crossxtex/DirectXTex/DirectXTexResize.cpp

1095 lines
35 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexResize.cpp
//
// DirectX Texture Library - Image resizing operations
//
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "DirectXTexp.h"
#include "filters.h"
using namespace DirectX;
using Microsoft::WRL::ComPtr;
namespace DirectX
{
extern HRESULT _ResizeSeparateColorAndAlpha(_In_ IWICImagingFactory* pWIC, _In_ bool iswic2, _In_ IWICBitmap* original,
_In_ size_t newWidth, _In_ size_t newHeight, _In_ DWORD filter, _Inout_ const Image* img);
}
namespace
{
//--- Do image resize using WIC ---
HRESULT PerformResizeUsingWIC(
const Image& srcImage,
DWORD filter,
const WICPixelFormatGUID& pfGUID,
const Image& destImage)
{
if (!srcImage.pixels || !destImage.pixels)
return E_POINTER;
assert(srcImage.format == destImage.format);
bool iswic2 = false;
IWICImagingFactory* pWIC = GetWICFactory(iswic2);
if (!pWIC)
return E_NOINTERFACE;
ComPtr<IWICComponentInfo> componentInfo;
HRESULT hr = pWIC->CreateComponentInfo(pfGUID, componentInfo.GetAddressOf());
if (FAILED(hr))
return hr;
ComPtr<IWICPixelFormatInfo2> pixelFormatInfo;
hr = componentInfo.As(&pixelFormatInfo);
if (FAILED(hr))
return hr;
BOOL supportsTransparency = FALSE;
hr = pixelFormatInfo->SupportsTransparency(&supportsTransparency);
if (FAILED(hr))
return hr;
if (srcImage.rowPitch > UINT32_MAX || srcImage.slicePitch > UINT32_MAX
|| destImage.rowPitch > UINT32_MAX || destImage.slicePitch > UINT32_MAX)
return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW);
ComPtr<IWICBitmap> source;
hr = pWIC->CreateBitmapFromMemory(static_cast<UINT>(srcImage.width), static_cast<UINT>(srcImage.height), pfGUID,
static_cast<UINT>(srcImage.rowPitch), static_cast<UINT>(srcImage.slicePitch),
srcImage.pixels, source.GetAddressOf());
if (FAILED(hr))
return hr;
if ((filter & TEX_FILTER_SEPARATE_ALPHA) && supportsTransparency)
{
hr = _ResizeSeparateColorAndAlpha(pWIC, iswic2, source.Get(), destImage.width, destImage.height, filter, &destImage);
if (FAILED(hr))
return hr;
}
else
{
ComPtr<IWICBitmapScaler> scaler;
hr = pWIC->CreateBitmapScaler(scaler.GetAddressOf());
if (FAILED(hr))
return hr;
hr = scaler->Initialize(source.Get(), static_cast<UINT>(destImage.width), static_cast<UINT>(destImage.height), _GetWICInterp(filter));
if (FAILED(hr))
return hr;
WICPixelFormatGUID pfScaler;
hr = scaler->GetPixelFormat(&pfScaler);
if (FAILED(hr))
return hr;
if (memcmp(&pfScaler, &pfGUID, sizeof(WICPixelFormatGUID)) == 0)
{
hr = scaler->CopyPixels(nullptr, static_cast<UINT>(destImage.rowPitch), static_cast<UINT>(destImage.slicePitch), destImage.pixels);
if (FAILED(hr))
return hr;
}
else
{
// The WIC bitmap scaler is free to return a different pixel format than the source image, so here we
// convert it back
ComPtr<IWICFormatConverter> FC;
hr = pWIC->CreateFormatConverter(FC.GetAddressOf());
if (FAILED(hr))
return hr;
BOOL canConvert = FALSE;
hr = FC->CanConvert(pfScaler, pfGUID, &canConvert);
if (FAILED(hr) || !canConvert)
{
return E_UNEXPECTED;
}
hr = FC->Initialize(scaler.Get(), pfGUID, _GetWICDither(filter), nullptr, 0, WICBitmapPaletteTypeMedianCut);
if (FAILED(hr))
return hr;
