AuroraRuntime/Source/RNG/AuRandomDevice.cpp

1154 lines
32 KiB
C++

/***
Copyright (C) 2021 J Reece Wilson (a/k/a "Reece"). All rights reserved.
File: AuRandomDevice.cpp
Date: 2021-9-3
Author: Reece
***/
#include <AuroraRuntime.hpp>
#include "AuRandomDevice.hpp"
namespace Aurora::RNG
{
static const double kDblEpsilon = 2.2204460492503131e-16;
RandomDevice::RandomDevice() :
IO::Adapters::RandomStreamReader(AuUnsafeRaiiToShared(this))
{
}
RandomDevice::RandomDevice(const RandomDef &def) :
IO::Adapters::RandomStreamReader(AuUnsafeRaiiToShared(this))
{
this->Init(def);
}
void RandomDevice::Init(const RandomDef &def)
{
this->def_ = def;
// Gross...
if (!def.bSecure)
{
if (def.seed)
{
this->fast_ = AuMove(WELL_SeedRand(def.seed.value()));
}
else if (def.seed64)
{
this->fast_ = AuMove(WELL_SeedRand64(def.seed64.value()));
}
else if (def.seedMassive)
{
this->fast_ = AuMove(WELL_SeedRandBig64(def.seedMassive.value()));
}
else
{
RNG::RngFillArray<false>(this->fast_.state);
}
}
// secure rng requires no init -> we just passthrough to the global ReadSecureRNG function
}
void RandomDevice::Read(Memory::MemoryViewWrite view)
{
if (!view)
{
SysPushErrorArg();
return;
}
if (this->def_.bSecure)
{
ReadSecureRNG(view);
}
else
{
WELL_NextBytes(&this->fast_, view.ptr, AuUInt32(view.length));
}
}
AuString RandomDevice::NextString(AuUInt32 uLength, ERngStringCharacters type)
{
AuString ret(uLength, '\00');
NextString(ret.data(), AuUInt32(ret.size()), type);
return ret;
}
static double RngConvertToDecimal(AuUInt64 uLargeInt)
{
AuUInt64 qwValue = (uLargeInt & 0xFFFFFFFFFFFFFull) | 0x3FF0000000000000ull;
return *(double *)(&qwValue) - 1.0;
}
void RandomDevice::NextString(char *pString, AuUInt32 uLength, ERngStringCharacters type)
{
static AuPair<const char *, int> rngSequence[static_cast<int>(ERngStringCharacters::eEnumCount)] =
{
{"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ", 52},
{"abcdefghijklmnopqrstuvwxyz", 26},
{"ABCDEFGHIJKLMNOPQRSTUVWXYZ", 26},
{"1234567890", 10},
{"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", 62},
{"abcdefghijklmnopqrstuvwxyz1234567890", 36},
{"ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", 36},
{"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890=-+!$%^*.[];:", 75}
};
if (!pString)
{
SysPushErrorArg();
return;
}
Read(AuMemoryViewWrite { pString, uLength });
if (!ERngStringCharactersIsValid(type))
{
SysPushErrorArg("NextString was called with an invalid ERngStringCharacters {}", (AuUInt)type);
type = ERngStringCharacters::eAlphaNumericCharacters; // guess we cant just return false
}
const auto &pair = rngSequence[static_cast<int>(type)];
for (auto i = 0u; i < uLength; i++)
{
auto uUpperBound = AuRoundUpPow2(pair.second);
AuUInt8 uNext {};
auto uWord = reinterpret_cast<const AuUInt8 *>(pString)[i];
while ((uNext = (uWord & (uUpperBound - 1))) >= pair.second)
{
uWord = AuFnv1a32Runtime(&uWord, sizeof(uWord));
}
pString[i] = pair.first[uNext];
}
}
AuUInt8 RandomDevice::NextByte()
{
if (this->def_.bSecure)
{
AuUInt8 uRet {};
ReadSecureRNG({ &uRet, 1 });
return uRet;
}
else
{
return AuUInt8(WELL_NextLong(&this->fast_) & 0xFF);
}
}
bool RandomDevice::NextBoolean()
{
if (this->def_.bSecure)
{
AuUInt8 uRet {};
ReadSecureRNG({ &uRet, 1 });
return bool(uRet & 0x1);
}
else
{
return bool(WELL_NextLong(&this->fast_) & 0x1);
}
}
AuUInt32 RandomDevice::NextU32()
{
if (this->def_.bSecure)
{
AuUInt32 uRet {};
ReadSecureRNG({ &uRet, 4 });
return uRet;
}
else
{
return WELL_NextLong(&this->fast_);
}
}
AuUInt64 RandomDevice::NextU64()
{
if (this->def_.bSecure)
