AuroraRuntime/Include/Aurora/Memory/ByteBuffer.hpp

233 lines
9.2 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: ByteBuffer.hpp
Date: 2021-8-5
Author: Reece
***/
#pragma once
namespace Aurora::Memory
{
static const auto kBufferPageSize = 512;
//static const auto kBufferBasePower = 8;
static const auto kBufferInitialPower = 9;// -kBufferBasePower; // 4-bit integer
/***
* A bytebuffer object represents a linear, partially-linear resizable, buffer **or** a ring buffer.
*
* Use cases for a ring buffer include wrapping streams for a use case in which the consumer may
* expect arbitrary stream seeks of an otherwise limited consume-once stream
*
* IE;
* -> Peeking a header in a datagram, or tcp stream; where instead of freeing the datagram or double
* buffering the network stack when required, a ring buffer is used to prevent reallocation on each frame
* -> Peeking, or seeking back after, compression read. A compression api could be fed on-Sdemand or ad hoc,
* writing to its write head pointer, while never running out of space so long as the decompressed ring
* read head continues moving
*
* Small, linear, write/read-once [de]serialization use cases may elect to allocate a buffer and
* follow the linear fast paths; perhaps even enabling flagExpandable for hopefully-smarter-than-stdvec-scaling
*
* Ring buffers scale from the write head, to the read head, potentially going-around in the process
*
* Linear flagExpandable buffers scale from [0, length]; reallocating at end of buffer if flagExpandable is enabled
* if expanding is enabled,
* realloc(max(size + offset, (offset / kBufferPageSize + 1) * kBufferPageSize))
*
* Deprecates INetworkStream, fixes allocation issues around compression backends
* Superseeds abuse of AuList<AuUInt8> for binary blobs, alongside Memory::Array
*/
struct ByteBuffer
{
///////////////////////////////////////////////////////////////////////
// Stable ByteBuffer ABI Header; length and read/write head pointers //
///////////////////////////////////////////////////////////////////////
/// Internal capacity to mitigate trivial reallocs
AuUInt allocSize;
/// Abstract size
AuUInt length;
/// Buffer pointer
AuUInt8 *base;
/// Stream pointer
AuUInt8 *readPtr;
/// Stream pointer
AuUInt8 *writePtr;
///////////////////////////////////////////////////////////////////////
// Stable ByteBuffer ABI Header; u32 flags //
///////////////////////////////////////////////////////////////////////
/// Is ring buffer?
AuUInt8 flagCircular : 1;
/// Should resize linear buffer to accommodate additional writes
AuUInt8 flagExpandable : 1;
AuUInt8 flagReadError : 1;
AuUInt8 flagWriteError : 1;
// - implicit padding
AuUInt8 scaleSize;// : 4; screw it.... we should just take 6 * (4/8) up to 32/64, we wont go up a slab allocation bucket, whatever you want to call it
///////////////////////////////////////////////////////////////////////
ByteBuffer(ByteBuffer &&buffer)
{
this->base = buffer.base;
this->length = buffer.length;
this->allocSize = buffer.length;
this->writePtr = this->base + (buffer.writePtr - buffer.base);
this->readPtr = this->base + (buffer.readPtr - buffer.base);
this->flagCircular = buffer.flagCircular;
this->flagExpandable = buffer.flagExpandable;
this->scaleSize = buffer.scaleSize;
buffer.base = {};
buffer.length = {};
buffer.allocSize = {};
buffer.writePtr = {};
buffer.readPtr = {};
buffer.flagCircular = {};
buffer.flagExpandable = {};
buffer.scaleSize = {};
}
ByteBuffer(const ByteBuffer &buffer, bool preservePointers = true)
{
this->base = FAlloc<AuUInt8 *>(buffer.length);