hr = FC->CopyPixels(nullptr, static_cast<UINT>(destImage.rowPitch), static_cast<UINT>(destImage.slicePitch), destImage.pixels);
if (FAILED(hr))
return hr;
}
}
return S_OK;
}
//--- Do conversion, resize using WIC, conversion cycle ---
HRESULT PerformResizeViaF32(
const Image& srcImage,
DWORD filter,
const Image& destImage)
{
if (!srcImage.pixels || !destImage.pixels)
return E_POINTER;
assert(srcImage.format != DXGI_FORMAT_R32G32B32A32_FLOAT);
assert(srcImage.format == destImage.format);
ScratchImage temp;
HRESULT hr = _ConvertToR32G32B32A32(srcImage, temp);
if (FAILED(hr))
return hr;
const Image *tsrc = temp.GetImage(0, 0, 0);
if (!tsrc)
return E_POINTER;
ScratchImage rtemp;
hr = rtemp.Initialize2D(DXGI_FORMAT_R32G32B32A32_FLOAT, destImage.width, destImage.height, 1, 1);
if (FAILED(hr))
return hr;
const Image *tdest = rtemp.GetImage(0, 0, 0);
if (!tdest)
return E_POINTER;
hr = PerformResizeUsingWIC(*tsrc, filter, GUID_WICPixelFormat128bppRGBAFloat, *tdest);
if (FAILED(hr))
return hr;
temp.Release();
hr = _ConvertFromR32G32B32A32(*tdest, destImage);
if (FAILED(hr))
return hr;
return S_OK;
}
//--- determine when to use WIC vs. non-WIC paths ---
bool UseWICFiltering(_In_ DXGI_FORMAT format, _In_ DWORD filter)
{
if (filter & TEX_FILTER_FORCE_NON_WIC)
{
// Explicit flag indicates use of non-WIC code paths
return false;
}
if (filter & TEX_FILTER_FORCE_WIC)
{
// Explicit flag to use WIC code paths, skips all the case checks below
return true;
}
if (IsSRGB(format) || (filter & TEX_FILTER_SRGB))
{
// Use non-WIC code paths for sRGB correct filtering
return false;
}
#if defined(_XBOX_ONE) && defined(_TITLE)
if (format == DXGI_FORMAT_R16G16B16A16_FLOAT
|| format == DXGI_FORMAT_R16_FLOAT)
{
// Use non-WIC code paths as these conversions are not supported by Xbox One XDK
return false;
}
#endif
static_assert(TEX_FILTER_POINT == 0x100000, "TEX_FILTER_ flag values don't match TEX_FILTER_MASK");
switch (filter & TEX_FILTER_MASK)
{
case TEX_FILTER_LINEAR:
if (filter & TEX_FILTER_WRAP)
{
// WIC only supports 'clamp' semantics (MIRROR is equivalent to clamp for linear)
return false;
}
if (BitsPerColor(format) > 8)
{
// Avoid the WIC bitmap scaler when doing Linear filtering of XR/HDR formats
return false;
}
break;
case TEX_FILTER_CUBIC:
if (filter & (TEX_FILTER_WRAP | TEX_FILTER_MIRROR))
{
// WIC only supports 'clamp' semantics
return false;
}
if (BitsPerColor(format) > 8)
{
// Avoid the WIC bitmap scaler when doing Cubic filtering of XR/HDR formats
return false;
}
break;
case TEX_FILTER_TRIANGLE:
// WIC does not implement this filter
return false;
}
return true;
}
//-------------------------------------------------------------------------------------
// Resize custom filters
//-------------------------------------------------------------------------------------
//--- Point Filter ---
HRESULT ResizePointFilter(const Image& srcImage, const Image& destImage)
{
assert(srcImage.pixels && destImage.pixels);
assert(srcImage.format == destImage.format);
// Allocate temporary space (2 scanlines)
ScopedAlignedArrayXMVECTOR scanline(static_cast<XMVECTOR*>(_aligned_malloc(
(sizeof(XMVECTOR) * (srcImage.width + destImage.width)), 16)));
