crossxtex/DirectXTex/DirectXTexConvert.cpp
2013-06-21 14:12:39 -07:00

3453 lines
132 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexConvert.cpp
//
// DirectX Texture Library - Image conversion
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "directxtexp.h"
#ifdef USE_XNAMATH
#if XNAMATH_VERSION < 205
#error This file requires XNAMATH v2.05 or later
#endif
#else
using namespace DirectX::PackedVector;
#endif
namespace
{
inline float round_to_nearest( float x )
{
// Round to nearest (even)
float i = floorf(x);
x -= i;
if(x < 0.5f)
return i;
if(x > 0.5f)
return i + 1.f;
float int_part;
modff( i / 2.f, &int_part );
if ( (2.f*int_part) == i )
{
return i;
}
return i + 1.f;
}
};
namespace DirectX
{
static const XMVECTORF32 g_Grayscale = { 0.2125f, 0.7154f, 0.0721f, 0.0f };
//-------------------------------------------------------------------------------------
// Copies an image row with optional clearing of alpha value to 1.0
// (can be used in place as well) otherwise copies the image row unmodified.
//-------------------------------------------------------------------------------------
void _CopyScanline(_When_(pDestination == pSource, _Inout_updates_bytes_(outSize))
_When_(pDestination != pSource, _Out_writes_bytes_(outSize))
LPVOID pDestination, _In_ size_t outSize,
_In_reads_bytes_(inSize) LPCVOID pSource, _In_ size_t inSize,
_In_ DXGI_FORMAT format, _In_ DWORD flags)
{
assert( pDestination && outSize > 0 );
assert( pSource && inSize > 0 );
assert( IsValid(format) && !IsVideo(format) );
if ( flags & TEXP_SCANLINE_SETALPHA )
{
switch( format )
{
//-----------------------------------------------------------------------------
case DXGI_FORMAT_R32G32B32A32_TYPELESS:
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R32G32B32A32_UINT:
case DXGI_FORMAT_R32G32B32A32_SINT:
{
uint32_t alpha;
if ( format == DXGI_FORMAT_R32G32B32A32_FLOAT )
alpha = 0x3f800000;
else if ( format == DXGI_FORMAT_R32G32B32A32_SINT )
alpha = 0x7fffffff;
else
alpha = 0xffffffff;
if ( pDestination == pSource )
{
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 16 )
{
dPtr += 3;
*(dPtr++) = alpha;
}
}
else
{
const uint32_t * __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 16 )
{
*(dPtr++) = *(sPtr++);
*(dPtr++) = *(sPtr++);
*(dPtr++) = *(sPtr++);
*(dPtr++) = alpha;
sPtr++;
}
}
}
return;
//-----------------------------------------------------------------------------
case DXGI_FORMAT_R16G16B16A16_TYPELESS:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
case DXGI_FORMAT_R16G16B16A16_UNORM:
case DXGI_FORMAT_R16G16B16A16_UINT:
case DXGI_FORMAT_R16G16B16A16_SNORM:
case DXGI_FORMAT_R16G16B16A16_SINT:
{
uint16_t alpha;
if ( format == DXGI_FORMAT_R16G16B16A16_FLOAT )
alpha = 0x3c00;
else if ( format == DXGI_FORMAT_R16G16B16A16_SNORM || format == DXGI_FORMAT_R16G16B16A16_SINT )
alpha = 0x7fff;
else
alpha = 0xffff;
if ( pDestination == pSource )
{
uint16_t *dPtr = reinterpret_cast<uint16_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 8 )
{
dPtr += 3;
*(dPtr++) = alpha;
}
}
else
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint16_t * __restrict dPtr = reinterpret_cast<uint16_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 8 )
{
*(dPtr++) = *(sPtr++);
*(dPtr++) = *(sPtr++);
*(dPtr++) = *(sPtr++);
*(dPtr++) = alpha;
sPtr++;
}
}
}
return;
//-----------------------------------------------------------------------------
case DXGI_FORMAT_R10G10B10A2_TYPELESS:
case DXGI_FORMAT_R10G10B10A2_UNORM:
case DXGI_FORMAT_R10G10B10A2_UINT:
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
if ( pDestination == pSource )
{
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 4 )
{
#pragma warning(suppress: 6001 6101) // PREFast doesn't properly understand the aliasing here.
*dPtr |= 0xC0000000;
++dPtr;
}
}
else
{
const uint32_t * __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 4 )
{
*(dPtr++) = *(sPtr++) | 0xC0000000;
}
}
return;
//-----------------------------------------------------------------------------
case DXGI_FORMAT_R8G8B8A8_TYPELESS:
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_R8G8B8A8_UINT:
case DXGI_FORMAT_R8G8B8A8_SNORM:
case DXGI_FORMAT_R8G8B8A8_SINT:
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_TYPELESS:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
{
const uint32_t alpha = ( format == DXGI_FORMAT_R8G8B8A8_SNORM || format == DXGI_FORMAT_R8G8B8A8_SINT ) ? 0x7f000000 : 0xff000000;
if ( pDestination == pSource )
{
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 4 )
{
uint32_t t = *dPtr & 0xFFFFFF;
t |= alpha;
*(dPtr++) = t;
}
}
else
{
const uint32_t * __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 4 )
{
uint32_t t = *(sPtr++) & 0xFFFFFF;
t |= alpha;
*(dPtr++) = t;
}
}
}
return;
//-----------------------------------------------------------------------------
case DXGI_FORMAT_B5G5R5A1_UNORM:
if ( pDestination == pSource )
{
uint16_t *dPtr = reinterpret_cast<uint16_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 2 )
{
*(dPtr++) |= 0x8000;
}
}
else
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint16_t * __restrict dPtr = reinterpret_cast<uint16_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 2 )
{
*(dPtr++) = *(sPtr++) | 0x8000;
}
}
return;
//-----------------------------------------------------------------------------
case DXGI_FORMAT_A8_UNORM:
memset( pDestination, 0xff, outSize );
return;
#ifdef DXGI_1_2_FORMATS
//-----------------------------------------------------------------------------
case DXGI_FORMAT_B4G4R4A4_UNORM:
if ( pDestination == pSource )
{
uint16_t *dPtr = reinterpret_cast<uint16_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 2 )
{
*(dPtr++) |= 0xF000;
}
}
else
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint16_t * __restrict dPtr = reinterpret_cast<uint16_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 2 )
{
*(dPtr++) = *(sPtr++) | 0xF000;
}
}
return;
#endif // DXGI_1_2_FORMATS
}
}
// Fall-through case is to just use memcpy (assuming this is not an in-place operation)
if ( pDestination == pSource )
return;
size_t size = std::min<size_t>( outSize, inSize );
memcpy_s( pDestination, outSize, pSource, size );
}
//-------------------------------------------------------------------------------------
// Swizzles (RGB <-> BGR) an image row with optional clearing of alpha value to 1.0
// (can be used in place as well) otherwise copies the image row unmodified.
