresholdNs, roundTripNs) || HAS_ENOUGH_TIME_FOR_TIMED_SLEEP(yieldDelayThresholdNs, roundTripNs))
// Validate enough time (lets say 1/3rd of the approximated time of a preemptive switch or sleep(0)) has passed
#define HAS_ENOUGH_TIME_PASSED(yieldDelayThresholdNs, roundTripNs)\
(deltaNS > yieldDelayThresholdNs)
#define SHOULD_CTXSWAP(yieldDelayThresholdNs, roundTripNs)\
if (SHOULD_SWITCH_ASAP(yieldDelayThresholdNs, roundTripNs) || (HAS_ENOUGH_TIME_PASSED(yieldDelayThresholdNs, roundTripNs) && HAS_ENOUGH_TIME_OVERHEAD(yieldDelayThresholdNs, roundTripNs)))
#if defined(AURORA_IS_LINUX_DERIVED)
SHOULD_CTXSWAP(kLinuxYieldTimeThresNano, kPredictedLinuxKernelTimeRTNano)
{
// we are not very nice :D
setpriority(PRIO_PROCESS, 0, bravo);
static timespec fuck = { 0, kLinuxYieldTimeNano };
nanosleep(&fuck, &fuck);
setpriority(PRIO_PROCESS, 0, alpha);
forceSpin = true;
return;
}
#endif
#if defined(AURORA_PLATFORM_WIN32)
SHOULD_CTXSWAP(kPredictedNTOSSwitchTimeYDNS, kPredictedNTOSSwitchTimeRTNS)
{
// TODO:
::Sleep(1);
return;
}
#endif
// Always at least try to burn some cycles off in a spinlock-esc time waster
YieldToOtherThread();
}
template<AuMach Flags> // forcefully optiMize by templating a constant argument
static void FastSnooze(long &count, AuUInt64 &startTime, AuUInt64 maxStallMS) //, bool yieldFaster , long maxStallMS = 20)
{
#if defined(AURORA_IS_LINUX_DERIVED)
int alpha = getpriority(PRIO_PROCESS, 0);
int bravo = AuMin(15, AuMax(19, alpha + 5));
#else
int alpha, bravo = 0;
#endif
bool spin = false;
_FastSnooze<Flags>(count, startTime, maxStallMS, alpha, bravo, spin);
}
template
void FastSnooze<0>(long &count, AuUInt64 &startTime, AuUInt64 maxStallMS);
template
void FastSnooze<kYieldFlagsContextSwitchASAP>(long &count, AuUInt64 &startTime, AuUInt64 maxStallMS);
template
void FastSnooze<kYieldFlagsContextSwitchForever>(long &count, AuUInt64 &startTime, AuUInt64 maxStallMS);
template<bool permitMultipleContextSwitches>
static inline bool YieldPollTmpl(AuUInt64 &time, AuUInt64 timeoutMs, PollCallback_cb cb)
{
#if defined(AURORA_IS_LINUX_DERIVED)
int alpha = getpriority(PRIO_PROCESS, 0);
int bravo = AuMin(15, AuMax(19, alpha + 5));
#else
int alpha, bravo = 0;
#endif
bool spin = false;
long count = 0;
unsigned long long a = Time::CurrentInternalClockNS();
do
{
if (permitMultipleContextSwitches)
{
_FastSnooze<kYieldFlagsContextSwitchForever>(count, time, timeoutMs, alpha, bravo, spin);
}
else
{
_FastSnooze<0>(count, time, timeoutMs, alpha, bravo, spin);
}
if (cb())
{
return true;
}
a = Time::CurrentInternalClockNS();
} while ((!timeoutMs) || (timeoutMs > a));
return cb();
}
AUKN_SYM bool YieldPollNs(bool permitMultipleContextSwitches, AuUInt64 timeoutNs, PollCallback_cb cb)
{
AuUInt64 time = Time::CurrentInternalClockNS();
if (cb())
{
return true;
}
if (timeoutNs)
{
// only relevant when there's no timeout, fastsnooze will do its own magic given the templates parameters
permitMultipleContextSwitches = false;
}
// do not trust the compiler do branch here with a mere Func<variable>(...)
// it's far more likely the branch will be handled in our yield loop
if (permitMultipleContextSwitches)
{
return YieldPollTmpl<true>(time, timeoutNs, cb);
}
else
{
return YieldPollTmpl<false>(time, timeoutNs, cb);
}
return false;
}
AUKN_SYM bool YieldPoll(bool permitMultipleContextSwitches, AuUInt64 timeoutMs, PollCallback_cb cb)
{
AuUInt64 time = Time::CurrentInternalClockNS();
AuUInt64 timeoutNs = timeoutMs ? (time + (timeoutMs * 1000000)) : 0;
if (cb())
{
return true;
}
if (timeoutMs)
{
// only relevant when there's no timeout, fastsnooze will do its own magic given the templates parameters
permitMultipleContextSwitches = false;
}
// do not trust the compiler do branch here with a mere Func<variable>(...)