if (!scanline)
return E_OUTOFMEMORY;
XMVECTOR* target = scanline.get();
XMVECTOR* row = target + destImage.width;
#ifdef _DEBUG
memset(row, 0xCD, sizeof(XMVECTOR)*srcImage.width);
#endif
const uint8_t* pSrc = srcImage.pixels;
uint8_t* pDest = destImage.pixels;
size_t rowPitch = srcImage.rowPitch;
size_t xinc = (srcImage.width << 16) / destImage.width;
size_t yinc = (srcImage.height << 16) / destImage.height;
size_t lasty = size_t(-1);
size_t sy = 0;
for (size_t y = 0; y < destImage.height; ++y)
{
if ((lasty ^ sy) >> 16)
{
if (!_LoadScanline(row, srcImage.width, pSrc + (rowPitch * (sy >> 16)), rowPitch, srcImage.format))
return E_FAIL;
lasty = sy;
}
size_t sx = 0;
for (size_t x = 0; x < destImage.width; ++x)
{
target[x] = row[sx >> 16];
sx += xinc;
}
if (!_StoreScanline(pDest, destImage.rowPitch, destImage.format, target, destImage.width))
return E_FAIL;
pDest += destImage.rowPitch;
sy += yinc;
}
return S_OK;
}
//--- Box Filter ---
HRESULT ResizeBoxFilter(const Image& srcImage, DWORD filter, const Image& destImage)
{
assert(srcImage.pixels && destImage.pixels);
assert(srcImage.format == destImage.format);
if (((destImage.width << 1) != srcImage.width) || ((destImage.height << 1) != srcImage.height))
return E_FAIL;
// Allocate temporary space (3 scanlines)
ScopedAlignedArrayXMVECTOR scanline(static_cast<XMVECTOR*>(_aligned_malloc(
(sizeof(XMVECTOR) * (srcImage.width * 2 + destImage.width)), 16)));
if (!scanline)
return E_OUTOFMEMORY;
XMVECTOR* target = scanline.get();
XMVECTOR* urow0 = target + destImage.width;
XMVECTOR* urow1 = urow0 + srcImage.width;
#ifdef _DEBUG
memset(urow0, 0xCD, sizeof(XMVECTOR)*srcImage.width);
memset(urow1, 0xDD, sizeof(XMVECTOR)*srcImage.width);
#endif
const XMVECTOR* urow2 = urow0 + 1;
const XMVECTOR* urow3 = urow1 + 1;
const uint8_t* pSrc = srcImage.pixels;
uint8_t* pDest = destImage.pixels;
size_t rowPitch = srcImage.rowPitch;
for (size_t y = 0; y < destImage.height; ++y)
{
if (!_LoadScanlineLinear(urow0, srcImage.width, pSrc, rowPitch, srcImage.format, filter))
return E_FAIL;
pSrc += rowPitch;
if (urow0 != urow1)
{
if (!_LoadScanlineLinear(urow1, srcImage.width, pSrc, rowPitch, srcImage.format, filter))
return E_FAIL;
pSrc += rowPitch;
}
for (size_t x = 0; x < destImage.width; ++x)
{
size_t x2 = x << 1;
AVERAGE4(target[x], urow0[x2], urow1[x2], urow2[x2], urow3[x2]);
}
if (!_StoreScanlineLinear(pDest, destImage.rowPitch, destImage.format, target, destImage.width, filter))
return E_FAIL;
pDest += destImage.rowPitch;
}
return S_OK;
}
//--- Linear Filter ---
HRESULT ResizeLinearFilter(const Image& srcImage, DWORD filter, const Image& destImage)
{
assert(srcImage.pixels && destImage.pixels);
assert(srcImage.format == destImage.format);
// Allocate temporary space (3 scanlines, plus X and Y filters)
ScopedAlignedArrayXMVECTOR scanline(static_cast<XMVECTOR*>(_aligned_malloc(
(sizeof(XMVECTOR) * (srcImage.width * 2 + destImage.width)), 16)));
if (!scanline)
return E_OUTOFMEMORY;
std::unique_ptr<LinearFilter[]> lf(new (std::nothrow) LinearFilter[destImage.width + destImage.height]);
if (!lf)
return E_OUTOFMEMORY;
LinearFilter* lfX = lf.get();
LinearFilter* lfY = lf.get() + destImage.width;
