crossxtex/DirectXTex/BC.h

341 lines
12 KiB
C
Raw Normal View History

2016-08-22 18:26:36 +00:00
//-------------------------------------------------------------------------------------
// BC.h
//
// Block-compression (BC) functionality
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#pragma once
#include <assert.h>
#include <directxmath.h>
#include <directxpackedvector.h>
namespace DirectX
{
//-------------------------------------------------------------------------------------
// Macros
2016-08-22 18:26:36 +00:00
//-------------------------------------------------------------------------------------
// Because these are used in SAL annotations, they need to remain macros rather than const values
#define NUM_PIXELS_PER_BLOCK 16
//-------------------------------------------------------------------------------------
// Constants
//-------------------------------------------------------------------------------------
2016-08-22 18:26:36 +00:00
enum BC_FLAGS
{
BC_FLAGS_NONE = 0x0,
BC_FLAGS_DITHER_RGB = 0x10000, // Enables dithering for RGB colors for BC1-3
BC_FLAGS_DITHER_A = 0x20000, // Enables dithering for Alpha channel for BC1-3
BC_FLAGS_UNIFORM = 0x40000, // By default, uses perceptual weighting for BC1-3; this flag makes it a uniform weighting
BC_FLAGS_USE_3SUBSETS = 0x80000, // By default, BC7 skips mode 0 & 2; this flag adds those modes back
BC_FLAGS_FORCE_BC7_MODE6 = 0x100000, // BC7 should only use mode 6; skip other modes
2016-08-22 18:26:36 +00:00
};
//-------------------------------------------------------------------------------------
// Structures
//-------------------------------------------------------------------------------------
class LDRColorA;
2016-08-22 18:26:36 +00:00
class HDRColorA
{
public:
float r, g, b, a;
public:
HDRColorA() = default;
HDRColorA(float _r, float _g, float _b, float _a) : r(_r), g(_g), b(_b), a(_a) {}
HDRColorA(const HDRColorA& c) : r(c.r), g(c.g), b(c.b), a(c.a) {}
// binary operators
HDRColorA operator + ( const HDRColorA& c ) const
2016-08-22 18:26:36 +00:00
{
return HDRColorA(r + c.r, g + c.g, b + c.b, a + c.a);
}
HDRColorA operator - ( const HDRColorA& c ) const
2016-08-22 18:26:36 +00:00
{
return HDRColorA(r - c.r, g - c.g, b - c.b, a - c.a);
}
HDRColorA operator * ( float f ) const
2016-08-22 18:26:36 +00:00
{
return HDRColorA(r * f, g * f, b * f, a * f);
}
HDRColorA operator / ( float f ) const
2016-08-22 18:26:36 +00:00
{
float fInv = 1.0f / f;
return HDRColorA(r * fInv, g * fInv, b * fInv, a * fInv);
}
float operator * ( const HDRColorA& c ) const
2016-08-22 18:26:36 +00:00
{
return r * c.r + g * c.g + b * c.b + a * c.a;
}
// assignment operators
HDRColorA& operator += ( const HDRColorA& c )
2016-08-22 18:26:36 +00:00
{
r += c.r;
g += c.g;
b += c.b;
a += c.a;
return *this;
}
HDRColorA& operator -= ( const HDRColorA& c )
2016-08-22 18:26:36 +00:00
{
r -= c.r;
g -= c.g;
b -= c.b;
a -= c.a;
return *this;
}
HDRColorA& operator *= ( float f )
2016-08-22 18:26:36 +00:00
{
r *= f;
g *= f;
b *= f;
a *= f;
return *this;
}
HDRColorA& operator /= ( float f )
2016-08-22 18:26:36 +00:00
{
float fInv = 1.0f / f;
