AuroraRuntime/Include/Aurora/Memory/ByteBuffer.hpp
Reece 99c5e1fa65 A pretty large patch not worth breaking up into separate commits
[*] Split up Aurora Async
[*] Split Async app into seperate ThreadPool concept
[*] Fix various OSThread bugs and tls transfer issues
[*] Set default affinity to 0xFFFFFFFF
[*] Update Build script
[+] Add AuTuplePopFront
[+] New Network Interface (unimplemented)
[*] Stub out the interfaces required for a better logger
[*] Fix Win32 ShellExecute bug; windows 11 struggles without explicit com init per the docs - now deferring to thread pool
[*] Update gitignore
[*] Follow XDG home standard
[*] Refactor some namespaces to use the shorthand aliases
[*] Various stability fixes
2021-11-05 17:34:23 +00:00

597 lines
19 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: ByteBuffer.hpp
Date: 2021-8-5
Author: Reece
***/
#pragma once
namespace Aurora::Memory
{
static const auto kBufferPageSize = 512;
/***
* A bytebuffer object represents a linear, partially-linear resizable, buffer **or** a ring buffer.
*
* Use cases for a ring buffer include wrapping streams for a use case in which the consumer may
* expect arbitrary stream seeks of an otherwise limited consume-once stream
*
* IE;
* -> peaking a header in a datagram, or tcp stream; where instead of freeing the datagram or double
* buffering the network stack when required, a ring buffer is used to prevent reallocation on each frame
* -> peaking, or seeking back after, compression read. A compression api could be fed on-Sdemand or ad hoc,
* writing to its write head pointer, while never running out of space so long as the decompressed ring
* read head continues moving
*
* Small, linear, write/read-once [de]serialization use cases may elect to allocate a buffer and
* follow the linear fast paths; perhaps even enabling flagExpandable for hopefully-smarter-than-stdvec-scaling
*
* Ring buffers scale from the write head, to the read head, potentially going-around in the process
*
* Linear flagExpandable buffers scale from [0, length]; reallocating at end of buffer if flagExpandable is enabled
* if expanding is enabled,
* realloc(max(size + offset, (offset / kBufferPageSize + 1) * kBufferPageSize))
*
* Deprecates INetworkStream, fixes allocation issues around compression backends
* Superseeds abuse of AuList<AuUInt8> for binary blobs, alongside Memory::Array
*/
struct ByteBuffer
{
///////////////////////////////////////////////////////////////////////
// Stable ByteBuffer ABI Header; length and read/write head pointers //
///////////////////////////////////////////////////////////////////////
/// Internal capacity to mitigate trivial reallocs
AuUInt allocSize;
/// Abstract size
AuUInt length;
/// Buffer pointer
AuUInt8 *base;
/// Stream pointer
AuUInt8 *readPtr;
/// Stream pointer
AuUInt8 *writePtr;
///////////////////////////////////////////////////////////////////////
// Stable ByteBuffer ABI Header; u32 flags //
///////////////////////////////////////////////////////////////////////
/// Is ring buffer?
AuUInt32 flagCircular : 1;
/// Should resize linear buffer to accommodate additional writes
AuUInt32 flagExpandable : 1;
AuUInt32 flagReadError : 1;
AuUInt32 flagWriteError : 1;
///////////////////////////////////////////////////////////////////////
ByteBuffer(const ByteBuffer &buffer, bool preservePointers = true)
{
this->base = ZAlloc<AuUInt8 *>(buffer.length);
this->length = buffer.length;
this->allocSize = buffer.length;
if (preservePointers)
{
this->writePtr = this->base + (buffer.writePtr - buffer.base);
this->readPtr = this->base + (buffer.readPtr - buffer.base);
}
else
{
this->writePtr = this->base;
this->readPtr = this->base;
}
std::memcpy(this->base, buffer.base, this->length);
this->flagCircular = buffer.flagCircular;
this->flagExpandable = buffer.flagExpandable;
}
ByteBuffer(const void *in, AuUInt length, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = ZAlloc<AuUInt8 *>(length);
this->length = length;
this->allocSize = length;
this->readPtr = this->base;
this->writePtr = this->readPtr + this->length;
std::memcpy(this->base, in, this->length);
}
ByteBuffer(const AuList<AuUInt8> &vector, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = ZAlloc<AuUInt8 *>(length);