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
void _SwizzleScanline( LPVOID pDestination, size_t outSize, LPCVOID pSource, size_t inSize, DXGI_FORMAT format, DWORD flags )
{
assert( pDestination && outSize > 0 );
assert( pSource && inSize > 0 );
assert( IsValid(format) && !IsVideo(format) );
switch( format )
{
//---------------------------------------------------------------------------------
case DXGI_FORMAT_R10G10B10A2_TYPELESS:
case DXGI_FORMAT_R10G10B10A2_UNORM:
case DXGI_FORMAT_R10G10B10A2_UINT:
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
if ( flags & TEXP_SCANLINE_LEGACY )
{
// Swap Red (R) and Blue (B) channel (used for D3DFMT_A2R10G10B10 legacy sources)
if ( pDestination == pSource )
{
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 4 )
{
#pragma warning(suppress: 6001 6101) // PREFast doesn't properly understand the aliasing here.
uint32_t t = *dPtr;
uint32_t t1 = (t & 0x3ff00000) >> 20;
uint32_t t2 = (t & 0x000003ff) << 20;
uint32_t t3 = (t & 0x000ffc00);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xC0000000 : (t & 0xC0000000);
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
else
{
const uint32_t * __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 4 )
{
uint32_t t = *(sPtr++);
uint32_t t1 = (t & 0x3ff00000) >> 20;
uint32_t t2 = (t & 0x000003ff) << 20;
uint32_t t3 = (t & 0x000ffc00);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xC0000000 : (t & 0xC0000000);
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
return;
}
break;
//---------------------------------------------------------------------------------
case DXGI_FORMAT_R8G8B8A8_TYPELESS:
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM:
case DXGI_FORMAT_B8G8R8A8_TYPELESS:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8X8_TYPELESS:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
// Swap Red (R) and Blue (B) channels (used to convert from DXGI 1.1 BGR formats to DXGI 1.0 RGB)
if ( pDestination == pSource )
{
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t count = 0; count < outSize; count += 4 )
{
uint32_t t = *dPtr;
uint32_t t1 = (t & 0x00ff0000) >> 16;
uint32_t t2 = (t & 0x000000ff) << 16;
uint32_t t3 = (t & 0x0000ff00);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xff000000 : (t & 0xFF000000);
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
else
{
const uint32_t * __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
size_t size = std::min<size_t>( outSize, inSize );
for( size_t count = 0; count < size; count += 4 )
{
uint32_t t = *(sPtr++);
uint32_t t1 = (t & 0x00ff0000) >> 16;
uint32_t t2 = (t & 0x000000ff) << 16;
uint32_t t3 = (t & 0x0000ff00);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xff000000 : (t & 0xFF000000);
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
return;
}
// Fall-through case is to just use memcpy (assuming this is not an in-place operation)
if ( pDestination == pSource )
return;
size_t size = std::min<size_t>( outSize, inSize );
memcpy_s( pDestination, outSize, pSource, size );
}
//-------------------------------------------------------------------------------------
// Converts an image row with optional clearing of alpha value to 1.0
// Returns true if supported, false if expansion case not supported
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
bool _ExpandScanline( LPVOID pDestination, size_t outSize, DXGI_FORMAT outFormat,
LPCVOID pSource, size_t inSize, DXGI_FORMAT inFormat, DWORD flags )
{
assert( pDestination && outSize > 0 );
assert( pSource && inSize > 0 );
assert( IsValid(outFormat) && !IsVideo(outFormat) );
assert( IsValid(inFormat) && !IsVideo(inFormat) );
switch( inFormat )
{
case DXGI_FORMAT_B5G6R5_UNORM:
if ( outFormat != DXGI_FORMAT_R8G8B8A8_UNORM )
return false;
// DXGI_FORMAT_B5G6R5_UNORM -> DXGI_FORMAT_R8G8B8A8_UNORM
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t ocount = 0, icount = 0; ((icount < inSize) && (ocount < outSize)); icount += 2, ocount += 4 )
{
uint16_t t = *(sPtr++);
uint32_t t1 = ((t & 0xf800) >> 8) | ((t & 0xe000) >> 13);
uint32_t t2 = ((t & 0x07e0) << 5) | ((t & 0x0600) >> 5);
uint32_t t3 = ((t & 0x001f) << 19) | ((t & 0x001c) << 14);
*(dPtr++) = t1 | t2 | t3 | 0xff000000;
}
}
return true;
case DXGI_FORMAT_B5G5R5A1_UNORM:
if ( outFormat != DXGI_FORMAT_R8G8B8A8_UNORM )
return false;
// DXGI_FORMAT_B5G5R5A1_UNORM -> DXGI_FORMAT_R8G8B8A8_UNORM
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t ocount = 0, icount = 0; ((icount < inSize) && (ocount < outSize)); icount += 2, ocount += 4 )
{
uint16_t t = *(sPtr++);
uint32_t t1 = ((t & 0x7c00) >> 7) | ((t & 0x7000) >> 12);
uint32_t t2 = ((t & 0x03e0) << 6) | ((t & 0x0380) << 1);
uint32_t t3 = ((t & 0x001f) << 19) | ((t & 0x001c) << 14);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xff000000 : ((t & 0x8000) ? 0xff000000 : 0);
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
return true;
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
if ( outFormat != DXGI_FORMAT_R8G8B8A8_UNORM )
return false;
// DXGI_FORMAT_B4G4R4A4_UNORM -> DXGI_FORMAT_R8G8B8A8_UNORM
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t ocount = 0, icount = 0; ((icount < inSize) && (ocount < outSize)); icount += 2, ocount += 4 )
{
uint16_t t = *(sPtr++);
uint32_t t1 = ((t & 0x0f00) >> 4) | ((t & 0x0f00) >> 8);
uint32_t t2 = ((t & 0x00f0) << 8) | ((t & 0x00f0) << 4);
uint32_t t3 = ((t & 0x000f) << 20) | ((t & 0x000f) << 16);
uint32_t ta = ( flags & TEXP_SCANLINE_SETALPHA ) ? 0xff000000 : (((t & 0xf000) << 16) | ((t & 0xf000) << 12));
*(dPtr++) = t1 | t2 | t3 | ta;
}
}
return true;
#endif // DXGI_1_2_FORMATS
}
return false;
}
//-------------------------------------------------------------------------------------
// Loads an image row into standard RGBA XMVECTOR (aligned) array
//-------------------------------------------------------------------------------------