_CreateLinearFilter(srcImage.width, destImage.width, (filter & TEX_FILTER_WRAP_U) != 0, lfX);
_CreateLinearFilter(srcImage.height, destImage.height, (filter & TEX_FILTER_WRAP_V) != 0, lfY);
XMVECTOR* target = scanline.get();
XMVECTOR* row0 = target + destImage.width;
XMVECTOR* row1 = row0 + srcImage.width;
#ifdef _DEBUG
memset(row0, 0xCD, sizeof(XMVECTOR)*srcImage.width);
memset(row1, 0xDD, sizeof(XMVECTOR)*srcImage.width);
#endif
const uint8_t* pSrc = srcImage.pixels;
uint8_t* pDest = destImage.pixels;
size_t rowPitch = srcImage.rowPitch;
size_t u0 = size_t(-1);
size_t u1 = size_t(-1);
for (size_t y = 0; y < destImage.height; ++y)
{
auto& toY = lfY[y];
if (toY.u0 != u0)
{
if (toY.u0 != u1)
{
u0 = toY.u0;
if (!_LoadScanlineLinear(row0, srcImage.width, pSrc + (rowPitch * u0), rowPitch, srcImage.format, filter))
return E_FAIL;
}
else
{
u0 = u1;
u1 = size_t(-1);
std::swap(row0, row1);
}
}
if (toY.u1 != u1)
{
u1 = toY.u1;
if (!_LoadScanlineLinear(row1, srcImage.width, pSrc + (rowPitch * u1), rowPitch, srcImage.format, filter))
return E_FAIL;
}
for (size_t x = 0; x < destImage.width; ++x)
{
auto& toX = lfX[x];
BILINEAR_INTERPOLATE(target[x], toX, toY, row0, row1);
}
if (!_StoreScanlineLinear(pDest, destImage.rowPitch, destImage.format, target, destImage.width, filter))
return E_FAIL;
pDest += destImage.rowPitch;
}
return S_OK;
}
//--- Cubic Filter ---
HRESULT ResizeCubicFilter(const Image& srcImage, DWORD filter, const Image& destImage)
{
assert(srcImage.pixels && destImage.pixels);
assert(srcImage.format == destImage.format);
// Allocate temporary space (5 scanlines, plus X and Y filters)
ScopedAlignedArrayXMVECTOR scanline(static_cast<XMVECTOR*>(_aligned_malloc(
(sizeof(XMVECTOR) * (srcImage.width * 4 + destImage.width)), 16)));
if (!scanline)
return E_OUTOFMEMORY;
std::unique_ptr<CubicFilter[]> cf(new (std::nothrow) CubicFilter[destImage.width + destImage.height]);
if (!cf)
return E_OUTOFMEMORY;
CubicFilter* cfX = cf.get();
CubicFilter* cfY = cf.get() + destImage.width;
_CreateCubicFilter(srcImage.width, destImage.width, (filter & TEX_FILTER_WRAP_U) != 0, (filter & TEX_FILTER_MIRROR_U) != 0, cfX);
_CreateCubicFilter(srcImage.height, destImage.height, (filter & TEX_FILTER_WRAP_V) != 0, (filter & TEX_FILTER_MIRROR_V) != 0, cfY);
XMVECTOR* target = scanline.get();
XMVECTOR* row0 = target + destImage.width;
XMVECTOR* row1 = row0 + srcImage.width;
XMVECTOR* row2 = row0 + srcImage.width * 2;
XMVECTOR* row3 = row0 + srcImage.width * 3;
#ifdef _DEBUG
memset(row0, 0xCD, sizeof(XMVECTOR)*srcImage.width);
memset(row1, 0xDD, sizeof(XMVECTOR)*srcImage.width);
memset(row2, 0xED, sizeof(XMVECTOR)*srcImage.width);
memset(row3, 0xFD, sizeof(XMVECTOR)*srcImage.width);
#endif
const uint8_t* pSrc = srcImage.pixels;
uint8_t* pDest = destImage.pixels;
size_t rowPitch = srcImage.rowPitch;
size_t u0 = size_t(-1);
size_t u1 = size_t(-1);
size_t u2 = size_t(-1);
size_t u3 = size_t(-1);
for (size_t y = 0; y < destImage.height; ++y)
{
auto& toY = cfY[y];
// Scanline 1
if (toY.u0 != u0)
{
if (toY.u0 != u1 && toY.u0 != u2 && toY.u0 != u3)
{
u0 = toY.u0;
if (!_LoadScanlineLinear(row0, srcImage.width, pSrc + (rowPitch * u0), rowPitch, srcImage.format, filter))
