crossxtex/DirectXTex/DirectXTexMisc.cpp
2017-01-06 17:16:43 -08:00

760 lines
22 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexMisc.cpp
//
// DirectX Texture Library - Misc image operations
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "directxtexp.h"
using namespace DirectX;
namespace
{
const XMVECTORF32 g_Gamma22 = { 2.2f, 2.2f, 2.2f, 1.f };
//-------------------------------------------------------------------------------------
HRESULT ComputeMSE_(
const Image& image1,
const Image& image2,
float& mse,
_Out_writes_opt_(4) float* mseV,
DWORD flags)
{
if (!image1.pixels || !image2.pixels)
return E_POINTER;
assert(image1.width == image2.width && image1.height == image2.height);
assert(!IsCompressed(image1.format) && !IsCompressed(image2.format));
const size_t width = image1.width;
ScopedAlignedArrayXMVECTOR scanline(reinterpret_cast<XMVECTOR*>(_aligned_malloc((sizeof(XMVECTOR)*width) * 2, 16)));
if (!scanline)
return E_OUTOFMEMORY;
// Flags implied from image formats
switch (image1.format)
{
case DXGI_FORMAT_B8G8R8X8_UNORM:
flags |= CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= CMSE_IMAGE1_SRGB | CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= CMSE_IMAGE1_SRGB;
break;
}
switch (image2.format)
{
case DXGI_FORMAT_B8G8R8X8_UNORM:
flags |= CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= CMSE_IMAGE2_SRGB | CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= CMSE_IMAGE2_SRGB;
break;
}
const uint8_t *pSrc1 = image1.pixels;
const size_t rowPitch1 = image1.rowPitch;
const uint8_t *pSrc2 = image2.pixels;
const size_t rowPitch2 = image2.rowPitch;
XMVECTOR acc = g_XMZero;
static XMVECTORF32 two = { 2.0f, 2.0f, 2.0f, 2.0f };
for (size_t h = 0; h < image1.height; ++h)
{
XMVECTOR* ptr1 = scanline.get();
if (!_LoadScanline(ptr1, width, pSrc1, rowPitch1, image1.format))
return E_FAIL;
XMVECTOR* ptr2 = scanline.get() + width;
if (!_LoadScanline(ptr2, width, pSrc2, rowPitch2, image2.format))
return E_FAIL;
for (size_t i = 0; i < width; ++i)
{
XMVECTOR v1 = *(ptr1++);
if (flags & CMSE_IMAGE1_SRGB)
{
v1 = XMVectorPow(v1, g_Gamma22);
}
if (flags & CMSE_IMAGE1_X2_BIAS)
{
v1 = XMVectorMultiplyAdd(v1, two, g_XMNegativeOne);
}
XMVECTOR v2 = *(ptr2++);
if (flags & CMSE_IMAGE2_SRGB)
{
v2 = XMVectorPow(v2, g_Gamma22);
}
if (flags & CMSE_IMAGE2_X2_BIAS)
{
v1 = XMVectorMultiplyAdd(v2, two, g_XMNegativeOne);
}
// sum[ (I1 - I2)^2 ]
XMVECTOR v = XMVectorSubtract(v1, v2);
if (flags & CMSE_IGNORE_RED)
{
v = XMVectorSelect(v, g_XMZero, g_XMMaskX);
}
if (flags & CMSE_IGNORE_GREEN)
{
v = XMVectorSelect(v, g_XMZero, g_XMMaskY);
}
if (flags & CMSE_IGNORE_BLUE)
{
v = XMVectorSelect(v, g_XMZero, g_XMMaskZ);
}
if (flags & CMSE_IGNORE_ALPHA)
{
v = XMVectorSelect(v, g_XMZero, g_XMMaskW);
}
acc = XMVectorMultiplyAdd(v, v, acc);
}
pSrc1 += rowPitch1;
pSrc2 += rowPitch2;
}
// MSE = sum[ (I1 - I2)^2 ] / w*h
XMVECTOR d = XMVectorReplicate(float(image1.width * image1.height));
XMVECTOR v = XMVectorDivide(acc, d);
if (mseV)
{
XMStoreFloat4(reinterpret_cast<XMFLOAT4*>(mseV), v);
mse = mseV[0] + mseV[1] + mseV[2] + mseV[3];
}
else
{
XMFLOAT4 _mseV;
XMStoreFloat4(&_mseV, v);
mse = _mseV.x + _mseV.y + _mseV.z + _mseV.w;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
HRESULT EvaluateImage_(
const Image& image,
