AuroraRuntime/Include/Aurora/Memory/Heap.inl
Jamie Reece Wilson ced9e0be17 [*] Optimize global process heap aliases
[*] Split AuMemory::Heap impl into .inl file
2024-07-15 00:15:35 +01:00

432 lines
12 KiB
C++

/***
Copyright (C) 2021-2024 Jamie Reece Wilson (a/k/a "Reece"). All rights reserved.
File: Heap.inl
Date: 2024-7-14
Date: 2021-6-9
Author: Reece
***/
#pragma once
namespace Aurora::Memory
{
template<typename T>
T Heap::ZAlloc(Types::size_t uLength)
{
if constexpr (AuIsVoid_v<AuRemovePointer_t<T>>)
{
return reinterpret_cast<T>(_ZAlloc(uLength));
}
else
{
return reinterpret_cast<T>(_ZAlloc(uLength, alignof(AuRemovePointer_t<T>)));
}
}
template<typename T>
T Heap::ZAlloc(Types::size_t uLength, Types::size_t uAlignment)
{
return reinterpret_cast<T>(_ZAlloc(uLength, uAlignment));
}
template<typename T>
T *Heap::ZAlloc()
{
return reinterpret_cast<T *>(_ZAlloc(sizeof(T), alignof(T)));
}
template<typename T>
T *Heap::NewArray(Types::size_t uLength)
{
return ZAlloc<T *>(uLength * sizeof(T), alignof(T));
}
template<typename T>
T *Heap::NewArray(Types::size_t uLength, Types::size_t uAlignment)
{
return ZAlloc<T *>(uLength * sizeof(T), uAlignment);
}
template<typename T>
T Heap::FAlloc(Types::size_t uLength)
{
if constexpr (AuIsVoid_v<AuRemovePointer_t<T>>)
{
return reinterpret_cast<T>(_FAlloc(uLength));
}
else
{
return reinterpret_cast<T>(_FAlloc(uLength, alignof(AuRemovePointer_t<T>)));
}
}
template<typename T>
T Heap::FAlloc(Types::size_t uLength, Types::size_t uAlignment)
{
return reinterpret_cast<T>(_FAlloc(uLength, uAlignment));
}
template<typename T>
T *Heap::FAlloc()
{
return reinterpret_cast<T *>(_FAlloc(sizeof(T), alignof(T)));
}
// Reallocs
template<typename T>
T Heap::ZRealloc(T pHead, Types::size_t uLength)
{
if constexpr (AuIsVoid_v<AuRemovePointer_t<T>>)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(pHead), uLength));
}
else
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(pHead), uLength, alignof(AuRemovePointer_t<T>)));
}
}
template<typename T>
T Heap::ZRealloc(T pHead, Types::size_t uLength, Types::size_t uAlignment)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(pHead), uLength, uAlignment));
}
template<typename T>
T Heap::FRealloc(T pHead, Types::size_t uLength)
{
if constexpr (AuIsVoid_v<AuRemovePointer_t<T>>)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(pHead), uLength));
}
else
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(pHead), uLength, alignof(AuRemovePointer_t<T>)));
}
}
template<typename T>
T Heap::FRealloc(T pHead, Types::size_t uLength, Types::size_t uAlignment)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(pHead), uLength, uAlignment));
}
// Free
template<typename T>
void Heap::Free(T pHead)
{
_Free(reinterpret_cast<void *>(pHead));
}
template <typename T>
void Heap::DeleteThat(T *pThat)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyDestructible_v<T>)
{
pThat->~T();
}
auto &pHeap = *(Heap **)(((char *)pThat) - kAlignment);
pHeap->_Free(&pHeap);
}
template <typename T>
void Heap::DeleteThatArray(T *pThat)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *) * 2);
auto pVoids = (void **)(((char *)pThat) - kAlignment);
auto pHeap = (Heap *)pVoids[0];
auto uLength = (AuUInt)pVoids[1];
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyDestructible_v<T>)
{
for (AU_ITERATE_N(i, uLength))
{
auto &refElement = pThat[i];
refElement.~T();
}
}
pHeap->_Free(pVoids);
}
template <typename T, typename Z>
void Heap::DeleteThatCastedOnce(T *pThat)
{
static const auto kAlignment = AuMax(alignof(Z), sizeof(void *));
auto pBaseClass = AuStaticCast<Z>(pThat);
if constexpr (AuIsClass_v<Z> &&
!AuIsTriviallyDestructible_v<Z>)
{
pBaseClass->~Z();
}
auto &pHeap = *(Heap **)(((char *)pBaseClass) - kAlignment);
pHeap->_Free(&pHeap);
}
template <typename T>
static void Heap::RetardedSpecWrittenByRetards(T *pThat)
{
}
template <class T, class ...Args>
AuSPtr<T> Heap::NewClass(Args &&...args)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
AuUInt8 *pPtr;
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyConstructible_v<T, Args...>)
{
pPtr = pThat->FAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
if (pPtr)
{
new (pPtr + kAlignment) T(AuForward<Args>(args)...);
}
}
else
{
pPtr = pThat->ZAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
}
if (!pPtr)
{
return {};
}
*(void **)pPtr = pThat;
auto pTThat = (T *)(pPtr + kAlignment);
AUROXTL_COMMODITY_TRY
{
return AuSPtr<T>(pTThat, &Heap::DeleteThat<T>, CppHeapWrapper<T> { this });