{
AuUInt64 uRet {};
ReadSecureRNG({ &uRet, 8 });
return uRet;
}
else
{
return NextFillTmpl<AuUInt64>();
}
}
AuInt32 RandomDevice::NextI32Range(AuInt32 iMin, AuInt32 iMax)
{
auto uRange = AuUInt32(iMax - iMin);
auto uMassiveWord = NextU32();
auto uUpperBound = AuRoundUpPow2(uRange + 1);
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a32Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
return iMin + uNext;
}
AuUInt32 RandomDevice::NextU32Range(AuUInt32 uMin, AuUInt32 uMax)
{
auto uRange = uMax - uMin;
auto uMassiveWord = NextU32();
auto uUpperBound = AuRoundUpPow2(uRange + 1);
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a32Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
return uMin + uNext;
}
// Source: https://stackoverflow.com/a/5016867
bool RandomDevice::DecGeometric(int x)
{
if (x <= 0)
{
return true;
}
while (true)
{
auto r = this->NextByte();
if (x < 8)
{
return (r & ((1 << x) - 1)) == 0;
}
else if (r != 0)
{
return false;
}
x -= 8;
}
}
// Source: https://stackoverflow.com/a/5016867
double RandomDevice::UniformFloatInRange(double udMin, double udMax)
{
// No....
#if defined(AURNG_USE_GARBAGE_DECIMALS)
return (double(this->NextU32()) * (double(1.0) / double(AuNumericLimits<AuUInt32>::max()))) * udMax;
// No....
#elif defined(AURNG_USE_UNIFORM_DECIMALS)
union
{
double f;
AuUInt64 u;
} convert;
convert.f = udMin;
auto uABits = convert.u;
convert.f = udMax;
auto uBBits = convert.u;
auto uMask = uBBits - uABits;
uMask |= uMask >> 1;
uMask |= uMask >> 2;
uMask |= uMask >> 4;
uMask |= uMask >> 8;
uMask |= uMask >> 16;
uMask |= uMask >> 32;
int bExp {};
frexp(udMax, &bExp);
while (true)
{
int iXExp {};
double x;
auto uXBits = this->NextU64();
uXBits &= uMask;
uXBits += uABits;
if (uXBits >= uBBits)
{
continue;
}
convert.u = uXBits;
x = convert.f;
frexp(x, &iXExp);
if (DecGeometric(bExp - iXExp))
{
return x;
}
}
// Yes...
#else
#if !defined(AURNG_USE_FAST_DECIMALS)
#define AURNG_USE_FAST_DECIMALS
return 0.0;
#endif
#endif
}
AuList<AuInt32> RandomDevice::NextArrayI32Range(AuUInt32 uCount, AuInt32 iMin, AuInt32 iMax)
{
AuList<AuInt32> ret;
AuList<AuUInt32> rngBytes;
rngBytes.resize(uCount);
ret.resize(uCount);
this->Read(rngBytes);
auto uRange = AuUInt32(iMax - iMin);
auto uUpperBound = AuRoundUpPow2(uRange + 1);
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uMassiveWord = rngBytes[uIndex];
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a32Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
ret[uIndex] = iMin + uNext;
}
return ret;
}
AuList<AuInt32> RandomDevice::NextArrayI32RangeFast(AuUInt32 uCount, AuInt32 iMin, AuInt32 iMax)
{
AuList<AuInt32> ret;
ret.resize(uCount);
auto uRange = AuUInt32(iMax - iMin);
auto uUpperBound = AuRoundUpPow2(uRange + 1);
auto uSeed = this->NextU32();
for (AU_ITERATE_N(uIndex, uCount))
{
AuUInt32 uNext {};
uSeed = AuFnv1a32Runtime<sizeof(uSeed)>(&uSeed);
while ((uNext = (uSeed & (uUpperBound - 1))) > uRange)
{
uSeed = AuFnv1a32Runtime<sizeof(uSeed)>(&uSeed);
}
ret[uIndex] = iMin + uNext;
}
return ret;
}
AuList<AuUInt32> RandomDevice::NextArrayU32Range(AuUInt32 uCount, AuUInt32 uMin, AuUInt32 uMax)
{
AuList<AuUInt32> ret;
AuList<AuUInt32> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
auto uRange = uMax - uMin;
auto uUpperBound = AuRoundUpPow2(uRange + 1);
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uMassiveWord = rngBytes[uIndex];
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a32Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
ret[uIndex] = uMin + uNext;
}
return ret;
}