#define LOAD_SCANLINE( type, func )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < size; icount += sizeof(type) )\
{\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = func( sPtr++ );\
}\
return true;\
}\
return false;
#define LOAD_SCANLINE3( type, func, defvec )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < size; icount += sizeof(type) )\
{\
XMVECTOR v = func( sPtr++ );\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = XMVectorSelect( defvec, v, g_XMSelect1110 );\
}\
return true;\
}\
return false;
#define LOAD_SCANLINE2( type, func, defvec )\
if ( size >= sizeof(type) )\
{\
const type * __restrict sPtr = reinterpret_cast<const type*>(pSource);\
for( size_t icount = 0; icount < size; icount += sizeof(type) )\
{\
XMVECTOR v = func( sPtr++ );\
if ( dPtr >= ePtr ) break;\
*(dPtr++) = XMVectorSelect( defvec, v, g_XMSelect1100 );\
}\
return true;\
}\
return false;
_Use_decl_annotations_
bool _LoadScanline( XMVECTOR* pDestination, size_t count,
LPCVOID pSource, size_t size, DXGI_FORMAT format )
{
assert( pDestination && count > 0 && (((uintptr_t)pDestination & 0xF) == 0) );
assert( pSource && size > 0 );
assert( IsValid(format) && !IsVideo(format) && !IsTypeless(format, false) && !IsCompressed(format) );
XMVECTOR* __restrict dPtr = pDestination;
if ( !dPtr )
return false;
const XMVECTOR* ePtr = pDestination + count;
switch( format )
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
{
size_t msize = (size > (sizeof(XMVECTOR)*count)) ? (sizeof(XMVECTOR)*count) : size;
memcpy_s( dPtr, sizeof(XMVECTOR)*count, pSource, msize );
}
return true;
case DXGI_FORMAT_R32G32B32A32_UINT:
LOAD_SCANLINE( XMUINT4, XMLoadUInt4 )
case DXGI_FORMAT_R32G32B32A32_SINT:
LOAD_SCANLINE( XMINT4, XMLoadSInt4 )
case DXGI_FORMAT_R32G32B32_FLOAT:
LOAD_SCANLINE3( XMFLOAT3, XMLoadFloat3, g_XMIdentityR3 )
case DXGI_FORMAT_R32G32B32_UINT:
LOAD_SCANLINE3( XMUINT3, XMLoadUInt3, g_XMIdentityR3 )
case DXGI_FORMAT_R32G32B32_SINT:
LOAD_SCANLINE3( XMINT3, XMLoadSInt3, g_XMIdentityR3 )
case DXGI_FORMAT_R16G16B16A16_FLOAT:
LOAD_SCANLINE( XMHALF4, XMLoadHalf4 )
case DXGI_FORMAT_R16G16B16A16_UNORM:
LOAD_SCANLINE( XMUSHORTN4, XMLoadUShortN4 )
case DXGI_FORMAT_R16G16B16A16_UINT:
LOAD_SCANLINE( XMUSHORT4, XMLoadUShort4 )
case DXGI_FORMAT_R16G16B16A16_SNORM:
LOAD_SCANLINE( XMSHORTN4, XMLoadShortN4 )
case DXGI_FORMAT_R16G16B16A16_SINT:
LOAD_SCANLINE( XMSHORT4, XMLoadShort4 )
case DXGI_FORMAT_R32G32_FLOAT:
LOAD_SCANLINE2( XMFLOAT2, XMLoadFloat2, g_XMIdentityR3 )
case DXGI_FORMAT_R32G32_UINT:
LOAD_SCANLINE2( XMUINT2, XMLoadUInt2, g_XMIdentityR3 )
case DXGI_FORMAT_R32G32_SINT:
LOAD_SCANLINE2( XMINT2, XMLoadSInt2, g_XMIdentityR3 )
case DXGI_FORMAT_D32_FLOAT_S8X24_UINT:
if ( size >= (sizeof(float)+sizeof(uint32_t)) )
{
const float * sPtr = reinterpret_cast<const float*>(pSource);
for( size_t icount = 0; icount < size; icount += (sizeof(float)+sizeof(uint32_t)) )
{
const uint8_t* ps8 = reinterpret_cast<const uint8_t*>( &sPtr[1] );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( sPtr[0], static_cast<float>( *ps8 ), 0.f, 1.f );
sPtr += 2;
}
return true;
}
return false;
case DXGI_FORMAT_R32_FLOAT_X8X24_TYPELESS:
if ( size >= (sizeof(float)+sizeof(uint32_t)) )
{
const float * sPtr = reinterpret_cast<const float*>(pSource);
for( size_t icount = 0; icount < size; icount += (sizeof(float)+sizeof(uint32_t)) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( sPtr[0], 0.f /* typeless component assumed zero */, 0.f, 1.f );
sPtr += 2;
}
return true;
}
return false;
case DXGI_FORMAT_X32_TYPELESS_G8X24_UINT:
if ( size >= (sizeof(float)+sizeof(uint32_t)) )
{
const float * sPtr = reinterpret_cast<const float*>(pSource);
for( size_t icount = 0; icount < size; icount += (sizeof(float)+sizeof(uint32_t)) )
{
const uint8_t* pg8 = reinterpret_cast<const uint8_t*>( &sPtr[1] );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( 0.f /* typeless component assumed zero */, static_cast<float>( *pg8 ), 0.f, 1.f );
sPtr += 2;
}
return true;
}
return false;
case DXGI_FORMAT_R10G10B10A2_UNORM:
LOAD_SCANLINE( XMUDECN4, XMLoadUDecN4 );
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
if ( size >= sizeof(XMUDECN4) )
{
const XMUDECN4 * __restrict sPtr = reinterpret_cast<const XMUDECN4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUDECN4) )
{
if ( dPtr >= ePtr ) break;
int32_t ElementX = sPtr->v & 0x3FF;
int32_t ElementY = (sPtr->v >> 10) & 0x3FF;
int32_t ElementZ = (sPtr->v >> 20) & 0x3FF;
XMVECTORF32 vResult = {
(float)(ElementX - 0x180) / 510.0f,
(float)(ElementY - 0x180) / 510.0f,
(float)(ElementZ - 0x180) / 510.0f,
(float)(sPtr->v >> 30) / 3.0f
};
++sPtr;
*(dPtr++) = vResult.v;
}
return true;
}
return false;
case DXGI_FORMAT_R10G10B10A2_UINT:
LOAD_SCANLINE( XMUDEC4, XMLoadUDec4 );
case DXGI_FORMAT_R11G11B10_FLOAT:
LOAD_SCANLINE3( XMFLOAT3PK, XMLoadFloat3PK, g_XMIdentityR3 );
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
LOAD_SCANLINE( XMUBYTEN4, XMLoadUByteN4 )
case DXGI_FORMAT_R8G8B8A8_UINT:
LOAD_SCANLINE( XMUBYTE4, XMLoadUByte4 )
case DXGI_FORMAT_R8G8B8A8_SNORM:
LOAD_SCANLINE( XMBYTEN4, XMLoadByteN4 )
case DXGI_FORMAT_R8G8B8A8_SINT:
LOAD_SCANLINE( XMBYTE4, XMLoadByte4 )
case DXGI_FORMAT_R16G16_FLOAT:
LOAD_SCANLINE2( XMHALF2, XMLoadHalf2, g_XMIdentityR3 )
case DXGI_FORMAT_R16G16_UNORM:
LOAD_SCANLINE2( XMUSHORTN2, XMLoadUShortN2, g_XMIdentityR3 )
case DXGI_FORMAT_R16G16_UINT:
LOAD_SCANLINE2( XMUSHORT2, XMLoadUShort2, g_XMIdentityR3 )
case DXGI_FORMAT_R16G16_SNORM:
LOAD_SCANLINE2( XMSHORTN2, XMLoadShortN2, g_XMIdentityR3 )
case DXGI_FORMAT_R16G16_SINT:
LOAD_SCANLINE2( XMSHORT2, XMLoadShort2, g_XMIdentityR3 )
case DXGI_FORMAT_D32_FLOAT:
case DXGI_FORMAT_R32_FLOAT:
if ( size >= sizeof(float) )
{
const float* __restrict sPtr = reinterpret_cast<const float*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(float) )
{
XMVECTOR v = XMLoadFloat( sPtr++ );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1000 );
}
return true;
}
return false;
case DXGI_FORMAT_R32_UINT:
if ( size >= sizeof(uint32_t) )