return E_FAIL;
}
else if (toY.u0 == u1)
{
u0 = u1;
u1 = size_t(-1);
std::swap(row0, row1);
}
else if (toY.u0 == u2)
{
u0 = u2;
u2 = size_t(-1);
std::swap(row0, row2);
}
else if (toY.u0 == u3)
{
u0 = u3;
u3 = size_t(-1);
std::swap(row0, row3);
}
}
// Scanline 2
if (toY.u1 != u1)
{
if (toY.u1 != u2 && toY.u1 != u3)
{
u1 = toY.u1;
if (!_LoadScanlineLinear(row1, srcImage.width, pSrc + (rowPitch * u1), rowPitch, srcImage.format, filter))
return E_FAIL;
}
else if (toY.u1 == u2)
{
u1 = u2;
u2 = size_t(-1);
std::swap(row1, row2);
}
else if (toY.u1 == u3)
{
u1 = u3;
u3 = size_t(-1);
std::swap(row1, row3);
}
}
// Scanline 3
if (toY.u2 != u2)
{
if (toY.u2 != u3)
{
u2 = toY.u2;
if (!_LoadScanlineLinear(row2, srcImage.width, pSrc + (rowPitch * u2), rowPitch, srcImage.format, filter))
return E_FAIL;
}
else
{
u2 = u3;
u3 = size_t(-1);
std::swap(row2, row3);
}
}
// Scanline 4
if (toY.u3 != u3)
{
u3 = toY.u3;
if (!_LoadScanlineLinear(row3, srcImage.width, pSrc + (rowPitch * u3), rowPitch, srcImage.format, filter))
return E_FAIL;
}
for (size_t x = 0; x < destImage.width; ++x)
{
auto& toX = cfX[x];
XMVECTOR C0, C1, C2, C3;
CUBIC_INTERPOLATE(C0, toX.x, row0[toX.u0], row0[toX.u1], row0[toX.u2], row0[toX.u3]);
CUBIC_INTERPOLATE(C1, toX.x, row1[toX.u0], row1[toX.u1], row1[toX.u2], row1[toX.u3]);
CUBIC_INTERPOLATE(C2, toX.x, row2[toX.u0], row2[toX.u1], row2[toX.u2], row2[toX.u3]);
CUBIC_INTERPOLATE(C3, toX.x, row3[toX.u0], row3[toX.u1], row3[toX.u2], row3[toX.u3]);
CUBIC_INTERPOLATE(target[x], toY.x, C0, C1, C2, C3);
}
if (!_StoreScanlineLinear(pDest, destImage.rowPitch, destImage.format, target, destImage.width, filter))
return E_FAIL;
pDest += destImage.rowPitch;
}
return S_OK;
}
//--- Triangle Filter ---
HRESULT ResizeTriangleFilter(const Image& srcImage, DWORD filter, const Image& destImage)
{
assert(srcImage.pixels && destImage.pixels);
assert(srcImage.format == destImage.format);
using namespace TriangleFilter;
// Allocate initial temporary space (1 scanline, accumulation rows, plus X and Y filters)
ScopedAlignedArrayXMVECTOR scanline(static_cast<XMVECTOR*>(_aligned_malloc(sizeof(XMVECTOR) * srcImage.width, 16)));
if (!scanline)
return E_OUTOFMEMORY;
std::unique_ptr<TriangleRow[]> rowActive(new (std::nothrow) TriangleRow[destImage.height]);
if (!rowActive)
return E_OUTOFMEMORY;
TriangleRow * rowFree = nullptr;
std::unique_ptr<Filter> tfX;
HRESULT hr = _Create(srcImage.width, destImage.width, (filter & TEX_FILTER_WRAP_U) != 0, tfX);
if (FAILED(hr))
return hr;
std::unique_ptr<Filter> tfY;
hr = _Create(srcImage.height, destImage.height, (filter & TEX_FILTER_WRAP_V) != 0, tfY);
if (FAILED(hr))
return hr;
XMVECTOR* row = scanline.get();
#ifdef _DEBUG
memset(row, 0xCD, sizeof(XMVECTOR)*srcImage.width);
#endif
auto xFromEnd = reinterpret_cast<const FilterFrom*>(reinterpret_cast<const uint8_t*>(tfX.get()) + tfX->sizeInBytes);
auto yFromEnd = reinterpret_cast<const FilterFrom*>(reinterpret_cast<const uint8_t*>(tfY.get()) + tfY->sizeInBytes);
// Count times rows get written
for (FilterFrom* yFrom = tfY->from; yFrom < yFromEnd; )
{
for (size_t j = 0; j < yFrom->count; ++j)
{
size_t v = yFrom->to[j].u;