std::function<void __cdecl(_In_reads_(width) const XMVECTOR* pixels, size_t width, size_t y)>& pixelFunc)
{
if (!pixelFunc)
return E_INVALIDARG;
if (!image.pixels)
return E_POINTER;
assert(!IsCompressed(image.format));
const size_t width = image.width;
ScopedAlignedArrayXMVECTOR scanline(reinterpret_cast<XMVECTOR*>(_aligned_malloc((sizeof(XMVECTOR)*width), 16)));
if (!scanline)
return E_OUTOFMEMORY;
const uint8_t *pSrc = image.pixels;
const size_t rowPitch = image.rowPitch;
for (size_t h = 0; h < image.height; ++h)
{
if (!_LoadScanline(scanline.get(), width, pSrc, rowPitch, image.format))
return E_FAIL;
pixelFunc(scanline.get(), width, h);
pSrc += rowPitch;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
HRESULT TransformImage_(
const Image& srcImage,
std::function<void __cdecl(_Out_writes_(width) XMVECTOR* outPixels, _In_reads_(width) const XMVECTOR* inPixels, size_t width, size_t y)>& pixelFunc,
const Image& destImage)
{
if (!pixelFunc)
return E_INVALIDARG;
if (!srcImage.pixels || !destImage.pixels)
return E_POINTER;
if (srcImage.width != destImage.width || srcImage.height != destImage.height || srcImage.format != destImage.format)
return E_FAIL;
const size_t width = srcImage.width;
ScopedAlignedArrayXMVECTOR scanlines(reinterpret_cast<XMVECTOR*>(_aligned_malloc((sizeof(XMVECTOR)*width*2), 16)));
if (!scanlines)
return E_OUTOFMEMORY;
XMVECTOR* sScanline = scanlines.get();
XMVECTOR* dScanline = scanlines.get() + width;
const uint8_t *pSrc = srcImage.pixels;
const size_t spitch = srcImage.rowPitch;
uint8_t *pDest = destImage.pixels;
const size_t dpitch = destImage.rowPitch;
for (size_t h = 0; h < srcImage.height; ++h)
{
if (!_LoadScanline(sScanline, width, pSrc, spitch, srcImage.format))
return E_FAIL;
#ifdef _DEBUG
memset(dScanline, 0xCD, sizeof(XMVECTOR)*width);
#endif
pixelFunc(dScanline, sScanline, width, h);
if (!_StoreScanline(pDest, destImage.rowPitch, destImage.format, dScanline, width))
return E_FAIL;
pSrc += spitch;
pDest += dpitch;
}
return S_OK;
}
};
//=====================================================================================
// Entry points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Copies a rectangle from one image into another
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::CopyRectangle(
const Image& srcImage,
const Rect& srcRect,
const Image& dstImage,
DWORD filter,
size_t xOffset,
size_t yOffset)
{
if (!srcImage.pixels || !dstImage.pixels)
return E_POINTER;
if (IsCompressed(srcImage.format) || IsCompressed(dstImage.format)
|| IsPlanar(srcImage.format) || IsPlanar(dstImage.format)
|| IsPalettized(srcImage.format) || IsPalettized(dstImage.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
// Validate rectangle/offset
if (!srcRect.w || !srcRect.h || ((srcRect.x + srcRect.w) > srcImage.width) || ((srcRect.y + srcRect.h) > srcImage.height))
{
return E_INVALIDARG;
}
if (((xOffset + srcRect.w) > dstImage.width) || ((yOffset + srcRect.h) > dstImage.height))
{
return E_INVALIDARG;
}
// Compute source bytes-per-pixel
size_t sbpp = BitsPerPixel(srcImage.format);
if (!sbpp)
return E_FAIL;
if (sbpp < 8)
{
// We don't support monochrome (DXGI_FORMAT_R1_UNORM)
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
}