AuList<AuUInt32> RandomDevice::NextArrayU32RangeFast(AuUInt32 uCount, AuUInt32 uMin, AuUInt32 uMax)
{
AuList<AuUInt32> ret;
ret.resize(uCount);
auto uRange = uMax - uMin;
auto uUpperBound = AuRoundUpPow2(uRange + 1);
auto uSeed = this->NextU32();
for (AU_ITERATE_N(uIndex, uCount))
{
AuUInt32 uNext {};
uSeed = AuFnv1a32Runtime<sizeof(uSeed)>(&uSeed);
while ((uNext = (uSeed & (uUpperBound - 1))) > uRange)
{
uSeed = AuFnv1a32Runtime<sizeof(uSeed)>(&uSeed);
}
ret[uIndex] = uMin + uNext;
}
return ret;
}
AuList<double> RandomDevice::NextArrayDoubleRange(AuUInt32 uCount, double dMin, double dMax)
{
#if defined(AURNG_USE_FAST_DECIMALS)
AuList<double> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
double dRange = dMax - dMin;
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
double dValue = RngConvertToDecimal(rngBytes[uIndex]);
dValue *= dRange;
dValue += dMin;
ret[uIndex] = dValue;
}
return ret;
#else
AuList<double> ret;
ret.resize(uCount);
for (AU_ITERATE_N(uIndex, uCount))
{
ret[uIndex] = this->NextNumber(dMin, dMax);
}
return ret;
#endif
}
AuList<double> RandomDevice::NextArrayDoubleRangeFast(AuUInt32 uCount, double dMin, double dMax)
{
AuList<double> ret;
ret.resize(uCount);
AuUInt64 uSeed = this->NextU64();
double dRange = dMax - dMin;
for (AU_ITERATE_N(uIndex, uCount))
{
double dValue = RngConvertToDecimal(uSeed);
dValue *= dRange;
dValue += dMin;
ret[uIndex] = dValue;
uSeed = AuFnv1a64Runtime<8>(&uSeed);
}
return ret;
}
AuList<AuInt32> RandomDevice::NextArrayI32(AuUInt32 uCount)
{
AuList<AuInt32> ret;
ret.resize(uCount);
this->Read(ret);
return ret;
}
AuList<AuUInt32> RandomDevice::NextArrayU32(AuUInt32 uCount)
{
AuList<AuUInt32> ret;
ret.resize(uCount);
this->Read(ret);
return ret;
}
AuUInt64 RandomDevice::NextU64Range(AuUInt64 uMin, AuUInt64 uMax)
{
auto uRange = uMax - uMin;
auto uMassiveWord = NextU64();
auto uUpperBound = AuRoundUpPow2(uRange + 1);
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a64Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
return uMin + uNext;
}
AuInt64 RandomDevice::NextI64Range(AuInt64 iMin, AuInt64 iMax)
{
auto uRange = AuUInt64(iMax - iMin);
auto uMassiveWord = NextU64();
auto uUpperBound = AuRoundUpPow2(uRange + 1);
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a64Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
return iMin + uNext;
}
AuList<AuInt64> RandomDevice::NextArrayI64RangeFast(AuUInt32 uCount, AuInt64 iMin, AuInt64 iMax)
{
AuList<AuInt64> ret;
ret.resize(uCount);
auto uRange = AuUInt64(iMax - iMin);
auto uUpperBound = AuRoundUpPow2(uRange + 1);
auto uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
AuUInt64 uNext {};
uSeed = AuFnv1a64Runtime<sizeof(uSeed)>(&uSeed);
while ((uNext = (uSeed & (uUpperBound - 1))) > uRange)
{
uSeed = AuFnv1a64Runtime<sizeof(uSeed)>(&uSeed);
}
ret[uIndex] = iMin + uNext;
}
return ret;
}
AuList<AuUInt64> RandomDevice::NextArrayU64RangeFast(AuUInt32 uCount, AuUInt64 uMin, AuUInt64 uMax)
{
AuList<AuUInt64> ret;
ret.resize(uCount);
auto uRange = uMax - uMin;
auto uUpperBound = AuRoundUpPow2(uRange + 1);
auto uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
AuUInt64 uNext {};
uSeed = AuFnv1a64Runtime<sizeof(uSeed)>(&uSeed);
while ((uNext = (uSeed & (uUpperBound - 1))) > uRange)
{
uSeed = AuFnv1a64Runtime<sizeof(uSeed)>(&uSeed);
}
ret[uIndex] = uMin + uNext;
}
return ret;
}
AuVec2 RandomDevice::NextVec2(AuVec2 boundA, AuVec2 boundB)
{
AuVec2 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
return NextVec2Sorted(mins, maxs);
}
AuVec2 RandomDevice::NextVec2Sorted(AuVec2 min, AuVec2 max)