this->length = vector.size();
this->allocSize = vector.size();
this->readPtr = this->base;
this->writePtr = this->readPtr + this->length;
std::memcpy(this->base, vector.data(), this->length);
}
ByteBuffer(AuUInt length, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = ZAlloc<AuUInt8 *>(length);
this->length = length;
this->allocSize = length;
this->readPtr = this->base;
this->writePtr = this->base;
}
ByteBuffer() : flagCircular(0), flagExpandable(0), flagReadError(0), flagWriteError(0)
{
this->base = {};
this->length = {};
this->allocSize = {};
this->readPtr = {};
this->writePtr = {};
}
~ByteBuffer()
{
if (this->base)
{
Free(this->base);
}
}
inline void ResetPositions()
{
this->flagReadError = 0;
this->flagWriteError = 0;
this->readPtr = base;
this->writePtr = base;
}
// Iterator
AUKN_SYM AuUInt8 *begin();
AUKN_SYM AuUInt8 *end();
// To alternative types
AUKN_SYM AuList<AuUInt8> ToVector();
// Seek
AUKN_SYM bool ReaderTryGoForward(AuUInt32 offset);
AUKN_SYM bool ReaderTryGoBack(AuUInt32 offset);
AUKN_SYM bool WriterTryGoForward(AuUInt32 offset);
AUKN_SYM AuOptional<AuUInt8 *> WriterTryGetWriteHeadFor(AuUInt32 nBytes);
// Template implementation
// TODO: move to .inl
template<typename T>
inline bool Read(T &out)
{
if constexpr (std::is_class_v<T>)
{
if constexpr (AuIsBaseOfTemplate<AURORA_RUNTIME_AU_LIST, std::remove_reference_t<T>>::value)
{
if (Read<AuUInt32>() != sizeof(typename T::value_type))
{
this->flagReadError = true;
return false;
}
auto len = Read<AuUInt32>();
out.resize(len);
for (auto i = 0u; i < len; i++)
{
Read<T::value_type>(out[i]);
}
return !this->flagReadError;
}
else if constexpr (std::is_same_v<std::remove_reference_t<T>, AuString>)
{
out.resize(Read<AuUInt32>());
Read(out.data(), out.size());
return !this->flagReadError;
}
}
auto skipped = Read(&out, sizeof(T));
if (skipped != sizeof(T))
{
this->flagReadError = true;
return false;
}
return true;
}
template<typename T>
inline T Read()
{
T a{};
Read(a);
return a;
}
template<typename T>
inline bool Write(const T &in)
{
if constexpr (std::is_class_v<T>)
{
if constexpr (AuIsBaseOfTemplate<AURORA_RUNTIME_AU_LIST, std::remove_reference_t<T>>::value)
{
Write<AuUInt32>(sizeof(typename T::value_type));
Write<AuUInt32>(AuUInt32(in.size()));
for (const auto &item : in)
{
Write<T::value_type>(item);
}
return !this->flagWriteError;
}
else if constexpr (std::is_same_v<std::remove_reference_t<T>, AuString>)
{
Write<AuUInt32>(AuUInt32(in.size()));
Write(in.data(), in.size());
return !this->flagWriteError;
}
}
auto skipped = Write(&in, sizeof(T));
if (skipped != sizeof(T))
{
this->flagWriteError = true;
return false;
}
return true;
}
inline bool Resize(AuUInt length)
{
AuUInt oldWriteIdx, oldReadIdx, oldLength, newLength;
AuUInt8 *nextRead, *nextWrite, *nextPtr;
if (this->allocSize > length)
{
this->length = length;
oldLength = this->length;
newLength = length;
nextPtr = this->base;
oldWriteIdx = this->writePtr - this->base;
oldReadIdx = this->readPtr - this->base;
nextRead = nextPtr + oldReadIdx;
nextWrite = nextPtr + oldWriteIdx;
}
else
{
oldLength = this->length;
newLength = std::max(AuUInt(length), AuUInt(((this->allocSize / kBufferPageSize) + 1) * kBufferPageSize));
nextPtr = ZRealloc(this->base, newLength);
if (!nextPtr)
{
return false;
}
oldWriteIdx = this->writePtr - this->base;
oldReadIdx = this->readPtr - this->base;
nextRead = nextPtr + oldReadIdx;
nextWrite = nextPtr + oldWriteIdx;
this->allocSize = newLength;
this->length = length;
}
this->base = nextPtr;
if (!flagCircular)
{
this->readPtr = nextRead;
this->writePtr = nextWrite;
}
else
{
if (this->writePtr > this->readPtr)
{
this->readPtr = nextRead;
this->writePtr = nextWrite;
}
else
{
auto expansion = newLength - oldLength;
auto movableTail = std::min(oldWriteIdx, expansion);
std::memcpy(nextPtr + oldLength, nextPtr, movableTail);
this->readPtr = nextRead;
this->writePtr = nextPtr + oldLength + movableTail;
}
}
return true;
}
inline AuUInt Write(const void *buffer, AuUInt requestLength)
{
AuUInt linearOverhead = 0, toReadOverhead = 0, linearWritable = 0, toReadWritable = 0, writable = 0;
auto cptr = reinterpret_cast<const AuUInt8 *>(buffer);