const uint8_t* pEndSrc = srcImage.pixels + srcImage.rowPitch*srcImage.height;
const uint8_t* pEndDest = dstImage.pixels + dstImage.rowPitch*dstImage.height;
// Round to bytes
sbpp = (sbpp + 7) / 8;
const uint8_t* pSrc = srcImage.pixels + (srcRect.y * srcImage.rowPitch) + (srcRect.x * sbpp);
if (srcImage.format == dstImage.format)
{
// Direct copy case (avoid intermediate conversions)
uint8_t* pDest = dstImage.pixels + (yOffset * dstImage.rowPitch) + (xOffset * sbpp);
const size_t copyW = srcRect.w * sbpp;
for (size_t h = 0; h < srcRect.h; ++h)
{
if (((pSrc + copyW) > pEndSrc) || (pDest > pEndDest))
return E_FAIL;
memcpy_s(pDest, pEndDest - pDest, pSrc, copyW);
pSrc += srcImage.rowPitch;
pDest += dstImage.rowPitch;
}
return S_OK;
}
// Compute destination bytes-per-pixel (not the same format as source)
size_t dbpp = BitsPerPixel(dstImage.format);
if (!dbpp)
return E_FAIL;
if (dbpp < 8)
{
// We don't support monochrome (DXGI_FORMAT_R1_UNORM)
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
}
// Round to bytes
dbpp = (dbpp + 7) / 8;
uint8_t* pDest = dstImage.pixels + (yOffset * dstImage.rowPitch) + (xOffset * dbpp);
ScopedAlignedArrayXMVECTOR scanline(reinterpret_cast<XMVECTOR*>(_aligned_malloc((sizeof(XMVECTOR)*srcRect.w), 16)));
if (!scanline)
return E_OUTOFMEMORY;
const size_t copyS = srcRect.w * sbpp;
const size_t copyD = srcRect.w * dbpp;
for (size_t h = 0; h < srcRect.h; ++h)
{
if (((pSrc + copyS) > pEndSrc) || ((pDest + copyD) > pEndDest))
return E_FAIL;
if (!_LoadScanline(scanline.get(), srcRect.w, pSrc, copyS, srcImage.format))
return E_FAIL;
_ConvertScanline(scanline.get(), srcRect.w, dstImage.format, srcImage.format, filter);
if (!_StoreScanline(pDest, copyD, dstImage.format, scanline.get(), srcRect.w))
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += dstImage.rowPitch;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Computes the Mean-Squared-Error (MSE) between two images
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::ComputeMSE(
const Image& image1,
const Image& image2,
float& mse,
float* mseV,
DWORD flags)
{
if (!image1.pixels || !image2.pixels)
return E_POINTER;
if (image1.width != image2.width || image1.height != image2.height)
return E_INVALIDARG;
if (!IsValid(image1.format) || !IsValid(image2.format))
return E_INVALIDARG;
if (IsPlanar(image1.format) || IsPlanar(image2.format)
|| IsPalettized(image1.format) || IsPalettized(image2.format)
|| IsTypeless(image1.format) || IsTypeless(image2.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
if (IsCompressed(image1.format))
{
if (IsCompressed(image2.format))
{
// Case 1: both images are compressed, expand to RGBA32F
ScratchImage temp1;
HRESULT hr = Decompress(image1, DXGI_FORMAT_R32G32B32A32_FLOAT, temp1);
if (FAILED(hr))
return hr;
ScratchImage temp2;
hr = Decompress(image2, DXGI_FORMAT_R32G32B32A32_FLOAT, temp2);
if (FAILED(hr))
return hr;
const Image* img1 = temp1.GetImage(0, 0, 0);
const Image* img2 = temp2.GetImage(0, 0, 0);
if (!img1 || !img2)
return E_POINTER;
return ComputeMSE_(*img1, *img2, mse, mseV, flags);
}
else
{
// Case 2: image1 is compressed, expand to RGBA32F
ScratchImage temp;
HRESULT hr = Decompress(image1, DXGI_FORMAT_R32G32B32A32_FLOAT, temp);
if (FAILED(hr))
return hr;
const Image* img = temp.GetImage(0, 0, 0);
if (!img)