assert(v < destImage.height);
++rowActive[v].remaining;
}
yFrom = reinterpret_cast<FilterFrom*>(reinterpret_cast<uint8_t*>(yFrom) + yFrom->sizeInBytes);
}
// Filter image
const uint8_t* pSrc = srcImage.pixels;
size_t rowPitch = srcImage.rowPitch;
const uint8_t* pEndSrc = pSrc + rowPitch * srcImage.height;
uint8_t* pDest = destImage.pixels;
for (FilterFrom* yFrom = tfY->from; yFrom < yFromEnd; )
{
// Create accumulation rows as needed
for (size_t j = 0; j < yFrom->count; ++j)
{
size_t v = yFrom->to[j].u;
assert(v < destImage.height);
TriangleRow* rowAcc = &rowActive[v];
if (!rowAcc->scanline)
{
if (rowFree)
{
// Steal and reuse scanline from 'free row' list
assert(rowFree->scanline != nullptr);
rowAcc->scanline.reset(rowFree->scanline.release());
rowFree = rowFree->next;
}
else
{
rowAcc->scanline.reset(static_cast<XMVECTOR*>(_aligned_malloc(sizeof(XMVECTOR) * destImage.width, 16)));
if (!rowAcc->scanline)
return E_OUTOFMEMORY;
}
memset(rowAcc->scanline.get(), 0, sizeof(XMVECTOR) * destImage.width);
}
}
// Load source scanline
if ((pSrc + rowPitch) > pEndSrc)
return E_FAIL;
if (!_LoadScanlineLinear(row, srcImage.width, pSrc, rowPitch, srcImage.format, filter))
return E_FAIL;
pSrc += rowPitch;
// Process row
size_t x = 0;
for (FilterFrom* xFrom = tfX->from; xFrom < xFromEnd; ++x)
{
for (size_t j = 0; j < yFrom->count; ++j)
{
size_t v = yFrom->to[j].u;
assert(v < destImage.height);
float yweight = yFrom->to[j].weight;
XMVECTOR* accPtr = rowActive[v].scanline.get();
if (!accPtr)
return E_POINTER;
for (size_t k = 0; k < xFrom->count; ++k)
{
size_t u = xFrom->to[k].u;
assert(u < destImage.width);
XMVECTOR weight = XMVectorReplicate(yweight * xFrom->to[k].weight);
assert(x < srcImage.width);
accPtr[u] = XMVectorMultiplyAdd(row[x], weight, accPtr[u]);
}
}
xFrom = reinterpret_cast<FilterFrom*>(reinterpret_cast<uint8_t*>(xFrom) + xFrom->sizeInBytes);
}
// Write completed accumulation rows
for (size_t j = 0; j < yFrom->count; ++j)
{
size_t v = yFrom->to[j].u;
assert(v < destImage.height);
TriangleRow* rowAcc = &rowActive[v];
assert(rowAcc->remaining > 0);
--rowAcc->remaining;
if (!rowAcc->remaining)
{
XMVECTOR* pAccSrc = rowAcc->scanline.get();
if (!pAccSrc)
return E_POINTER;
switch (destImage.format)
{
case DXGI_FORMAT_R10G10B10A2_UNORM:
case DXGI_FORMAT_R10G10B10A2_UINT:
{
// Need to slightly bias results for floating-point error accumulation which can
// be visible with harshly quantized values
static const XMVECTORF32 Bias = { { { 0.f, 0.f, 0.f, 0.1f } } };
XMVECTOR* ptr = pAccSrc;
for (size_t i = 0; i < destImage.width; ++i, ++ptr)
{
*ptr = XMVectorAdd(*ptr, Bias);
}
}
break;
default:
break;
}
// This performs any required clamping
if (!_StoreScanlineLinear(pDest + (destImage.rowPitch * v), destImage.rowPitch, destImage.format, pAccSrc, destImage.width, filter))
return E_FAIL;
// Put row on freelist to reuse it's allocated scanline
rowAcc->next = rowFree;
rowFree = rowAcc;
}
}
yFrom = reinterpret_cast<FilterFrom*>(reinterpret_cast<uint8_t*>(yFrom) + yFrom->sizeInBytes);
}
return S_OK;
}
//--- Custom filter resize ---
HRESULT PerformResizeUsingCustomFilters(const Image& srcImage, DWORD filter, const Image& destImage)
{