{
AuVec2 range;
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
auto uSeed = this->NextU64();
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
return AuVec2 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1]
};
}
AuVec3 RandomDevice::NextVec3(AuVec3 boundA, AuVec3 boundB)
{
AuVec3 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
return NextVec3Sorted(mins, maxs);
}
AuVec3 RandomDevice::NextVec3Sorted(AuVec3 min, AuVec3 max)
{
AuVec3 range;
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
auto uSeed = this->NextU64();
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
return AuVec3 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2]
};
}
AuVec4 RandomDevice::NextVec4(AuVec4 boundA, AuVec4 boundB)
{
AuVec4 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
mins[3] = AuMin(boundA[3], boundB[3]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
maxs[3] = AuMax(boundA[3], boundB[3]);
return NextVec4Sorted(mins, maxs);
}
AuVec4 RandomDevice::NextVec4Sorted(AuVec4 min, AuVec4 max)
{
AuVec4 range;
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
range[3] = max[3] - min[3];
auto uSeed = this->NextU64();
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentD = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
return AuVec4 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2],
(dComponentD * range[3]) + min[3]
};
}
AuList<AuInt64> RandomDevice::NextArrayI64Range(AuUInt32 uCount, AuInt64 iMin, AuInt64 iMax)
{
AuList<AuInt64> ret;
AuList<AuInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
auto uRange = AuUInt64(iMax - iMin);
auto uUpperBound = AuRoundUpPow2(uRange + 1);
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uMassiveWord = rngBytes[uIndex];
AuUInt64 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a64Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
ret[uIndex] = iMin + uRange;
}
return ret;
}
AuList<AuUInt64> RandomDevice::NextArrayU64Range(AuUInt32 uCount, AuUInt64 uMin, AuUInt64 uMax)
{
AuList<AuUInt64> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
auto uRange = uMax - uMin;
auto uUpperBound = AuRoundUpPow2(uRange + 1);
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uMassiveWord = rngBytes[uIndex];
AuUInt64 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) > uRange)
{
uMassiveWord = AuFnv1a64Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
ret[uIndex] = uMin + uNext;
}
return ret;
}
AuList<AuUInt32> RandomDevice::NextArrayU32Mask(AuUInt32 uCount, AuUInt32 uMask)
{
AuList<AuUInt32> ret;
ret.resize(uCount);
this->Read(ret);
for (auto &word : ret)
{
word &= uMask;
}
return ret;
}
AuList<AuUInt64> RandomDevice::NextArrayU64Mask(AuUInt32 uCount, AuUInt64 uMask)
{
AuList<AuUInt64> ret;
ret.resize(uCount);
this->Read(ret);
for (auto &word : ret)
{
word &= uMask;
}
return ret;
}
AuList<AuInt64> RandomDevice::NextArrayI64(AuUInt32 uCount)
{
AuList<AuInt64> ret;
ret.resize(uCount);
this->Read(ret);
return ret;
}
AuList<AuUInt64> RandomDevice::NextArrayU64(AuUInt32 uCount)
{
AuList<AuUInt64> ret;
ret.resize(uCount);
this->Read(ret);
return ret;
}
AuList<AuVec2> RandomDevice::NextArrayVec2(AuUInt32 uCount, AuVec2 boundA, AuVec2 boundB)
{
AuVec2 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
return NextArrayVec2Sorted(uCount, mins, maxs);
}
AuList<AuVec2> RandomDevice::NextArrayVec2Fast(AuUInt32 uCount, AuVec2 boundA, AuVec2 boundB)
{
AuVec2 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
return NextArrayVec2SortedFast(uCount, mins, maxs);
}