}
AUROXTL_COMMODITY_CATCH
{
Heap::DeleteThat<T>(pTThat);
return {};
}
}
template <class T, class Z, class ...Args>
AuUPtr<Z, decltype(&Heap::DeleteThat<Z>)> Heap::NewClassUnique(Args &&...args)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
AuUInt8 *pPtr;
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyConstructible_v<T, Args...>)
{
pPtr = pThat->FAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
if (pPtr)
{
new (pPtr + kAlignment) T(AuForward<Args>(args)...);
}
}
else
{
pPtr = pThat->ZAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
}
if (!pPtr)
{
return AuUPtr<Z, decltype(&Heap::DeleteThat<Z>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<Z>);
}
*(void **)pPtr = pThat;
if constexpr (AuIsSame_v<T, Z>)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>((T *)(pPtr + kAlignment), &Heap::DeleteThat<T>);
}
else
{
return Heap::CastPointer<Z>(AuMove(AuUPtr<T, decltype(&Heap::DeleteThat<T>)>((T *)(pPtr + kAlignment), &Heap::DeleteThat<T>)));
}
}
template <class T, class ...Args>
AuSPtr<T> Heap::NewClassArray(AuUInt uElements, Args &&... fillCtr)
{
return NewClassArray2<T, Args...>(uElements, alignof(T), AuForward<Args>(fillCtr)...);
}
template <class T, class ...Args>
AuSPtr<T> Heap::NewClassArray2(AuUInt uElements, AuUInt uAlignment, Args &&... fillCtr)
{
const auto kAlignment = AuMax(uAlignment, sizeof(void *) * 2);
AuUInt8 *pPtr;
if (!uElements)
{
return {};
}
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyConstructible_v<T, Args...>)
{
if (bool(pPtr = pThat->FAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
for (AU_ITERATE_N(i, uElements))
{
new (pPtr + kAlignment + (sizeof(T) * i)) T(AuForward<Args>(fillCtr)...);
}
}
}
else
{
if (bool(pPtr = pThat->ZAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
if constexpr (sizeof...(Args) != 0)
{
#if defined(AURT_HEAP_NO_STL)
static_assert(false);
#else
auto pElements = (T *)(pPtr + kAlignment);
std::fill(pElements, pElements + uElements, AuForward<Args>(fillCtr)...);
#endif
}
}
}
if (!pPtr)
{
return {};
}
auto pVoids = (void **)pPtr;
pVoids[0] = pThat;
pVoids[1] = (void *)uElements;
auto pTThat = (T *)(pPtr + kAlignment);
AUROXTL_COMMODITY_TRY
{
return AuSPtr<T>(pTThat, &Heap::DeleteThatArray<T>, CppHeapWrapper<T> { this });
}
AUROXTL_COMMODITY_CATCH
{
Heap::DeleteThatArray<T>(pTThat);
return {};
}
}
template <class T, class ...Args>
AuUPtr<T, decltype(&Heap::DeleteThat<T>)> Heap::NewClassArrayUnique(AuUInt uElements, Args &&... fillCtr)
{
return NewClassArray2Unique<T, Args...>(uElements, alignof(T), AuForward<Args>(fillCtr)...);
}
template <class T, class ...Args>
AuUPtr<T, decltype(&Heap::DeleteThat<T>)> Heap::NewClassArray2Unique(AuUInt uElements, AuUInt uAlignment, Args &&... fillCtr)
{
const auto kAlignment = AuMax(uAlignment, sizeof(void *) * 2);
AuUInt8 *pPtr;
if (!uElements)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T> &&
!AuIsTriviallyConstructible_v<T, Args...>)
{
if (bool(pPtr = pThat->FAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
for (AU_ITERATE_N(i, uElements))
{
new (pPtr + kAlignment + (sizeof(T) * i)) T(AuForward<Args>(fillCtr)...);
}
}
}
else
{
if (bool(pPtr = pThat->ZAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
if constexpr (sizeof...(Args) != 0)
{
#if defined(AURT_HEAP_NO_STL)
static_assert(false);
#else
auto pElements = (T *)(pPtr + kAlignment);
std::fill(pElements, pElements + uElements, AuForward<Args>(fillCtr)...);
#endif
}
}
}
if (!pPtr)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
auto pVoids = (void **)pPtr;
pVoids[0] = pThat;
pVoids[1] = (void *)uElements;
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>((T *)(pPtr + kAlignment), &Heap::DeleteThatArray<T>);
}
template <class T>
AuUPtr<T, decltype(&Heap::DeleteThat<T>)> Heap::NullUniquePointer()
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
template <class Z, class T>
AuUPtr<Z, decltype(&Heap::DeleteThat<Z>)> Heap::CastPointer(AuUPtr<T, decltype(&Heap::DeleteThat<T>)> &&pInPointer)
{
if (!pInPointer)
{
return NullUniquePointer<Z>();
}
else if (pInPointer.get_deleter() == &Heap::DeleteThat<T>)
{
return AuUPtr<Z, decltype(&Heap::DeleteThat<Z>)>(AuStaticCast<Z>(pInPointer.release()), &Heap::DeleteThatCastedOnce<Z, T>);
}
else
{
return NullUniquePointer<Z>();
}
}
namespace detail
{
inline AuSPtr<AuUInt8> AllocateArray(Heap *pHeap, AuUInt uLength, AuUInt32 uAlignment)
{
return pHeap->NewClassArray2<AuUInt8>(uLength, uAlignment);
}
}
}