if (!srcImage.pixels || !destImage.pixels)
return E_POINTER;
static_assert(TEX_FILTER_POINT == 0x100000, "TEX_FILTER_ flag values don't match TEX_FILTER_MASK");
DWORD filter_select = (filter & TEX_FILTER_MASK);
if (!filter_select)
{
// Default filter choice
filter_select = (((destImage.width << 1) == srcImage.width) && ((destImage.height << 1) == srcImage.height))
? TEX_FILTER_BOX : TEX_FILTER_LINEAR;
}
switch (filter_select)
{
case TEX_FILTER_POINT:
return ResizePointFilter(srcImage, destImage);
case TEX_FILTER_BOX:
return ResizeBoxFilter(srcImage, filter, destImage);
case TEX_FILTER_LINEAR:
return ResizeLinearFilter(srcImage, filter, destImage);
case TEX_FILTER_CUBIC:
return ResizeCubicFilter(srcImage, filter, destImage);
case TEX_FILTER_TRIANGLE:
return ResizeTriangleFilter(srcImage, filter, destImage);
default:
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
}
}
}
//=====================================================================================
// Entry-points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Resize image
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::Resize(
const Image& srcImage,
size_t width,
size_t height,
DWORD filter,
ScratchImage& image)
{
if (width == 0 || height == 0)
return E_INVALIDARG;
if ((srcImage.width > UINT32_MAX) || (srcImage.height > UINT32_MAX))
return E_INVALIDARG;
if ((width > UINT32_MAX) || (height > UINT32_MAX))
return E_INVALIDARG;
if (!srcImage.pixels)
return E_POINTER;
if (IsCompressed(srcImage.format))
{
// We don't support resizing compressed images
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
}
bool usewic = UseWICFiltering(srcImage.format, filter);
WICPixelFormatGUID pfGUID = {};
bool wicpf = (usewic) ? _DXGIToWIC(srcImage.format, pfGUID, true) : false;
if (usewic && !wicpf)
{
// Check to see if the source and/or result size is too big for WIC
uint64_t expandedSize = uint64_t(width) * uint64_t(height) * sizeof(float) * 4;
uint64_t expandedSize2 = uint64_t(srcImage.width) * uint64_t(srcImage.height) * sizeof(float) * 4;
if (expandedSize > UINT32_MAX || expandedSize2 > UINT32_MAX)
{
if (filter & TEX_FILTER_FORCE_WIC)
return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW);
usewic = false;
}
}
HRESULT hr = image.Initialize2D(srcImage.format, width, height, 1, 1);
if (FAILED(hr))
return hr;
const Image *rimage = image.GetImage(0, 0, 0);
if (!rimage)
return E_POINTER;
if (usewic)
{
if (wicpf)
{
// Case 1: Source format is supported by Windows Imaging Component
hr = PerformResizeUsingWIC(srcImage, filter, pfGUID, *rimage);
}
else
{
// Case 2: Source format is not supported by WIC, so we have to convert, resize, and convert back
hr = PerformResizeViaF32(srcImage, filter, *rimage);
}
}
else
{
// Case 3: not using WIC resizing
hr = PerformResizeUsingCustomFilters(srcImage, filter, *rimage);
}
if (FAILED(hr))
{
image.Release();
return hr;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Resize image (complex)
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::Resize(
const Image* srcImages,
size_t nimages,
const TexMetadata& metadata,
size_t width,
size_t height,
DWORD filter,
ScratchImage& result)
{