AuList<AuVec2> RandomDevice::NextArrayVec2Sorted(AuUInt32 uCount, AuVec2 min, AuVec2 max)
{
AuVec2 range;
AuList<AuVec2> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uSeed = rngBytes[uIndex];
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec2 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1]
};
}
return ret;
}
AuList<AuVec2> RandomDevice::NextArrayVec2SortedFast(AuUInt32 uCount, AuVec2 min, AuVec2 max)
{
AuVec2 range;
AuList<AuVec2> ret;
ret.resize(uCount);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
AuUInt64 uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
auto dComponentA = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec2 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1]
};
}
return ret;
}
AuList<AuVec3> RandomDevice::NextArrayVec3(AuUInt32 uCount, AuVec3 boundA, AuVec3 boundB)
{
AuVec3 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
return NextArrayVec3Sorted(uCount, mins, maxs);
}
AuList<AuVec3> RandomDevice::NextArrayVec3Fast(AuUInt32 uCount, AuVec3 boundA, AuVec3 boundB)
{
AuVec3 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
return NextArrayVec3SortedFast(uCount, mins, maxs);
}
AuList<AuVec3> RandomDevice::NextArrayVec3Sorted(AuUInt32 uCount, AuVec3 min, AuVec3 max)
{
AuVec3 range;
AuList<AuVec3> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uSeed = rngBytes[uIndex];
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec3 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2]
};
}
return ret;
}
AuList<AuVec3> RandomDevice::NextArrayVec3SortedFast(AuUInt32 uCount, AuVec3 min, AuVec3 max)
{
AuVec3 range;
AuList<AuVec3> ret;
ret.resize(uCount);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
AuUInt64 uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
auto dComponentA = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec3 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2]
};
}
return ret;
}
AuList<AuVec4> RandomDevice::NextArrayVec4(AuUInt32 uCount, AuVec4 boundA, AuVec4 boundB)
{
AuVec4 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
mins[3] = AuMin(boundA[3], boundB[3]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
maxs[3] = AuMax(boundA[3], boundB[3]);
return NextArrayVec4Sorted(uCount, mins, maxs);
}
AuList<AuVec4> RandomDevice::NextArrayVec4Fast(AuUInt32 uCount, AuVec4 boundA, AuVec4 boundB)
{
AuVec4 mins, maxs;
mins[0] = AuMin(boundA[0], boundB[0]);
mins[1] = AuMin(boundA[1], boundB[1]);
mins[2] = AuMin(boundA[2], boundB[2]);
mins[3] = AuMin(boundA[3], boundB[3]);
maxs[0] = AuMax(boundA[0], boundB[0]);
maxs[1] = AuMax(boundA[1], boundB[1]);
maxs[2] = AuMax(boundA[2], boundB[2]);
maxs[3] = AuMax(boundA[3], boundB[3]);
return NextArrayVec4SortedFast(uCount, mins, maxs);
}
AuList<AuVec4> RandomDevice::NextArrayVec4Sorted(AuUInt32 uCount, AuVec4 min, AuVec4 max)
{
AuVec4 range;
AuList<AuVec4> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
range[3] = max[3] - min[3];
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
auto uSeed = rngBytes[uIndex];
auto dComponentA = RngConvertToDecimal(uSeed);
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentD = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec4 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2],
(dComponentD * range[3]) + min[3]
};
}
return ret;
}
AuList<AuVec4> RandomDevice::NextArrayVec4SortedFast(AuUInt32 uCount, AuVec4 min, AuVec4 max)
{
AuVec4 range;
AuList<AuVec4> ret;
ret.resize(uCount);
range[0] = max[0] - min[0];
range[1] = max[1] - min[1];
range[2] = max[2] - min[2];
range[3] = max[3] - min[3];
