AuroraRuntime/Include/Aurora/Memory/Heap.hpp
2024-01-18 17:19:35 +00:00

416 lines
14 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: Heap.hpp
Date: 2021-6-9
Author: Reece
***/
#pragma once
namespace Aurora::Memory
{
struct ProxyHeap;
struct Heap
{
virtual AuSPtr<Heap> AllocateDivision(AuUInt32 heap, AuUInt32 alignment = 32) = 0;
virtual Types::size_t GetChunkSize(const void *pHead) = 0;
virtual HeapStats &GetStats() = 0;
template<typename T = void *>
T ZAlloc(Types::size_t length)
{
return reinterpret_cast<T>(_ZAlloc(length));
}
template<typename T = void *>
T ZAlloc(Types::size_t length, Types::size_t align)
{
return reinterpret_cast<T>(_ZAlloc(length, align));
}
template<typename T>
T *ZAlloc()
{
return reinterpret_cast<T *>(_ZAlloc(sizeof(T)));
}
template<typename T>
T *NewArray(Types::size_t count)
{
return ZAlloc<T *>(count * sizeof(T));
}
template<typename T>
T *NewArray(Types::size_t count, Types::size_t align)
{
return ZAlloc<T *>(count * sizeof(T), align);
}
/// Fast, unsafe alloc
template<typename T = void *>
T FAlloc(Types::size_t length)
{
return reinterpret_cast<T>(_FAlloc(length));
}
template<typename T = void *>
T FAlloc(Types::size_t length, Types::size_t align)
{
return reinterpret_cast<T>(_FAlloc(length, align));
}
template<typename T>
T ZRealloc(T pHead, Types::size_t length)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(pHead), length));
}
template<typename T>
T ZRealloc(T pHead, Types::size_t length, Types::size_t alloc)
{
return reinterpret_cast<T>(_ZRealloc(reinterpret_cast<void *>(pHead), length), alloc);
}
template<typename T>
T FRealloc(T pHead, Types::size_t length)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(pHead), length));
}
template<typename T>
T FRealloc(T pHead, Types::size_t length, Types::size_t alloc)
{
return reinterpret_cast<T>(_FRealloc(reinterpret_cast<void *>(pHead), length), alloc);
}
template<typename T>
void Free(T pHead)
{
_Free(reinterpret_cast<void *>(pHead));
}
protected:
template <typename T>
static void DeleteThat(T *pThat)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_destructible_v<T>
#endif
)
{
pThat->~T();
}
auto &pHeap = *(Heap **)(((char *)pThat) - kAlignment);
pHeap->_Free(&pHeap);
}
template <typename T>
static void DeleteThatArray(T *pThat)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *) * 2);
auto pVoids = (void **)(((char *)pThat) - kAlignment);
auto pHeap = (Heap *)pVoids[0];
auto uCount = (AuUInt)pVoids[1];
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_destructible_v<T>
#endif
)
{
for (AU_ITERATE_N(i, uCount))
{
auto &refElement = pThat[i];
refElement.~T();
}
}
pHeap->_Free(pVoids);
}
template <typename T>
static void RetardedSpecWrittenByRetards(T *pThat)
{
}
public:
template <class T, class ...Args>
AuSPtr<T> NewClass(Args &&...args)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
AuUInt8 *pPtr;
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_constructible_v<T>
#endif
)
{
pPtr = pThat->FAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
if (pPtr)
{
new (pPtr + kAlignment) T(AuForward<Args &&>(args)...);
}
}
else
{
pPtr = pThat->ZAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
}
if (!pPtr)
{
return {};
}
*(void **)pPtr = pThat;
return AuSPtr<T>((T *)(pPtr + kAlignment), &Heap::DeleteThat<T>);
}
template <class T, class ...Args>
AuUPtr<T, decltype(&Heap::DeleteThat<T>)> NewClassUnique(Args &&...args)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *));
AuUInt8 *pPtr;
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_constructible_v<T>
#endif
)
{
pPtr = pThat->FAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
if (pPtr)
{
new (pPtr + kAlignment) T(AuForward<Args &&>(args)...);
}
}
else
{
pPtr = pThat->ZAlloc<AuUInt8 *>(sizeof(T) + kAlignment, kAlignment);
}
if (!pPtr)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
*(void **)pPtr = pThat;
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>((T *)(pPtr + kAlignment), &Heap::DeleteThat<T>);
}
template <class T, class ...Args>
AuSPtr<T> NewClassArray(AuUInt uElements, Args &&... fillCtr)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *) * 2);
AuUInt8 *pPtr;
if (!uElements)
{
return {};
}
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_constructible_v<T>
#endif
)
{
if (bool(pPtr = pThat->FAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
for (AU_ITERATE_N(i, uElements))
{
new (pPtr + kAlignment + (sizeof(T) * i)) T(AuForward<Args &&>(fillCtr)...);