return E_POINTER;
return ComputeMSE_(*img, image2, mse, mseV, flags);
}
}
else
{
if (IsCompressed(image2.format))
{
// Case 3: image2 is compressed, expand to RGBA32F
ScratchImage temp;
HRESULT hr = Decompress(image2, DXGI_FORMAT_R32G32B32A32_FLOAT, temp);
if (FAILED(hr))
return hr;
const Image* img = temp.GetImage(0, 0, 0);
if (!img)
return E_POINTER;
return ComputeMSE_(image1, *img, mse, mseV, flags);
}
else
{
// Case 4: neither image is compressed
return ComputeMSE_(image1, image2, mse, mseV, flags);
}
}
}
//-------------------------------------------------------------------------------------
// Evaluates a user-supplied function for all the pixels in the image
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::EvaluateImage(
const Image& image,
std::function<void __cdecl(_In_reads_(width) const XMVECTOR* pixels, size_t width, size_t y)> pixelFunc)
{
if (image.width > UINT32_MAX
|| image.height > UINT32_MAX)
return E_INVALIDARG;
if (!IsValid(image.format))
return E_INVALIDARG;
if (IsPlanar(image.format) || IsPalettized(image.format) || IsTypeless(image.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
if (IsCompressed(image.format))
{
ScratchImage temp;
HRESULT hr = Decompress(image, DXGI_FORMAT_R32G32B32A32_FLOAT, temp);
if (FAILED(hr))
return hr;
const Image* img = temp.GetImage(0, 0, 0);
if (!img)
return E_POINTER;
return EvaluateImage_(*img, pixelFunc);
}
else
{
return EvaluateImage_(image, pixelFunc);
}
}
_Use_decl_annotations_
HRESULT DirectX::EvaluateImage(
const Image* images,
size_t nimages,
const TexMetadata& metadata,
std::function<void __cdecl(_In_reads_(width) const XMVECTOR* pixels, size_t width, size_t y)> pixelFunc)
{
if (!images || !nimages)
return E_INVALIDARG;
if (!IsValid(metadata.format))
return E_INVALIDARG;
if (IsPlanar(metadata.format) || IsPalettized(metadata.format) || IsTypeless(metadata.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
if (metadata.width > UINT32_MAX
|| metadata.height > UINT32_MAX)
return E_INVALIDARG;
if (metadata.IsVolumemap() && metadata.depth > UINT16_MAX)
return E_INVALIDARG;
ScratchImage temp;
DXGI_FORMAT format = metadata.format;
if (IsCompressed(format))
{
HRESULT hr = Decompress(images, nimages, metadata, DXGI_FORMAT_R32G32B32A32_FLOAT, temp);
if (FAILED(hr))
return hr;
if (nimages != temp.GetImageCount())
return E_UNEXPECTED;
images = temp.GetImages();
format = DXGI_FORMAT_R32G32B32A32_FLOAT;
}
switch (metadata.dimension)
{
case TEX_DIMENSION_TEXTURE1D:
case TEX_DIMENSION_TEXTURE2D:
for (size_t index = 0; index < nimages; ++index)
{
const Image& img = images[index];
if (img.format != format)
return E_FAIL;
if ((img.width > UINT32_MAX) || (img.height > UINT32_MAX))
return E_FAIL;
HRESULT hr = EvaluateImage_(img, pixelFunc);
if (FAILED(hr))
return hr;
}
break;
case TEX_DIMENSION_TEXTURE3D:
{
size_t index = 0;
size_t d = metadata.depth;
for (size_t level = 0; level < metadata.mipLevels; ++level)
{
for (size_t slice = 0; slice < d; ++slice, ++index)
{
if (index >= nimages)
return E_FAIL;
const Image& img = images[index];
if (img.format != format)
return E_FAIL;
if ((img.width > UINT32_MAX) || (img.height > UINT32_MAX))
return E_FAIL;
HRESULT hr = EvaluateImage_(img, pixelFunc);
if (FAILED(hr))
return hr;
}
if (d > 1)
d >>= 1;
}
}
break;