AuUInt64 uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
auto dComponentA = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentB = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentC = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
auto dComponentD = RngConvertToDecimal(uSeed = (AuFnv1a64Runtime<8>(&uSeed)));
ret[uIndex] = AuVec4 {
(dComponentA * range[0]) + min[0],
(dComponentB * range[1]) + min[1],
(dComponentC * range[2]) + min[2],
(dComponentD * range[3]) + min[3]
};
}
return ret;
}
AuList<double> RandomDevice::NextArrayDouble(AuUInt32 uCount)
{
AuList<double> ret;
ret.resize(uCount);
this->Read(ret);
return ret;
}
AuList<double> RandomDevice::NextArrayDecimals(AuUInt32 uCount)
{
#if defined(AURNG_USE_FAST_DECIMALS)
AuList<double> ret;
AuList<AuUInt64> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount);
this->Read(rngBytes);
for (AU_ITERATE_N(uIndex, rngBytes.size()))
{
ret[uIndex] = RngConvertToDecimal(rngBytes[uIndex]);
}
return ret;
#else
AuList<double> ret;
ret.resize(uCount);
for (AU_ITERATE_N(uIndex, uCount))
{
ret[uIndex] = this->NextDecimal();
}
return ret;
#endif
}
AuList<double> RandomDevice::NextArrayDecimalsFast(AuUInt32 uCount)
{
AuList<double> ret;
ret.resize(uCount);
AuUInt64 uSeed = this->NextU64();
for (AU_ITERATE_N(uIndex, uCount))
{
ret[uIndex] = RngConvertToDecimal(uSeed);
uSeed = AuFnv1a64Runtime<8>(&uSeed);
}
return ret;
}
double RandomDevice::NextDecimal()
{
#if defined(AURNG_USE_FAST_DECIMALS)
return RngConvertToDecimal(this->NextU64());
#elif defined(AURNG_USE_UNIFORM_DECIMALS)
return this->UniformFloatInRange(kDblEpsilon, 1.0 + kDblEpsilon) - kDblEpsilon;
#elif defined(AURNG_USE_GARBAGE_DECIMALS)
return this->UniformFloatInRange(0, 1.0);
#else
return 0;
#endif
}
AuUInt32 RandomDevice::NextIndex(AuUInt32 uCount /* = max + 1*/)
{
auto uMassiveWord = NextU32();
auto uUpperBound = AuRoundUpPow2(uCount);
AuUInt32 uNext {};
while ((uNext = (uMassiveWord & (uUpperBound - 1))) >= uCount)
{
uMassiveWord = AuFnv1a32Runtime<sizeof(uMassiveWord)>(&uMassiveWord);
}
return uNext;
}
double RandomDevice::NextNumber(double dMin, double dMax)
{
auto dRange = dMax - dMin;
#if defined(AURNG_USE_FAST_DECIMALS)
return (this->NextDecimal() * dRange) + dMin;
#else
// potentially not deterministic, thanks to runtime/platform deviations
return this->UniformFloatInRange(kDblEpsilon, dRange + kDblEpsilon) + dMin - kDblEpsilon;
#endif
}
AuList<uuids::uuid> RandomDevice::NextArrayUUIDs(AuUInt32 uCount)
{
AuList<uuids::uuid> ret;
AuList<AuUInt8> rngBytes;
ret.resize(uCount);
rngBytes.resize(uCount * 16);
this->Read(rngBytes);
for (AU_ITERATE_N(uIndex, uCount))
{
auto pBytes = rngBytes.data() + (uIndex * 16);
pBytes[8] &= 0xBF;
pBytes[8] |= 0x80;
pBytes[6] &= 0x4F;
pBytes[6] |= 0x40;
ret[uIndex] = uuids::uuid { pBytes, pBytes + 16 };
}
return ret;
}
uuids::uuid RandomDevice::NextUUID()
{
AuUInt8 bytes[16];
this->Read(bytes);
bytes[8] &= 0xBF;
bytes[8] |= 0x80;
bytes[6] &= 0x4F;
bytes[6] |= 0x40;
return uuids::uuid { bytes, bytes + 16 };
}
AuMemoryViewRead RandomDevice::ToSeed()
{
if (this->def_.bSecure)
{
return {};
}
return this->fast_.state;
}
IO::IStreamReader *RandomDevice::ToStreamReader()
{
return this;
}
AUKN_SYM IRandomDevice *RandomNew(const Aurora::RNG::RandomDef &def)
{
auto pDevice = _new RandomDevice();
if (!pDevice)
{
return nullptr;
}
pDevice->Init(def);
return pDevice;
}
AUKN_SYM void RandomRelease(IRandomDevice *pDevice)
{
AuSafeDelete<RandomDevice *>(pDevice);
}
AUROXTL_INTERFACE_SOO_SRC(Random, RandomDevice, (const RandomDef &, def))
}