// it's far more likely the branch will be handled in our yield loop
if (permitMultipleContextSwitches)
{
return YieldPollTmpl<true>(time, timeoutNs, cb);
}
else
{
return YieldPollTmpl<false>(time, timeoutNs, cb);
}
return false;
}
static bool WaitLogicHandledByImplementor(bool &status, IWaitable *waitable, AuUInt64 timeout)
{
if (!waitable->HasLockImplementation())
{
return false;
}
status = waitable->Lock(timeout);
return true;
}
static bool WaitLogicHandledByNTOS(bool &status, IWaitable *waitable, AuUInt64 timeout)
{
#if defined(AURORA_IS_MODERNNT_DERIVED)
AuMach handle = 0;
if (!waitable->HasOSHandle(handle))
{
return false;
}
auto win32 = reinterpret_cast<HANDLE>(handle);
auto ret = WaitForSingleObject(win32, timeout ? timeout : INFINITE);
SysAssert(ret != WAIT_FAILED, "Internal Win32 Error {}", GetLastError());
if (ret == WAIT_TIMEOUT)
{
status = false;
}
else
{
status = true;
}
return true;
#else
return false;
#endif
}
AUKN_SYM bool WaitFor(IWaitable *waitable, AuUInt64 timeout)
{
bool status;
if (WaitLogicHandledByNTOS(status, waitable, timeout))
{
return status;
}
if (WaitLogicHandledByImplementor(status, waitable, timeout))
{
return status;
}
return YieldPoll(true, timeout, [=]()
{
return waitable->TryLock();
});
}
static bool CanWin32HandleAll(const AuList<IWaitable *> &waitables)
{
#if defined(AURORA_IS_MODERNNT_DERIVED)
for (auto &waitable : waitables)
{
AuMach handle = 0;
if (!waitable->HasOSHandle(handle))
{
return false;
}
}
return true;
#else
return false;
#endif
}
static bool Win32HandleMultiple(const AuList<IWaitable *> &waitables, AuUInt64 timeoutMs)
{
#if defined(AURORA_IS_MODERNNT_DERIVED)
AuList<HANDLE> winWaitables;
winWaitables.resize(waitables.size());
std::transform(waitables.begin(), waitables.end(), winWaitables.begin(), [](IWaitable *waitable) -> HANDLE
{
AuMach handle = 0;
auto status = waitable->HasOSHandle(handle);
SysAssert(status, "OS Handle was NULL");
return reinterpret_cast<HANDLE>(handle);
});
auto status = WaitForMultipleObjectsEx(winWaitables.size(), winWaitables.data(), TRUE, timeoutMs ? timeoutMs : INFINITE, true);
SysAssert(status != WAIT_FAILED, "Internal Win32 Error {}", GetLastError());
if (status == WAIT_TIMEOUT)
{
return false;
}
else
{
return true;
}
#else
return false;
#endif
}
AUKN_SYM bool WaitFor(const AuList<IWaitable *> &waitables, AuUInt64 timeout)
{
if (CanWin32HandleAll(waitables))
{
return Win32HandleMultiple(waitables, timeout);
}
// im worried about the complexity of using a vector here
// we would have to hit o(n) and memcpy in the best case scenario on each object release
// unordered maps are glorified hash tables
// maps are glorified binary trees
// maps should be fast enough
AuHashMap<int, bool> releasedObjects;
releasedObjects.reserve(waitables.size());
// pseudo reserve
for (AuMach i = 0; i < waitables.size(); i++)
{
releasedObjects[i] = false;
}
// yield for all
auto status = YieldPoll(true, timeout, [&]()
{
for (AuMach i = 0; i < waitables.size(); i++)
{
if (!releasedObjects[i])
{
if (waitables[i]->TryLock())
{
releasedObjects[i] = true;
}
else
{
return false;
}
}
}
return true;
});
// from the perspective of locks, should the be a timeout event, we need to go back and unlock them on timeout
if (!status)
{
for (AuMach i = 0; i < waitables.size(); i++)
{
if (releasedObjects[i])
{
waitables[i]->Unlock();
}
}
}
return status;
}
AUKN_SYM void ContextYield()
{
YieldToOtherThread();
}
}