}
}
}
else
{
if (bool(pPtr = pThat->ZAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
if constexpr (sizeof...(Args) != 0)
{
#if defined(AURT_HEAP_NO_STL)
static_assert(false);
#else
auto pElements = (T *)(pPtr + kAlignment);
std::fill(pElements, pElements + uElements, AuForward<Args &&>(fillCtr)...);
#endif
}
}
}
if (!pPtr)
{
return {};
}
auto pVoids = (void **)pPtr;
pVoids[0] = pThat;
pVoids[1] = (void *)uElements;
return AuSPtr<T>((T *)(pPtr + kAlignment), &Heap::DeleteThatArray<T>);
}
template <class T, class ...Args>
AuUPtr<T, decltype(&Heap::DeleteThat<T>)> NewClassArrayUnique(AuUInt uElements, Args &&... fillCtr)
{
static const auto kAlignment = AuMax(alignof(T), sizeof(void *) * 2);
AuUInt8 *pPtr;
if (!uElements)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
auto pThat = this->GetSelfReferenceRaw();
if (!pThat)
{
pThat = this;
}
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_constructible_v<T>
#endif
)
{
if (bool(pPtr = pThat->FAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
for (AU_ITERATE_N(i, uElements))
{
new (pPtr + kAlignment + (sizeof(T) * i)) T(AuForward<Args &&>(fillCtr)...);
}
}
}
else
{
if (bool(pPtr = pThat->ZAlloc<AuUInt8 *>((sizeof(T) * uElements) + kAlignment, kAlignment)))
{
if constexpr (sizeof...(Args) != 0)
{
#if defined(AURT_HEAP_NO_STL)
static_assert(false);
#else
auto pElements = (T *)(pPtr + kAlignment);
std::fill(pElements, pElements + uElements, AuForward<Args &&>(fillCtr)...);
#endif
}
}
}
if (!pPtr)
{
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>(nullptr, &Heap::RetardedSpecWrittenByRetards<T>);
}
auto pVoids = (void **)pPtr;
pVoids[0] = pThat;
pVoids[1] = (void *)uElements;
return AuUPtr<T, decltype(&Heap::DeleteThat<T>)>((T *)(pPtr + kAlignment), &Heap::DeleteThatArray<T>);
}
template<typename T>
static AuSPtr<T> ToSmartPointer(AuSPtr<Heap> heap,
T *pHead,
bool bPinHeap = true)
{
auto handle = bPinHeap ?
heap :
AuSPtr<Heap> {};
auto pHeap = heap.get();
return AuSPtr<T>(pHead,
[handle, pHeap](T *pDeleteMe)
{
if constexpr (AuIsClass_v<T>
#if !defined(AURT_HEAP_NO_STL)
&& !std::is_trivially_destructible_v<T>
#endif
)
{
pDeleteMe->~T();
}
pHeap->Free(pDeleteMe);
});
}
template <typename T>
using HUPOf_t = AuUPtr<T, decltype(&Heap::DeleteThat<T>)>;
protected:
friend struct ProxyHeap;
virtual AuSPtr<Heap> GetSelfReference() = 0; // may return empty/default. not all heaps are sharable.
virtual Heap *GetSelfReferenceRaw() = 0;
virtual AU_ALLOC void *_ZAlloc(Types::size_t uLength) = 0;
virtual AU_ALLOC void *_ZAlloc(Types::size_t uLength, Types::size_t align) = 0;
virtual AU_ALLOC void *_FAlloc(Types::size_t uLength) = 0;
virtual AU_ALLOC void *_FAlloc(Types::size_t uLength, Types::size_t align) = 0;
virtual AU_ALLOC void *_ZRealloc(void *pBase, Types::size_t uLength, Types::size_t uAlign) = 0;
virtual AU_ALLOC void *_ZRealloc(void *pBase, Types::size_t uLength) = 0;
virtual AU_ALLOC void *_FRealloc(void *pBase, Types::size_t uLength, Types::size_t uAlign) = 0;
virtual AU_ALLOC void *_FRealloc(void *pBase, Types::size_t uLength) = 0;
virtual void _Free(void* pBase) = 0;
};
/**
Returns a heap interface backed by the default allocator
*/
AUKN_SHARED_API(GetDefaultDiscontiguousHeap, Heap);
/**
Allocates uLength amount of contiguous virtual memory
@warning Heaps are guaranteed to outlive their allocations; heaps are the one object that effectively own a single reference count on themselves.
Requesting termination before all of its' memory has been free will result, pHead at worst, a warning.
Expect to leak unless all allocs have been paired by a free.
I do not expect to implement force frees simply because all our primary use cases keep track of dtors to forcefully release leaked objects.
Use RequestHeapOfRegion to be backed by caller owned memory.
@return a heap backed by uLength bytes of virtual memory
*/
AUKN_SHARED_API(AllocHeap, Heap, AuUInt uLength);
AUKN_SHARED_API(RequestHeapOfRegion, Heap, void *pPtr, AuUInt uLength);
// AllocHeap but use mimalloc (or the default allocator) instead
AUKN_SHARED_API(AllocHeapMimalloc, Heap, AuUInt uLength);
// Proxies an existing heap with encapsulated statistics
AUKN_SHARED_API(HeapProxy, Heap, const AuSPtr<Heap> &pHead);
// Proxies an existing heap with encapsulated statistics and leak detector
AUKN_SHARED_API(HeapProxyEx, Heap, const AuSPtr<Heap> &pHead, LeakFinderAlloc_f pfAlloc, LeakFinderFree_f pfFree);
}