{
const uint32_t* __restrict sPtr = reinterpret_cast<const uint32_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
XMVECTOR v = XMLoadInt( sPtr++ );
v = XMConvertVectorUIntToFloat( v, 0 );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1000 );
}
return true;
}
return false;
case DXGI_FORMAT_R32_SINT:
if ( size >= sizeof(int32_t) )
{
const int32_t * __restrict sPtr = reinterpret_cast<const int32_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(int32_t) )
{
XMVECTOR v = XMLoadInt( reinterpret_cast<const uint32_t*> (sPtr++) );
v = XMConvertVectorIntToFloat( v, 0 );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1000 );
}
return true;
}
return false;
case DXGI_FORMAT_D24_UNORM_S8_UINT:
if ( size >= sizeof(uint32_t) )
{
const uint32_t * sPtr = reinterpret_cast<const uint32_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
float d = static_cast<float>( *sPtr & 0xFFFFFF ) / 16777215.f;
float s = static_cast<float>( ( *sPtr & 0xFF000000 ) >> 24 );
++sPtr;
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( d, s, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R24_UNORM_X8_TYPELESS:
if ( size >= sizeof(uint32_t) )
{
const uint32_t * sPtr = reinterpret_cast<const uint32_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
float r = static_cast<float>( *sPtr & 0xFFFFFF ) / 16777215.f;
++sPtr;
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( r, 0.f /* typeless component assumed zero */, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_X24_TYPELESS_G8_UINT:
if ( size >= sizeof(uint32_t) )
{
const uint32_t * sPtr = reinterpret_cast<const uint32_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
float g = static_cast<float>( ( *sPtr & 0xFF000000 ) >> 24 );
++sPtr;
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( 0.f /* typeless component assumed zero */, g, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8G8_UNORM:
LOAD_SCANLINE2( XMUBYTEN2, XMLoadUByteN2, g_XMIdentityR3 )
case DXGI_FORMAT_R8G8_UINT:
LOAD_SCANLINE2( XMUBYTE2, XMLoadUByte2, g_XMIdentityR3 )
case DXGI_FORMAT_R8G8_SNORM:
LOAD_SCANLINE2( XMBYTEN2, XMLoadByteN2, g_XMIdentityR3 )
case DXGI_FORMAT_R8G8_SINT:
LOAD_SCANLINE2( XMBYTE2, XMLoadByte2, g_XMIdentityR3 )
case DXGI_FORMAT_R16_FLOAT:
if ( size >= sizeof(HALF) )
{
const HALF * __restrict sPtr = reinterpret_cast<const HALF*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(HALF) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( XMConvertHalfToFloat(*sPtr++), 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_D16_UNORM:
case DXGI_FORMAT_R16_UNORM:
if ( size >= sizeof(uint16_t) )
{
const uint16_t* __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint16_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++) / 65535.f, 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R16_UINT:
if ( size >= sizeof(uint16_t) )
{
const uint16_t * __restrict sPtr = reinterpret_cast<const uint16_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint16_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++), 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R16_SNORM:
if ( size >= sizeof(int16_t) )
{
const int16_t * __restrict sPtr = reinterpret_cast<const int16_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(int16_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++) / 32767.f, 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R16_SINT:
if ( size >= sizeof(int16_t) )
{
const int16_t * __restrict sPtr = reinterpret_cast<const int16_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(int16_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++), 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8_UNORM:
if ( size >= sizeof(uint8_t) )
{
const uint8_t * __restrict sPtr = reinterpret_cast<const uint8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++) / 255.f, 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8_UINT:
if ( size >= sizeof(uint8_t) )
{
const uint8_t * __restrict sPtr = reinterpret_cast<const uint8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++), 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8_SNORM:
if ( size >= sizeof(int8_t) )
{
const int8_t * __restrict sPtr = reinterpret_cast<const int8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(int8_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++) / 127.f, 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8_SINT:
if ( size >= sizeof(int8_t) )
{
const int8_t * __restrict sPtr = reinterpret_cast<const int8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(int8_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( static_cast<float>(*sPtr++), 0.f, 0.f, 1.f );
}
return true;
}
return false;
case DXGI_FORMAT_A8_UNORM:
if ( size >= sizeof(uint8_t) )
{
const uint8_t * __restrict sPtr = reinterpret_cast<const uint8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( 0.f, 0.f, 0.f, static_cast<float>(*sPtr++) / 255.f );
}
return true;
}
return false;
case DXGI_FORMAT_R1_UNORM:
if ( size >= sizeof(uint8_t) )
{
const uint8_t * __restrict sPtr = reinterpret_cast<const uint8_t*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
for( size_t bcount = 8; bcount > 0; --bcount )
{
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSet( (((*sPtr >> (bcount-1)) & 0x1) ? 1.f : 0.f), 0.f, 0.f, 1.f );
}
++sPtr;
}
return true;
}
return false;
case DXGI_FORMAT_R9G9B9E5_SHAREDEXP:
if ( size >= sizeof(XMFLOAT3SE) )
{
const XMFLOAT3SE * __restrict sPtr = reinterpret_cast<const XMFLOAT3SE*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMFLOAT3SE) )
{
union { float f; int32_t i; } fi;
fi.i = 0x33800000 + (sPtr->e << 23);
float Scale = fi.f;
XMVECTORF32 v = {
Scale * float( sPtr->xm ),
Scale * float( sPtr->ym ),
Scale * float( sPtr->zm ),
1.0f };
if ( dPtr >= ePtr ) break;
*(dPtr++) = v;
}
return true;
}
return false;
case DXGI_FORMAT_R8G8_B8G8_UNORM:
if ( size >= sizeof(XMUBYTEN4) )
{