if (!srcImages || !nimages || width == 0 || height == 0)
return E_INVALIDARG;
if ((width > UINT32_MAX) || (height > UINT32_MAX))
return E_INVALIDARG;
TexMetadata mdata2 = metadata;
mdata2.width = width;
mdata2.height = height;
mdata2.mipLevels = 1;
HRESULT hr = result.Initialize(mdata2);
if (FAILED(hr))
return hr;
bool usewic = !metadata.IsPMAlpha() && UseWICFiltering(metadata.format, filter);
WICPixelFormatGUID pfGUID = {};
bool wicpf = (usewic) ? _DXGIToWIC(metadata.format, pfGUID, true) : false;
if (usewic && !wicpf)
{
// Check to see if the source and/or result size is too big for WIC
uint64_t expandedSize = uint64_t(width) * uint64_t(height) * sizeof(float) * 4;
uint64_t expandedSize2 = uint64_t(metadata.width) * uint64_t(metadata.height) * sizeof(float) * 4;
if (expandedSize > UINT32_MAX || expandedSize2 > UINT32_MAX)
{
if (filter & TEX_FILTER_FORCE_WIC)
return HRESULT_FROM_WIN32(ERROR_ARITHMETIC_OVERFLOW);
usewic = false;
}
}
switch (metadata.dimension)
{
case TEX_DIMENSION_TEXTURE1D:
case TEX_DIMENSION_TEXTURE2D:
assert(metadata.depth == 1);
for (size_t item = 0; item < metadata.arraySize; ++item)
{
size_t srcIndex = metadata.ComputeIndex(0, item, 0);
if (srcIndex >= nimages)
{
result.Release();
return E_FAIL;
}
const Image* srcimg = &srcImages[srcIndex];
const Image* destimg = result.GetImage(0, item, 0);
if (!srcimg || !destimg)
{
result.Release();
return E_POINTER;
}
if (srcimg->format != metadata.format)
{
result.Release();
return E_FAIL;
}
if ((srcimg->width > UINT32_MAX) || (srcimg->height > UINT32_MAX))
{
result.Release();
return E_FAIL;
}
if (usewic)
{
if (wicpf)
{
// Case 1: Source format is supported by Windows Imaging Component
hr = PerformResizeUsingWIC(*srcimg, filter, pfGUID, *destimg);
}
else
{
// Case 2: Source format is not supported by WIC, so we have to convert, resize, and convert back
hr = PerformResizeViaF32(*srcimg, filter, *destimg);
}
}
else
{
// Case 3: not using WIC resizing
hr = PerformResizeUsingCustomFilters(*srcimg, filter, *destimg);
}
if (FAILED(hr))
{
result.Release();
return hr;
}
}
break;
case TEX_DIMENSION_TEXTURE3D:
assert(metadata.arraySize == 1);
for (size_t slice = 0; slice < metadata.depth; ++slice)
{
size_t srcIndex = metadata.ComputeIndex(0, 0, slice);
if (srcIndex >= nimages)
{
result.Release();
return E_FAIL;
}
const Image* srcimg = &srcImages[srcIndex];
const Image* destimg = result.GetImage(0, 0, slice);
if (!srcimg || !destimg)
{
result.Release();
return E_POINTER;
}
if (srcimg->format != metadata.format)
{
result.Release();
return E_FAIL;
}
if ((srcimg->width > UINT32_MAX) || (srcimg->height > UINT32_MAX))
{
result.Release();
return E_FAIL;
}
if (usewic)
{
if (wicpf)
{
// Case 1: Source format is supported by Windows Imaging Component
hr = PerformResizeUsingWIC(*srcimg, filter, pfGUID, *destimg);
}
else
{
// Case 2: Source format is not supported by WIC, so we have to convert, resize, and convert back
hr = PerformResizeViaF32(*srcimg, filter, *destimg);
}
}
else
{
// Case 3: not using WIC resizing
hr = PerformResizeUsingCustomFilters(*srcimg, filter, *destimg);
}
if (FAILED(hr))
{
result.Release();
return hr;
}
}
break;
default:
result.Release();
return E_FAIL;
}
return S_OK;
}