r *= fInv;
g *= fInv;
b *= fInv;
a *= fInv;
return *this;
}
HDRColorA& Clamp(_In_ float fMin, _In_ float fMax)
{
r = std::min<float>(fMax, std::max<float>(fMin, r));
g = std::min<float>(fMax, std::max<float>(fMin, g));
b = std::min<float>(fMax, std::max<float>(fMin, b));
a = std::min<float>(fMax, std::max<float>(fMin, a));
return *this;
}
HDRColorA(const LDRColorA& c);
HDRColorA& operator = (const LDRColorA& c);
LDRColorA ToLDRColorA() const;
2016-08-22 18:26:36 +00:00
};
inline HDRColorA* HDRColorALerp(_Out_ HDRColorA *pOut, _In_ const HDRColorA *pC1, _In_ const HDRColorA *pC2, _In_ float s)
{
pOut->r = pC1->r + s * (pC2->r - pC1->r);
pOut->g = pC1->g + s * (pC2->g - pC1->g);
pOut->b = pC1->b + s * (pC2->b - pC1->b);
pOut->a = pC1->a + s * (pC2->a - pC1->a);
return pOut;
}
#pragma pack(push,1)
// BC1/DXT1 compression (4 bits per texel)
struct D3DX_BC1
{
uint16_t rgb[2]; // 565 colors
uint32_t bitmap; // 2bpp rgb bitmap
};
// BC2/DXT2/3 compression (8 bits per texel)
struct D3DX_BC2
{
uint32_t bitmap[2]; // 4bpp alpha bitmap
D3DX_BC1 bc1; // BC1 rgb data
};
// BC3/DXT4/5 compression (8 bits per texel)
struct D3DX_BC3
{
uint8_t alpha[2]; // alpha values
uint8_t bitmap[6]; // 3bpp alpha bitmap
D3DX_BC1 bc1; // BC1 rgb data
};
#pragma pack(pop)
//-------------------------------------------------------------------------------------
// Templates
2016-08-22 18:26:36 +00:00
//-------------------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable : 4127)
template <bool bRange> void OptimizeAlpha(float *pX, float *pY, const float *pPoints, size_t cSteps)
{
static const float pC6[] = { 5.0f / 5.0f, 4.0f / 5.0f, 3.0f / 5.0f, 2.0f / 5.0f, 1.0f / 5.0f, 0.0f / 5.0f };
static const float pD6[] = { 0.0f / 5.0f, 1.0f / 5.0f, 2.0f / 5.0f, 3.0f / 5.0f, 4.0f / 5.0f, 5.0f / 5.0f };
static const float pC8[] = { 7.0f / 7.0f, 6.0f / 7.0f, 5.0f / 7.0f, 4.0f / 7.0f, 3.0f / 7.0f, 2.0f / 7.0f, 1.0f / 7.0f, 0.0f / 7.0f };
static const float pD8[] = { 0.0f / 7.0f, 1.0f / 7.0f, 2.0f / 7.0f, 3.0f / 7.0f, 4.0f / 7.0f, 5.0f / 7.0f, 6.0f / 7.0f, 7.0f / 7.0f };
2016-08-22 18:26:36 +00:00
const float *pC = (6 == cSteps) ? pC6 : pC8;
const float *pD = (6 == cSteps) ? pD6 : pD8;
float MAX_VALUE = 1.0f;
float MIN_VALUE;
if (bRange)
{
MIN_VALUE = -1.0f;
}
else
{
MIN_VALUE = 0.0f;
}
// Find Min and Max points, as starting point
float fX = MAX_VALUE;
float fY = MIN_VALUE;
if (8 == cSteps)
2016-08-22 18:26:36 +00:00
{
for (size_t iPoint = 0; iPoint < NUM_PIXELS_PER_BLOCK; iPoint++)
2016-08-22 18:26:36 +00:00
{
if (pPoints[iPoint] < fX)
2016-08-22 18:26:36 +00:00
fX = pPoints[iPoint];
if (pPoints[iPoint] > fY)
2016-08-22 18:26:36 +00:00
fY = pPoints[iPoint];
}
}
else
{
for (size_t iPoint = 0; iPoint < NUM_PIXELS_PER_BLOCK; iPoint++)
2016-08-22 18:26:36 +00:00
{
if (pPoints[iPoint] < fX && pPoints[iPoint] > MIN_VALUE)
2016-08-22 18:26:36 +00:00
fX = pPoints[iPoint];
if (pPoints[iPoint] > fY && pPoints[iPoint] < MAX_VALUE)
2016-08-22 18:26:36 +00:00
fY = pPoints[iPoint];
}
if (fX == fY)
{
fY = MAX_VALUE;
}
}
// Use Newton's Method to find local minima of sum-of-squares error.