const XMUBYTEN4 * __restrict sPtr = reinterpret_cast<const XMUBYTEN4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
XMVECTOR v = XMLoadUByteN4( sPtr++ );
XMVECTOR v1 = XMVectorSwizzle<0, 3, 2, 1>( v );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1110 );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v1, g_XMSelect1110 );
}
return true;
}
return false;
case DXGI_FORMAT_G8R8_G8B8_UNORM:
if ( size >= sizeof(XMUBYTEN4) )
{
const XMUBYTEN4 * __restrict sPtr = reinterpret_cast<const XMUBYTEN4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
XMVECTOR v = XMLoadUByteN4( sPtr++ );
XMVECTOR v0 = XMVectorSwizzle<1, 0, 3, 2>( v );
XMVECTOR v1 = XMVectorSwizzle<1, 2, 3, 0>( v );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v0, g_XMSelect1110 );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v1, g_XMSelect1110 );
}
return true;
}
return false;
case DXGI_FORMAT_B5G6R5_UNORM:
if ( size >= sizeof(XMU565) )
{
static XMVECTORF32 s_Scale = { 1.f/31.f, 1.f/63.f, 1.f/31.f, 1.f };
const XMU565 * __restrict sPtr = reinterpret_cast<const XMU565*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMU565) )
{
XMVECTOR v = XMLoadU565( sPtr++ );
v = XMVectorMultiply( v, s_Scale );
v = XMVectorSwizzle<2, 1, 0, 3>( v );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1110 );
}
return true;
}
return false;
case DXGI_FORMAT_B5G5R5A1_UNORM:
if ( size >= sizeof(XMU555) )
{
static XMVECTORF32 s_Scale = { 1.f/31.f, 1.f/31.f, 1.f/31.f, 1.f };
const XMU555 * __restrict sPtr = reinterpret_cast<const XMU555*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMU555) )
{
XMVECTOR v = XMLoadU555( sPtr++ );
v = XMVectorMultiply( v, s_Scale );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSwizzle<2, 1, 0, 3>( v );
}
return true;
}
return false;
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
if ( size >= sizeof(XMUBYTEN4) )
{
const XMUBYTEN4 * __restrict sPtr = reinterpret_cast<const XMUBYTEN4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
XMVECTOR v = XMLoadUByteN4( sPtr++ );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSwizzle<2, 1, 0, 3>( v );
}
return true;
}
return false;
case DXGI_FORMAT_B8G8R8X8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
if ( size >= sizeof(XMUBYTEN4) )
{
const XMUBYTEN4 * __restrict sPtr = reinterpret_cast<const XMUBYTEN4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
XMVECTOR v = XMLoadUByteN4( sPtr++ );
v = XMVectorSwizzle<2, 1, 0, 3>( v );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSelect( g_XMIdentityR3, v, g_XMSelect1110 );
}
return true;
}
return false;
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
if ( size >= sizeof(XMUNIBBLE4) )
{
static XMVECTORF32 s_Scale = { 1.f/15.f, 1.f/15.f, 1.f/15.f, 1.f/15.f };
const XMUNIBBLE4 * __restrict sPtr = reinterpret_cast<const XMUNIBBLE4*>(pSource);
for( size_t icount = 0; icount < size; icount += sizeof(XMUNIBBLE4) )
{
XMVECTOR v = XMLoadUNibble4( sPtr++ );
v = XMVectorMultiply( v, s_Scale );
if ( dPtr >= ePtr ) break;
*(dPtr++) = XMVectorSwizzle<2, 1, 0, 3>( v );
}
return true;
}
return false;
// we don't support the video formats ( see IsVideo function )
#endif // DXGI_1_2_FORMATS
default:
return false;
}
}
#undef LOAD_SCANLINE
#undef LOAD_SCANLINE3
#undef LOAD_SCANLINE2
//-------------------------------------------------------------------------------------
// Stores an image row from standard RGBA XMVECTOR (aligned) array
//-------------------------------------------------------------------------------------
#define STORE_SCANLINE( type, func )\
if ( size >= sizeof(type) )\
{\
type * __restrict dPtr = reinterpret_cast<type*>(pDestination);\
for( size_t icount = 0; icount < size; icount += sizeof(type) )\
{\
if ( sPtr >= ePtr ) break;\
func( dPtr++, *sPtr++ );\
}\
return true; \
}\
return false;
_Use_decl_annotations_
bool _StoreScanline( LPVOID pDestination, size_t size, DXGI_FORMAT format,
const XMVECTOR* pSource, size_t count, float threshold )
{
assert( pDestination && size > 0 );
assert( pSource && count > 0 && (((uintptr_t)pSource & 0xF) == 0) );
assert( IsValid(format) && !IsVideo(format) && !IsTypeless(format) && !IsCompressed(format) );
const XMVECTOR* __restrict sPtr = pSource;
if ( !sPtr )
return false;
const XMVECTOR* ePtr = pSource + count;
switch( format )
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
STORE_SCANLINE( XMFLOAT4, XMStoreFloat4 )
case DXGI_FORMAT_R32G32B32A32_UINT:
STORE_SCANLINE( XMUINT4, XMStoreUInt4 )
case DXGI_FORMAT_R32G32B32A32_SINT:
STORE_SCANLINE( XMINT4, XMStoreSInt4 )
case DXGI_FORMAT_R32G32B32_FLOAT:
STORE_SCANLINE( XMFLOAT3, XMStoreFloat3 )
case DXGI_FORMAT_R32G32B32_UINT:
STORE_SCANLINE( XMUINT3, XMStoreUInt3 )
case DXGI_FORMAT_R32G32B32_SINT:
STORE_SCANLINE( XMINT3, XMStoreSInt3 )
case DXGI_FORMAT_R16G16B16A16_FLOAT:
STORE_SCANLINE( XMHALF4, XMStoreHalf4 )
case DXGI_FORMAT_R16G16B16A16_UNORM:
STORE_SCANLINE( XMUSHORTN4, XMStoreUShortN4 )
case DXGI_FORMAT_R16G16B16A16_UINT:
STORE_SCANLINE( XMUSHORT4, XMStoreUShort4 )
case DXGI_FORMAT_R16G16B16A16_SNORM:
STORE_SCANLINE( XMSHORTN4, XMStoreShortN4 )
case DXGI_FORMAT_R16G16B16A16_SINT:
STORE_SCANLINE( XMSHORT4, XMStoreShort4 )
case DXGI_FORMAT_R32G32_FLOAT:
STORE_SCANLINE( XMFLOAT2, XMStoreFloat2 )
case DXGI_FORMAT_R32G32_UINT:
STORE_SCANLINE( XMUINT2, XMStoreUInt2 )
case DXGI_FORMAT_R32G32_SINT:
STORE_SCANLINE( XMINT2, XMStoreSInt2 )
case DXGI_FORMAT_D32_FLOAT_S8X24_UINT:
if ( size >= (sizeof(float)+sizeof(uint32_t)) )
{
float *dPtr = reinterpret_cast<float*>(pDestination);
for( size_t icount = 0; icount < size; icount += (sizeof(float)+sizeof(uint32_t)) )
{
if ( sPtr >= ePtr ) break;
XMFLOAT4 f;
XMStoreFloat4( &f, *sPtr++ );
dPtr[0] = f.x;
uint8_t* ps8 = reinterpret_cast<uint8_t*>( &dPtr[1] );
ps8[0] = static_cast<uint8_t>( std::min<float>( 255.f, std::max<float>( 0.f, f.y ) ) );
ps8[1] = ps8[2] = ps8[3] = 0;
dPtr += 2;
}
return true;
}
return false;
case DXGI_FORMAT_R10G10B10A2_UNORM:
STORE_SCANLINE( XMUDECN4, XMStoreUDecN4 );
