AuroraRuntime/Source/HWInfo/AuCpuInfo.NT.cpp

346 lines
10 KiB
C++

/***
Copyright (C) 2022-2023 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: AuCpuId.NT.cpp
Date: 2022-1-25
Author: Reece
***/
#include <Source/RuntimeInternal.hpp>
#include "AuHWInfo.hpp"
#include "AuCpuInfo.hpp"
#include "AuCpuInfo.NT.hpp"
#if defined(AURORA_IS_MODERNNT_DERIVED)
#include <VersionHelpers.h>
#endif
namespace Aurora::HWInfo
{
static bool SetWindows10CpuSetInfoSlow()
{
SYSTEM_CPU_SET_INFORMATION cpuSetInfo[128];
SYSTEM_LOGICAL_PROCESSOR_INFORMATION sysinfo[128];
DWORD dwLength {};
if (!pGetSystemCpuSetInformation)
{
return false;
}
if (!pGetSystemCpuSetInformation(cpuSetInfo, sizeof(cpuSetInfo), &dwLength, 0, 0))
{
return false;
}
struct CpuInfo
{
AuList<AuUInt8> low;
AuList<AuPair<AuUInt8, CpuBitId>> server;
CpuBitId mask;
};
AuBST<AuUInt8, CpuInfo> cpuThreads;
AuUInt8 uThreadCount = AuUInt8(dwLength / sizeof(decltype(*cpuSetInfo)));
AuUInt8 uBestClass {};
bool bHasBestClass {};
if (uThreadCount)
{
AuUInt8 countTable[255] {};
for (AU_ITERATE_N(i, uThreadCount))
{
countTable[cpuSetInfo[i].CpuSet.EfficiencyClass]++;
}
AuUInt8 uBestClassCounter {};
for (AU_ITERATE_N(i, AuArraySize(countTable)))
{
auto uCurrentCount = countTable[i];
if (uCurrentCount <= uBestClassCounter)
{
continue;
}
if (!i)
{
continue;
}
uBestClassCounter = uCurrentCount;
bHasBestClass = true;
uBestClass = i;
}
}
for (AU_ITERATE_N(i, uThreadCount))
{
auto &idx = cpuThreads[cpuSetInfo[i].CpuSet.CoreIndex];
// Win7 KAFFINITY = u64 affinity masks
// Windows 10 + seems to be ((this->group + 1ul) * 0x100ul) + index
// Windows internals says...
// ULONG sets[] = { 0x100, 0x101, 0x102, 0x103 };
// ::SetProcessDefaultCpuSets/SetThreadSelectedCpuSets(::GetCurrentProcess(), sets, _countof(sets));
// (useless)
// People generally isolate group and keep logical processors in a different set, kinda worthless for bitwise math
SysAssert(cpuSetInfo[i].CpuSet.LogicalProcessorIndex < 64);
#if defined(_AU_MASSIVE_CPUID)
SysAssert(cpuSetInfo[i].CpuSet.Group < 4);
#else
SysAssert(cpuSetInfo[i].CpuSet.Group < 2);
#endif
AuUInt8 id = AuUInt8(cpuSetInfo[i].CpuSet.LogicalProcessorIndex /*no greater than 64*/ + (cpuSetInfo[i].CpuSet.Group * 64));
auto cpuId = CpuBitId(id);
auto sets = cpuId.ToCpuSets();
SysAssert(sets.size() == 1);
SysAssert(sets[0] == cpuSetInfo[i].CpuSet.Id);
idx.server.push_back(AuMakePair(cpuSetInfo[i].CpuSet.EfficiencyClass, cpuId));
idx.low.push_back(id);
idx.mask.Add(cpuId);
gCpuInfo.maskAllCores.Add(cpuId);
}
for (const auto &[cpuId, coreIds] : cpuThreads)
{
AuUInt64 shortMask {};
for (const auto &[eClass, id] : coreIds.server)
{
if (bHasBestClass &&
eClass != uBestClass)
{
gCpuInfo.maskECores.Add(id);
}
else
{
gCpuInfo.maskPCores.Add(id);
gCpuInfo.pCoreTopology.push_back(id);
}
}
for (const auto &id : coreIds.low)
{
shortMask |= AuUInt64(1) << AuUInt64(id);
}
gCpuInfo.coreTopology.push_back(coreIds.mask);
gCpuInfo.threadTopology.push_back(shortMask);
}
gCpuInfo.uSocket = 1;
gCpuInfo.uThreads = uThreadCount;
gCpuInfo.uCores = AuUInt8(cpuThreads.size());
if (!pGetLogicalProcessorInformation)
{
return true;
}
if (!pGetLogicalProcessorInformation(sysinfo, &dwLength))
{
return true;
}
gCpuInfo.uSocket = 0;
dwLength /= sizeof(*sysinfo);
for (auto i = 0u; i < dwLength; i++)
{
if (sysinfo[i].Relationship == RelationProcessorPackage)
{
gCpuInfo.uSocket++;
}
if (sysinfo[i].Relationship == RelationCache)
{
switch (sysinfo[i].Cache.Level)
{
case 1:
gCpuInfo.dwCacheLine = AuMax<AuUInt32>(gCpuInfo.dwCacheLine, sysinfo[i].Cache.LineSize);
gCpuInfo.dwCacheL1 = AuMax<AuUInt32>(gCpuInfo.dwCacheL1, sysinfo[i].Cache.Size);
break;
case 2:
gCpuInfo.dwCacheL2 = AuMax<AuUInt32>(gCpuInfo.dwCacheL2, sysinfo[i].Cache.Size);
break;
case 3:
gCpuInfo.dwCacheL3 = AuMax<AuUInt32>(gCpuInfo.dwCacheL3, sysinfo[i].Cache.Size);
break;
}
}
}
return true;
}
static bool SetWindowsXPSp3ExtendedInformation()
{
SYSTEM_LOGICAL_PROCESSOR_INFORMATION sysinfo[128];
DWORD dwLength = AuArraySize(sysinfo) * sizeof(*sysinfo);
if (!pGetLogicalProcessorInformation)
{
return false;
}
if (!pGetLogicalProcessorInformation(sysinfo, &dwLength))
{
return false;
}
dwLength /= sizeof(*sysinfo);
gCpuInfo.uSocket = 0;
gCpuInfo.uCores = 0;
gCpuInfo.uThreads = 0;
bool sparse = false;
bool hasHTCores = false;
for (auto i = 0u; i < dwLength; i++)
{
if (sysinfo[i].Relationship == RelationProcessorCore)
{
auto mask = sysinfo[i].ProcessorMask;
gCpuInfo.uCores++;
gCpuInfo.threadTopology.push_back(mask);
CpuBitId serverId;
serverId.lower = mask;
gCpuInfo.coreTopology.push_back(serverId);
gCpuInfo.maskAllCores.Add(serverId);
auto uThreadsInCore = AuPopCnt(mask);
gCpuInfo.uThreads += uThreadsInCore;
hasHTCores |= (uThreadsInCore == 2);
if (hasHTCores && (uThreadsInCore == 1))
{
AuUInt8 idx {};
while (serverId.CpuBitScanForward(idx, idx))
{
gCpuInfo.maskECores.Add(idx);
idx++;
}
}
else
{
AuUInt8 idx {};
while (serverId.CpuBitScanForward(idx, idx))
{
gCpuInfo.maskPCores.Add(idx);
idx++;
}
gCpuInfo.pCoreTopology.push_back(serverId);
}
}
else if (sysinfo[i].Relationship == RelationProcessorPackage)
{
gCpuInfo.uSocket++;
}
else if (sysinfo[i].Relationship == RelationCache)
{
switch (sysinfo[i].Cache.Level)
{
case 1:
gCpuInfo.dwCacheLine = AuMax<AuUInt32>(gCpuInfo.dwCacheLine, sysinfo[i].Cache.LineSize);
gCpuInfo.dwCacheL1 = AuMax<AuUInt32>(gCpuInfo.dwCacheL1, sysinfo[i].Cache.Size);
break;
case 2:
gCpuInfo.dwCacheL2 = AuMax<AuUInt32>(gCpuInfo.dwCacheL2, sysinfo[i].Cache.Size);
break;
case 3:
gCpuInfo.dwCacheL3 = AuMax<AuUInt32>(gCpuInfo.dwCacheL3, sysinfo[i].Cache.Size);
break;
}
}
}
gCpuInfo.bMaskMTContig = !sparse;
gCpuInfo.bMaskMTHalf = sparse;
return true;
}
static void SetBasicWindowsXPInformation()
{
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
gCpuInfo.uSocket = 1;
gCpuInfo.uCores = 1;
gCpuInfo.uThreads = sysinfo.dwNumberOfProcessors;
if (sysinfo.dwNumberOfProcessors & 1)
{
for (AU_ITERATE_N(i, gCpuInfo.uThreads))
{
auto mask = 1 << i;
gCpuInfo.maskPCores.SetBit(i);
gCpuInfo.threadTopology.push_back(mask);
CpuBitId coreId;
coreId.lower = mask;
gCpuInfo.coreTopology.push_back(coreId);
gCpuInfo.pCoreTopology.push_back(coreId);
gCpuInfo.maskAllCores.Add(coreId);
}
gCpuInfo.uCores = gCpuInfo.uThreads;
}
else
{
for (AU_ITERATE_N(i, gCpuInfo.uThreads))
{
if (i & 1)
{
continue;
}
gCpuInfo.maskPCores.SetBit(i);
gCpuInfo.maskPCores.SetBit(i + 1);
auto maskA = 1u << i;
auto maskB = 1u << (i + 1);
auto maskC = maskA | maskB;
gCpuInfo.threadTopology.push_back(maskA);
gCpuInfo.threadTopology.push_back(maskB);
CpuBitId coreId;
coreId.lower = maskC;
gCpuInfo.coreTopology.push_back(coreId);
gCpuInfo.pCoreTopology.push_back(coreId);
gCpuInfo.maskAllCores.Add(coreId);
}
gCpuInfo.uCores = gCpuInfo.uThreads / 2;
gCpuInfo.bMaskMTHalf = true;
}
}
void SetCpuTopologyNT()
{
if (SetWindows10CpuSetInfoSlow())
{
return;
}
if (SetWindowsXPSp3ExtendedInformation())
{
return;
}
SetBasicWindowsXPInformation();
}
}