if (flagCircular)
{
// 0 1 2 3 4 5
// W R
// 6 - (1) = 5 -> read bound; we have zero overhead not 5
if (writePtr < readPtr)
{
// Handle read-bound writes
linearOverhead = readPtr - writePtr;
toReadOverhead = 0;
}
else
{
// Handle ordinary stream consume bound IO
linearOverhead = length - (writePtr - base);
toReadOverhead = readPtr - base;
}
writable = std::min(linearOverhead + toReadOverhead, requestLength);
linearWritable = std::min(linearOverhead, requestLength);
toReadWritable = writable - linearWritable;
if (cptr)
{
std::memcpy(writePtr, cptr, linearWritable);
}
writePtr += linearWritable;
if (toReadWritable)
{
writePtr = base;
if (cptr)
{
std::memcpy(writePtr, cptr + linearOverhead, toReadWritable);
}
writePtr += toReadWritable;
}
#if 0
if (writePtr == base + length)
{
writePtr = base;
}
#endif
return linearWritable + toReadWritable;
}
else
{
auto offset = writePtr - base;
auto overhead = length - offset;
AuUInt len = std::min(overhead, requestLength);
if ((len != requestLength) && (flagExpandable))
{
if (!Resize(offset + requestLength))
{
return 0;
}
overhead = length - offset;
len = std::min(overhead, requestLength);
}
if (buffer)
{
std::memcpy(writePtr, buffer, len);
}
writePtr += len;
return len;
}
}
inline AuUInt RemainingBytes(bool endAtWrite = true)
{
if (flagCircular)
{
if ((readPtr < writePtr) && (endAtWrite))
{
return length - (writePtr - readPtr);
}
else
{
auto linearOverhead = length - (readPtr - base);
auto toWriteOverhead = writePtr - base;
return linearOverhead + toWriteOverhead;
}
}
else
{
if (endAtWrite)
{
if (writePtr < readPtr)
{
return 0;
}
else
{
return writePtr - readPtr;
}
}
else
{
return (length - (readPtr - base));
}
}
}
inline AuUInt RemainingWrite(bool endAtRead = true)
{
if (flagCircular)
{
if ((writePtr < readPtr) && (endAtRead))
{
return length - (readPtr - writePtr);
}
else
{
auto linearOverhead = length - (writePtr - base);
auto toWriteOverhead = readPtr - base;
return linearOverhead + toWriteOverhead;
}
}
else
{
return length - (writePtr - base);
}
}
inline AuList<AuUInt8> RemainingBytesToVector(bool endAtWrite = true)
{
AuList<AuUInt8> vec;
if (flagCircular)
{
if ((readPtr < writePtr) && (endAtWrite))
{
auto len = length - (writePtr - readPtr);
vec.resize(len);
std::memcpy(vec.data(), readPtr, len);
}
else
{
auto linearOverhead = length - (readPtr - base);
auto toWriteOverhead = endAtWrite ? (writePtr - base) : (readPtr - base);
vec.resize(linearOverhead + toWriteOverhead);
std::memcpy(vec.data(), readPtr, linearOverhead);
std::memcpy(vec.data() + linearOverhead, base, linearOverhead);
}
}
else
{
AuUInt len;
if (endAtWrite)
{
len = writePtr - readPtr;
}
else
{
len = length - (readPtr - base);
}
vec.resize(len);
std::memcpy(vec.data(), readPtr, len);
}
return vec;
}
inline bool Skip(AuUInt count)
{
auto oldptr = readPtr;
auto skipped = Read(nullptr, count);
if (skipped != count)
{
readPtr = oldptr;
return false;
}
return true;
}
inline AuUInt GetReadOffset()
{
if (flagCircular)
{
return 0;
}
else
{
return readPtr - base;
}
}
inline AuUInt GetWriteOffset()
{
if (flagCircular)
{
return 0;
}
else
{
return writePtr - base;
}
}
inline AuUInt Read(void *out, AuUInt requestedLength, bool peak = false)
{
AuUInt linearOverhead = 0, toWriteOverhead = 0, linearReadable = 0, toWriteReadable = 0;
if (flagCircular)
{
if (readPtr < writePtr)
{
linearOverhead = writePtr - readPtr;
toWriteOverhead = 0;
}
else
{
linearOverhead = length - (readPtr - base);
toWriteOverhead = writePtr - base;
}
auto readable = std::min(linearOverhead + toWriteOverhead, requestedLength);
linearReadable = std::min(linearOverhead, requestedLength);
toWriteReadable = readable - linearReadable;
if (out)
{
std::memcpy(out, readPtr, linearOverhead);
}
if (!peak)
{
readPtr += linearOverhead;
}
if (toWriteOverhead)
{
std::memcpy(reinterpret_cast<AuUInt8 *>(out) + linearOverhead, base, toWriteReadable);
if (!peak)
{
readPtr = base + toWriteReadable;
}
}
#if 0
if (readPtr == base + length)
{
readPtr = base;
}
#endif
return linearReadable + toWriteReadable;
}
else
{
AuUInt len = std::min(AuUInt(writePtr - readPtr), requestedLength);
if (out)
{
std::memcpy(out, readPtr, len);
}
if (!peak)
{
readPtr += len;
}
return len;
}
}
};
}