float fSteps = (float)(cSteps - 1);
2016-08-22 18:26:36 +00:00
for (size_t iIteration = 0; iIteration < 8; iIteration++)
2016-08-22 18:26:36 +00:00
{
float fScale;
if ((fY - fX) < (1.0f / 256.0f))
2016-08-22 18:26:36 +00:00
break;
2016-08-22 18:26:36 +00:00
fScale = fSteps / (fY - fX);
// Calculate new steps
float pSteps[8];
for (size_t iStep = 0; iStep < cSteps; iStep++)
2016-08-22 18:26:36 +00:00
pSteps[iStep] = pC[iStep] * fX + pD[iStep] * fY;
if (6 == cSteps)
2016-08-22 18:26:36 +00:00
{
pSteps[6] = MIN_VALUE;
pSteps[7] = MAX_VALUE;
}
// Evaluate function, and derivatives
float dX = 0.0f;
float dY = 0.0f;
2016-08-22 18:26:36 +00:00
float d2X = 0.0f;
float d2Y = 0.0f;
for (size_t iPoint = 0; iPoint < NUM_PIXELS_PER_BLOCK; iPoint++)
2016-08-22 18:26:36 +00:00
{
float fDot = (pPoints[iPoint] - fX) * fScale;
size_t iStep;
if (fDot <= 0.0f)
2016-08-22 18:26:36 +00:00
iStep = ((6 == cSteps) && (pPoints[iPoint] <= fX * 0.5f)) ? 6 : 0;
else if (fDot >= fSteps)
2016-08-22 18:26:36 +00:00
iStep = ((6 == cSteps) && (pPoints[iPoint] >= (fY + 1.0f) * 0.5f)) ? 7 : (cSteps - 1);
else
iStep = static_cast<int32_t>(fDot + 0.5f);
if (iStep < cSteps)
2016-08-22 18:26:36 +00:00
{
// D3DX had this computation backwards (pPoints[iPoint] - pSteps[iStep])
// this fix improves RMS of the alpha component
float fDiff = pSteps[iStep] - pPoints[iPoint];
dX += pC[iStep] * fDiff;
2016-08-22 18:26:36 +00:00
d2X += pC[iStep] * pC[iStep];
dY += pD[iStep] * fDiff;
2016-08-22 18:26:36 +00:00
d2Y += pD[iStep] * pD[iStep];
}
}
// Move endpoints
if (d2X > 0.0f)
2016-08-22 18:26:36 +00:00
fX -= dX / d2X;
if (d2Y > 0.0f)
2016-08-22 18:26:36 +00:00
fY -= dY / d2Y;
if (fX > fY)
2016-08-22 18:26:36 +00:00
{
float f = fX; fX = fY; fY = f;
}
if ((dX * dX < (1.0f / 64.0f)) && (dY * dY < (1.0f / 64.0f)))
2016-08-22 18:26:36 +00:00
break;
}
*pX = (fX < MIN_VALUE) ? MIN_VALUE : (fX > MAX_VALUE) ? MAX_VALUE : fX;
*pY = (fY < MIN_VALUE) ? MIN_VALUE : (fY > MAX_VALUE) ? MAX_VALUE : fY;
}
#pragma warning(pop)
//-------------------------------------------------------------------------------------
// Functions
//-------------------------------------------------------------------------------------
typedef void (*BC_DECODE)(XMVECTOR *pColor, const uint8_t *pBC);
typedef void (*BC_ENCODE)(uint8_t *pDXT, const XMVECTOR *pColor, DWORD flags);
void D3DXDecodeBC1(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(8) const uint8_t *pBC);
void D3DXDecodeBC2(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC3(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC4U(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(8) const uint8_t *pBC);
void D3DXDecodeBC4S(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(8) const uint8_t *pBC);
void D3DXDecodeBC5U(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC5S(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC6HU(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC6HS(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
void D3DXDecodeBC7(_Out_writes_(NUM_PIXELS_PER_BLOCK) XMVECTOR *pColor, _In_reads_(16) const uint8_t *pBC);
2016-09-14 17:56:38 +00:00
void D3DXEncodeBC1(_Out_writes_(8) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ float threshold, _In_ DWORD flags);
2016-08-22 18:26:36 +00:00
// BC1 requires one additional parameter, so it doesn't match signature of BC_ENCODE above
void D3DXEncodeBC2(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC3(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC4U(_Out_writes_(8) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC4S(_Out_writes_(8) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC5U(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC5S(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC6HU(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC6HS(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
void D3DXEncodeBC7(_Out_writes_(16) uint8_t *pBC, _In_reads_(NUM_PIXELS_PER_BLOCK) const XMVECTOR *pColor, _In_ DWORD flags);
}; // namespace