default:
return E_FAIL;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Use a user-supplied function to compute a new image from an input image
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT DirectX::TransformImage(
const Image& image,
std::function<void __cdecl(_Out_writes_(width) XMVECTOR* outPixels, _In_reads_(width) const XMVECTOR* inPixels, size_t width, size_t y)> pixelFunc,
ScratchImage& result)
{
if (image.width > UINT32_MAX
|| image.height > UINT32_MAX)
return E_INVALIDARG;
if (IsPlanar(image.format) || IsPalettized(image.format) || IsCompressed(image.format) || IsTypeless(image.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
HRESULT hr = result.Initialize2D(image.format, image.width, image.height, 1, 1);
if (FAILED(hr))
return hr;
const Image* dimg = result.GetImage(0, 0, 0);
if (!dimg)
{
result.Release();
return E_POINTER;
}
hr = TransformImage_(image, pixelFunc, *dimg);
if (FAILED(hr))
{
result.Release();
return hr;
}
return S_OK;
}
_Use_decl_annotations_
HRESULT DirectX::TransformImage(
const Image* srcImages,
size_t nimages, const TexMetadata& metadata,
std::function<void __cdecl(_Out_writes_(width) XMVECTOR* outPixels, _In_reads_(width) const XMVECTOR* inPixels, size_t width, size_t y)> pixelFunc,
ScratchImage& result)
{
if (!srcImages || !nimages)
return E_INVALIDARG;
if (IsPlanar(metadata.format) || IsPalettized(metadata.format) || IsCompressed(metadata.format) || IsTypeless(metadata.format))
return HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED);
if (metadata.width > UINT32_MAX
|| metadata.height > UINT32_MAX)
return E_INVALIDARG;
if (metadata.IsVolumemap() && metadata.depth > UINT16_MAX)
return E_INVALIDARG;
HRESULT hr = result.Initialize(metadata);
if (FAILED(hr))
return hr;
if (nimages != result.GetImageCount())
{
result.Release();
return E_FAIL;
}
const Image* dest = result.GetImages();
if (!dest)
{
result.Release();
return E_POINTER;
}
switch (metadata.dimension)
{
case TEX_DIMENSION_TEXTURE1D:
case TEX_DIMENSION_TEXTURE2D:
for (size_t index = 0; index < nimages; ++index)
{
const Image& src = srcImages[index];
if (src.format != metadata.format)
{
result.Release();
return E_FAIL;
}
if ((src.width > UINT32_MAX) || (src.height > UINT32_MAX))
{
result.Release();
return E_FAIL;
}
const Image& dst = dest[index];
if (src.width != dst.width || src.height != dst.height)
{
result.Release();
return E_FAIL;
}
hr = TransformImage_(src, pixelFunc, dst);
if (FAILED(hr))
{
result.Release();
return hr;
}
}
break;
case TEX_DIMENSION_TEXTURE3D:
{
size_t index = 0;
size_t d = metadata.depth;
for (size_t level = 0; level < metadata.mipLevels; ++level)
{
for (size_t slice = 0; slice < d; ++slice, ++index)
{
if (index >= nimages)
{
result.Release();
return E_FAIL;
}
const Image& src = srcImages[index];
if (src.format != metadata.format)
{
result.Release();
return E_FAIL;
}
if ((src.width > UINT32_MAX) || (src.height > UINT32_MAX))
{
result.Release();
return E_FAIL;
}
const Image& dst = dest[index];
if (src.width != dst.width || src.height != dst.height)
{
result.Release();
return E_FAIL;
}
hr = TransformImage_(src, pixelFunc, dst);
if (FAILED(hr))
{
result.Release();
return hr;
}
}
if (d > 1)
d >>= 1;
}
}
break;
default:
result.Release();
return E_FAIL;
}
return S_OK;
}