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
if ( size >= sizeof(XMUDECN4) )
{
static const XMVECTORF32 Scale = { 510.0f, 510.0f, 510.0f, 3.0f };
static const XMVECTORF32 Bias = { 384.0f, 384.0f, 384.0f, 0.0f };
static const XMVECTORF32 C = { 1023.f, 1023.f, 1023.f, 3.f };
XMUDECN4 * __restrict dPtr = reinterpret_cast<XMUDECN4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUDECN4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR N = XMVectorMultiplyAdd( *sPtr++, Scale, Bias );
N = XMVectorClamp( N, g_XMZero, C );
XMFLOAT4A tmp;
XMStoreFloat4A(&tmp, N );
dPtr->v = ((uint32_t)tmp.w << 30)
| (((uint32_t)tmp.z & 0x3FF) << 20)
| (((uint32_t)tmp.y & 0x3FF) << 10)
| (((uint32_t)tmp.x & 0x3FF));
++dPtr;
}
return true;
}
return false;
case DXGI_FORMAT_R10G10B10A2_UINT:
STORE_SCANLINE( XMUDEC4, XMStoreUDec4 );
case DXGI_FORMAT_R11G11B10_FLOAT:
STORE_SCANLINE( XMFLOAT3PK, XMStoreFloat3PK );
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
STORE_SCANLINE( XMUBYTEN4, XMStoreUByteN4 )
case DXGI_FORMAT_R8G8B8A8_UINT:
STORE_SCANLINE( XMUBYTE4, XMStoreUByte4 )
case DXGI_FORMAT_R8G8B8A8_SNORM:
STORE_SCANLINE( XMBYTEN4, XMStoreByteN4 )
case DXGI_FORMAT_R8G8B8A8_SINT:
STORE_SCANLINE( XMBYTE4, XMStoreByte4 )
case DXGI_FORMAT_R16G16_FLOAT:
STORE_SCANLINE( XMHALF2, XMStoreHalf2 )
case DXGI_FORMAT_R16G16_UNORM:
STORE_SCANLINE( XMUSHORTN2, XMStoreUShortN2 )
case DXGI_FORMAT_R16G16_UINT:
STORE_SCANLINE( XMUSHORT2, XMStoreUShort2 )
case DXGI_FORMAT_R16G16_SNORM:
STORE_SCANLINE( XMSHORTN2, XMStoreShortN2 )
case DXGI_FORMAT_R16G16_SINT:
STORE_SCANLINE( XMSHORT2, XMStoreShort2 )
case DXGI_FORMAT_D32_FLOAT:
case DXGI_FORMAT_R32_FLOAT:
if ( size >= sizeof(float) )
{
float * __restrict dPtr = reinterpret_cast<float*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(float) )
{
if ( sPtr >= ePtr ) break;
XMStoreFloat( dPtr++, *(sPtr++) );
}
return true;
}
return false;
case DXGI_FORMAT_R32_UINT:
if ( size >= sizeof(uint32_t) )
{
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMConvertVectorFloatToUInt( *(sPtr++), 0 );
XMStoreInt( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_R32_SINT:
if ( size >= sizeof(uint32_t) )
{
uint32_t * __restrict dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMConvertVectorFloatToInt( *(sPtr++), 0 );
XMStoreInt( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_D24_UNORM_S8_UINT:
if ( size >= sizeof(uint32_t) )
{
static const XMVECTORF32 clamp = { 1.f, 255.f, 0.f, 0.f };
XMVECTOR zero = XMVectorZero();
uint32_t *dPtr = reinterpret_cast<uint32_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint32_t) )
{
if ( sPtr >= ePtr ) break;
XMFLOAT4 f;
XMStoreFloat4( &f, XMVectorClamp( *sPtr++, zero, clamp ) );
*dPtr++ = (static_cast<uint32_t>( f.x * 16777215.f ) & 0xFFFFFF)
| ((static_cast<uint32_t>( f.y ) & 0xFF) << 24);
}
return true;
}
return false;
case DXGI_FORMAT_R8G8_UNORM:
STORE_SCANLINE( XMUBYTEN2, XMStoreUByteN2 )
case DXGI_FORMAT_R8G8_UINT:
STORE_SCANLINE( XMUBYTE2, XMStoreUByte2 )
case DXGI_FORMAT_R8G8_SNORM:
STORE_SCANLINE( XMBYTEN2, XMStoreByteN2 )
case DXGI_FORMAT_R8G8_SINT:
STORE_SCANLINE( XMBYTE2, XMStoreByte2 )
case DXGI_FORMAT_R16_FLOAT:
if ( size >= sizeof(HALF) )
{
HALF * __restrict dPtr = reinterpret_cast<HALF*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(HALF) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
*(dPtr++) = XMConvertFloatToHalf(v);
}
return true;
}
return false;
case DXGI_FORMAT_D16_UNORM:
case DXGI_FORMAT_R16_UNORM:
if ( size >= sizeof(uint16_t) )
{
uint16_t * __restrict dPtr = reinterpret_cast<uint16_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint16_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 1.f ), 0.f );
*(dPtr++) = static_cast<uint16_t>( v*65535.f + 0.5f );
}
return true;
}
return false;
case DXGI_FORMAT_R16_UINT:
if ( size >= sizeof(uint16_t) )
{
uint16_t * __restrict dPtr = reinterpret_cast<uint16_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint16_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 65535.f ), 0.f );
*(dPtr++) = static_cast<uint16_t>(v);
}
return true;
}
return false;
case DXGI_FORMAT_R16_SNORM:
if ( size >= sizeof(int16_t) )
{
int16_t * __restrict dPtr = reinterpret_cast<int16_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(int16_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 1.f ), -1.f );
*(dPtr++) = static_cast<uint16_t>( v * 32767.f );
}
return true;
}
return false;
case DXGI_FORMAT_R16_SINT:
if ( size >= sizeof(int16_t) )
{
int16_t * __restrict dPtr = reinterpret_cast<int16_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(int16_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 32767.f ), -32767.f );
*(dPtr++) = static_cast<int16_t>(v);
}
return true;
}
return false;
case DXGI_FORMAT_R8_UNORM:
if ( size >= sizeof(uint8_t) )
{
uint8_t * __restrict dPtr = reinterpret_cast<uint8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 1.f ), 0.f );
*(dPtr++) = static_cast<uint8_t>( v * 255.f);
}
return true;
}
return false;
case DXGI_FORMAT_R8_UINT:
if ( size >= sizeof(uint8_t) )
{
uint8_t * __restrict dPtr = reinterpret_cast<uint8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 255.f ), 0.f );
*(dPtr++) = static_cast<uint8_t>(v);
}
return true;
}
return false;
case DXGI_FORMAT_R8_SNORM:
if ( size >= sizeof(int8_t) )
{
int8_t * __restrict dPtr = reinterpret_cast<int8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(int8_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 1.f ), -1.f );
*(dPtr++) = static_cast<int8_t>( v * 127.f );
}
return true;
}
return false;
case DXGI_FORMAT_R8_SINT:
if ( size >= sizeof(int8_t) )
{
int8_t * __restrict dPtr = reinterpret_cast<int8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(int8_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
v = std::max<float>( std::min<float>( v, 127.f ), -127.f );
*(dPtr++) = static_cast<int8_t>( v );
}
return true;
}
return false;
case DXGI_FORMAT_A8_UNORM:
if ( size >= sizeof(uint8_t) )
{
uint8_t * __restrict dPtr = reinterpret_cast<uint8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetW( *sPtr++ );
v = std::max<float>( std::min<float>( v, 1.f ), 0.f );
*(dPtr++) = static_cast<uint8_t>( v * 255.f);
}
return true;
}
return false;
case DXGI_FORMAT_R1_UNORM:
if ( size >= sizeof(uint8_t) )
{
uint8_t * __restrict dPtr = reinterpret_cast<uint8_t*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(uint8_t) )
{
uint8_t pixels = 0;
for( size_t bcount = 8; bcount > 0; --bcount )
{
if ( sPtr >= ePtr ) break;
float v = XMVectorGetX( *sPtr++ );
// Absolute thresholding generally doesn't give good results for all images
// Picking the 'right' threshold automatically requires whole-image analysis
if ( v > 0.25f )
pixels |= 1 << (bcount-1);
}
*(dPtr++) = pixels;
}
return true;
}
return false;
case DXGI_FORMAT_R9G9B9E5_SHAREDEXP:
if ( size >= sizeof(XMFLOAT3SE) )
{
static const float maxf9 = float(0x1FF << 7);
static const float minf9 = float(1.f / (1 << 16));
XMFLOAT3SE * __restrict dPtr = reinterpret_cast<XMFLOAT3SE*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMFLOAT3SE) )
{
if ( sPtr >= ePtr ) break;
XMFLOAT3 rgb;
XMStoreFloat3( &rgb, *(sPtr++) );
float r = (rgb.x >= 0.f) ? ( (rgb.x > maxf9) ? maxf9 : rgb.x ) : 0.f;
float g = (rgb.y >= 0.f) ? ( (rgb.y > maxf9) ? maxf9 : rgb.y ) : 0.f;
float b = (rgb.z >= 0.f) ? ( (rgb.z > maxf9) ? maxf9 : rgb.z ) : 0.f;
const float max_rg = (r > g) ? r : g;
const float max_rgb = (max_rg > b) ? max_rg : b;
const float maxColor = (max_rgb > minf9) ? max_rgb : minf9;
union { float f; INT32 i; } fi;
fi.f = maxColor;
fi.i &= 0xFF800000; // cut off fraction
dPtr->e = (fi.i - 0x37800000) >> 23;
fi.i = 0x83000000 - fi.i;
float ScaleR = fi.f;
dPtr->xm = static_cast<uint32_t>( round_to_nearest(r * ScaleR) );
dPtr->ym = static_cast<uint32_t>( round_to_nearest(g * ScaleR) );
dPtr->zm = static_cast<uint32_t>( round_to_nearest(b * ScaleR) );
++dPtr;
}
return true;
}
return false;
case DXGI_FORMAT_R8G8_B8G8_UNORM:
if ( size >= sizeof(XMUBYTEN4) )
{
XMUBYTEN4 * __restrict dPtr = reinterpret_cast<XMUBYTEN4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v0 = *sPtr++;
XMVECTOR v1 = (sPtr < ePtr) ? XMVectorSplatY( *sPtr++ ) : XMVectorZero();
XMVECTOR v = XMVectorSelect( v1, v0, g_XMSelect1110 );
XMStoreUByteN4( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_G8R8_G8B8_UNORM:
if ( size >= sizeof(XMUBYTEN4) )
{
static XMVECTORI32 select1101 = {XM_SELECT_1, XM_SELECT_1, XM_SELECT_0, XM_SELECT_1};
XMUBYTEN4 * __restrict dPtr = reinterpret_cast<XMUBYTEN4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v0 = XMVectorSwizzle<1, 0, 3, 2>( *sPtr++ );
XMVECTOR v1 = (sPtr < ePtr) ? XMVectorSplatY( *sPtr++ ) : XMVectorZero();
XMVECTOR v = XMVectorSelect( v1, v0, select1101 );
XMStoreUByteN4( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_B5G6R5_UNORM:
if ( size >= sizeof(XMU565) )
{
static XMVECTORF32 s_Scale = { 31.f, 63.f, 31.f, 1.f };
XMU565 * __restrict dPtr = reinterpret_cast<XMU565*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMU565) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( *sPtr++ );
v = XMVectorMultiply( v, s_Scale );
XMStoreU565( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_B5G5R5A1_UNORM:
if ( size >= sizeof(XMU555) )
{
static XMVECTORF32 s_Scale = { 31.f, 31.f, 31.f, 1.f };
XMU555 * __restrict dPtr = reinterpret_cast<XMU555*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMU555) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( *sPtr++ );
v = XMVectorMultiply( v, s_Scale );
XMStoreU555( dPtr, v );
dPtr->w = ( XMVectorGetW( v ) > threshold ) ? 1 : 0;
++dPtr;
}
return true;
}
return false;
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
if ( size >= sizeof(XMUBYTEN4) )
{
XMUBYTEN4 * __restrict dPtr = reinterpret_cast<XMUBYTEN4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( *sPtr++ );
XMStoreUByteN4( dPtr++, v );
}
return true;
}
return false;
case DXGI_FORMAT_B8G8R8X8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
if ( size >= sizeof(XMUBYTEN4) )
{
XMUBYTEN4 * __restrict dPtr = reinterpret_cast<XMUBYTEN4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUBYTEN4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMVectorPermute<2, 1, 0, 7>( *sPtr++, g_XMIdentityR3 );
XMStoreUByteN4( dPtr++, v );
}
return true;
}
return false;
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
if ( size >= sizeof(XMUNIBBLE4) )
{
static XMVECTORF32 s_Scale = { 15.f, 15.f, 15.f, 15.f };
XMUNIBBLE4 * __restrict dPtr = reinterpret_cast<XMUNIBBLE4*>(pDestination);
for( size_t icount = 0; icount < size; icount += sizeof(XMUNIBBLE4) )
{
if ( sPtr >= ePtr ) break;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( *sPtr++ );
v = XMVectorMultiply( v, s_Scale );
XMStoreUNibble4( dPtr++, v );
}
return true;
}
return false;
// We don't support the video formats ( see IsVideo function )
#endif // DXGI_1_2_FORMATS
default:
return false;
}
}
#undef STORE_SCANLINE
//-------------------------------------------------------------------------------------
// Convert DXGI image to/from GUID_WICPixelFormat128bppRGBAFloat (no range conversions)
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT _ConvertToR32G32B32A32( const Image& srcImage, ScratchImage& image )
{
if ( !srcImage.pixels )
return E_POINTER;
HRESULT hr = image.Initialize2D( DXGI_FORMAT_R32G32B32A32_FLOAT, srcImage.width, srcImage.height, 1, 1 );
if ( FAILED(hr) )
return hr;
const Image *img = image.GetImage( 0, 0, 0 );
if ( !img )
{
image.Release();
return E_POINTER;
}
uint8_t* pDest = img->pixels;
if ( !pDest )
{
image.Release();
return E_POINTER;
}
const uint8_t *pSrc = srcImage.pixels;
for( size_t h = 0; h < srcImage.height; ++h )
{
if ( !_LoadScanline( reinterpret_cast<XMVECTOR*>(pDest), srcImage.width, pSrc, srcImage.rowPitch, srcImage.format ) )
{
image.Release();
return E_FAIL;
}
pSrc += srcImage.rowPitch;