if (!this->base) AU_THROW_STRING("memory error");
this->length = buffer.length;
this->allocSize = buffer.length;
if (preservePointers)
{
this->writePtr = this->base + (buffer.writePtr - buffer.base);
this->readPtr = this->base + (buffer.readPtr - buffer.base);
}
else
{
this->writePtr = this->base;
this->readPtr = this->base;
}
AuMemcpy(this->base, buffer.base, this->length);
this->flagCircular = buffer.flagCircular;
this->flagExpandable = buffer.flagExpandable;
this->scaleSize = buffer.scaleSize;
}
ByteBuffer(const void *in, AuUInt length, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = FAlloc<AuUInt8 *>(length);
if (!this->base) AU_THROW_STRING("memory error");
this->length = length;
this->allocSize = length;
this->readPtr = this->base;
this->writePtr = this->readPtr + this->length;
AuMemcpy(this->base, in, this->length);
this->scaleSize = kBufferInitialPower;
}
ByteBuffer(const AuList<AuUInt8> &vector, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = FAlloc<AuUInt8 *>(vector.size());
if (!this->base) AU_THROW_STRING("memory error");
this->length = vector.size();
this->allocSize = vector.size();
this->readPtr = this->base;
this->writePtr = this->readPtr + this->length;
AuMemcpy(this->base, vector.data(), this->length);
this->scaleSize = kBufferInitialPower;
}
ByteBuffer(AuUInt length, bool circular = false, bool expandable = false) : flagCircular(circular), flagExpandable(expandable), flagReadError(0), flagWriteError(0)
{
this->base = ZAlloc<AuUInt8 *>(length);
if (!this->base) AU_THROW_STRING("memory error");
this->length = length;
this->allocSize = length;
this->readPtr = this->base;
this->writePtr = this->base;
this->scaleSize = kBufferInitialPower;
}
ByteBuffer() : flagCircular(0), flagExpandable(0), flagReadError(0), flagWriteError(0)
{
this->base = {};
this->length = {};
this->allocSize = {};
this->readPtr = {};
this->writePtr = {};
this->scaleSize = kBufferInitialPower;
}
~ByteBuffer()
{
if (this->base)
{
Free(this->base);
}
}
inline void ResetPositions()
{
this->flagReadError = 0;
this->flagWriteError = 0;
this->readPtr = base;
this->writePtr = base;
}
// Iterator
inline auline AuUInt8 * begin() const;
inline auline AuUInt8 * end() const;
// Utils To alternative types
inline auline AuList<AuUInt8> ToVector() const;
inline AuUInt32 GetAllocationPower() const;
inline operator AuList<AuUInt8>() const;
inline operator MemoryViewRead() const;
inline AuList<AuUInt8> RemainingBytesToVector(bool endAtWrite = true) const;
// Seek / Position
inline auline bool ReaderTryGoForward(AuUInt32 offset);
inline auline bool ReaderTryGoBack(AuUInt32 offset);
inline auline bool WriterTryGoForward(AuUInt32 offset);
inline auline AuUInt RemainingWrite(bool endAtRead = true);
inline auline AuUInt RemainingBytes(bool endAtWrite = true);
inline auline bool Skip(AuUInt count);
inline auline AuUInt GetReadOffset() const;
inline auline AuUInt GetWriteOffset() const;
inline AuOptional<AuUInt8 *> WriterTryGetWriteHeadFor(AuUInt32 nBytes);
// Memory operations
inline auline bool Allocate(AuUInt length, bool fast = true);
inline auline bool SetBuffer(const void *in, AuUInt length);
inline auline bool SetBuffer(const AuList<AuUInt8> &buffer);
inline auline void GC();
inline auline bool Resize(AuUInt length);
// Basic Read Write
inline auline AuUInt Write(const void *buffer, AuUInt requestLength);
inline auline AuUInt Read(void *out, AuUInt requestedLength, bool peek = false);
// Typed read/write
template<typename T>
T Read();
template<typename T>
bool Write(const T &in);
template<typename T>
bool Read(T &out);
};
}