pDest += img->rowPitch;
}
return S_OK;
}
_Use_decl_annotations_
HRESULT _ConvertFromR32G32B32A32( const Image& srcImage, const Image& destImage )
{
assert( srcImage.format == DXGI_FORMAT_R32G32B32A32_FLOAT );
if ( !srcImage.pixels || !destImage.pixels )
return E_POINTER;
if ( srcImage.width != destImage.width || srcImage.height != destImage.height )
return E_FAIL;
const uint8_t *pSrc = srcImage.pixels;
uint8_t* pDest = destImage.pixels;
for( size_t h = 0; h < srcImage.height; ++h )
{
if ( !_StoreScanline( pDest, destImage.rowPitch, destImage.format, reinterpret_cast<const XMVECTOR*>(pSrc), srcImage.width ) )
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += destImage.rowPitch;
}
return S_OK;
}
_Use_decl_annotations_
HRESULT _ConvertFromR32G32B32A32( const Image& srcImage, DXGI_FORMAT format, ScratchImage& image )
{
if ( !srcImage.pixels )
return E_POINTER;
HRESULT hr = image.Initialize2D( format, srcImage.width, srcImage.height, 1, 1 );
if ( FAILED(hr) )
return hr;
const Image *img = image.GetImage( 0, 0, 0 );
if ( !img )
{
image.Release();
return E_POINTER;
}
hr = _ConvertFromR32G32B32A32( srcImage, *img );
if ( FAILED(hr) )
{
image.Release();
return hr;
}
return S_OK;
}
_Use_decl_annotations_
HRESULT _ConvertFromR32G32B32A32( const Image* srcImages, size_t nimages, const TexMetadata& metadata, DXGI_FORMAT format, ScratchImage& result )
{
if ( !srcImages )
return E_POINTER;
result.Release();
assert( metadata.format == DXGI_FORMAT_R32G32B32A32_FLOAT );
TexMetadata mdata2 = metadata;
mdata2.format = format;
HRESULT hr = result.Initialize( mdata2 );
if ( FAILED(hr) )
return hr;
if ( nimages != result.GetImageCount() )
{
result.Release();
return E_FAIL;
}
const Image* dest = result.GetImages();
if ( !dest )
{
result.Release();
return E_POINTER;
}
for( size_t index=0; index < nimages; ++index )
{
const Image& src = srcImages[ index ];
const Image& dst = dest[ index ];
assert( src.format == DXGI_FORMAT_R32G32B32A32_FLOAT );
assert( dst.format == format );
if ( src.width != dst.width || src.height != dst.height )
{
result.Release();
return E_FAIL;
}
const uint8_t* pSrc = src.pixels;
uint8_t* pDest = dst.pixels;
if ( !pSrc || !pDest )
{
result.Release();
return E_POINTER;
}
for( size_t h=0; h < src.height; ++h )
{
if ( !_StoreScanline( pDest, dst.rowPitch, format, reinterpret_cast<const XMVECTOR*>(pSrc), src.width ) )
{
result.Release();
return E_FAIL;
}
pSrc += src.rowPitch;
pDest += dst.rowPitch;
}
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Convert from Linear RGB to sRGB
//
// if C_linear <= 0.0031308 -> C_srgb = 12.92 * C_linear
// if C_linear > 0.0031308 -> C_srgb = ( 1 + a ) * pow( C_Linear, 1 / 2.4 ) - a
// where a = 0.055
//-------------------------------------------------------------------------------------
static inline XMVECTOR RGBToSRGB( FXMVECTOR rgb )
{
static const XMVECTORF32 Cutoff = { 0.0031308f, 0.0031308f, 0.0031308f, 1.f };
static const XMVECTORF32 Linear = { 12.92f, 12.92f, 12.92f, 1.f };
static const XMVECTORF32 Scale = { 1.055f, 1.055f, 1.055f, 1.f };
static const XMVECTORF32 Bias = { 0.055f, 0.055f, 0.055f, 0.f };
static const XMVECTORF32 InvGamma = { 1.0f/2.4f, 1.0f/2.4f, 1.0f/2.4f, 1.f };
XMVECTOR V = XMVectorSaturate(rgb);
XMVECTOR V0 = XMVectorMultiply( V, Linear );
XMVECTOR V1 = Scale * XMVectorPow( V, InvGamma ) - Bias;
XMVECTOR select = XMVectorLess( V, Cutoff );
V = XMVectorSelect( V1, V0, select );
return XMVectorSelect( rgb, V, g_XMSelect1110 );
}
_Use_decl_annotations_
bool _StoreScanlineLinear( LPVOID pDestination, size_t size, DXGI_FORMAT format,
XMVECTOR* pSource, size_t count, DWORD flags )
{
assert( pDestination && size > 0 );
assert( pSource && count > 0 && (((uintptr_t)pSource & 0xF) == 0) );
assert( IsValid(format) && !IsVideo(format) && !IsTypeless(format) && !IsCompressed(format) );
switch ( format )
{
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= TEX_FILTER_SRGB;
break;
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R32G32B32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
case DXGI_FORMAT_R16G16B16A16_UNORM:
case DXGI_FORMAT_R32G32_FLOAT:
case DXGI_FORMAT_R10G10B10A2_UNORM:
case DXGI_FORMAT_R11G11B10_FLOAT:
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R16G16_FLOAT:
case DXGI_FORMAT_R16G16_UNORM:
case DXGI_FORMAT_R32_FLOAT:
case DXGI_FORMAT_R8G8_UNORM:
case DXGI_FORMAT_R16_FLOAT:
case DXGI_FORMAT_R16_UNORM:
case DXGI_FORMAT_R8_UNORM:
case DXGI_FORMAT_R9G9B9E5_SHAREDEXP:
case DXGI_FORMAT_R8G8_B8G8_UNORM:
case DXGI_FORMAT_G8R8_G8B8_UNORM:
case DXGI_FORMAT_B5G6R5_UNORM:
case DXGI_FORMAT_B5G5R5A1_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM:
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
#endif
break;
default:
// can't treat A8, XR, Depth, SNORM, UINT, or SINT as sRGB
flags &= ~TEX_FILTER_SRGB;
break;
}
// sRGB output processing (Linear RGB -> sRGB)
if ( flags & TEX_FILTER_SRGB_OUT )
{
// To avoid the need for another temporary scanline buffer, we allow this function to overwrite the source buffer in-place
// Given the intended usage in the filtering routines, this is not a problem.
XMVECTOR* ptr = pSource;
for( size_t i=0; i < count; ++i, ++ptr )
{
*ptr = RGBToSRGB( *ptr );
}
}
return _StoreScanline( pDestination, size, format, pSource, count );
}
//-------------------------------------------------------------------------------------
// Convert from sRGB to Linear RGB
//
// if C_srgb <= 0.04045 -> C_linear = C_srgb / 12.92
// if C_srgb > 0.04045 -> C_linear = pow( ( C_srgb + a ) / ( 1 + a ), 2.4 )
// where a = 0.055
//-------------------------------------------------------------------------------------
static inline XMVECTOR SRGBToRGB( FXMVECTOR srgb )
{
static const XMVECTORF32 Cutoff = { 0.04045f, 0.04045f, 0.04045f, 1.f };
static const XMVECTORF32 ILinear = { 1.f/12.92f, 1.f/12.92f, 1.f/12.92f, 1.f };
static const XMVECTORF32 Scale = { 1.f/1.055f, 1.f/1.055f, 1.f/1.055f, 1.f };
static const XMVECTORF32 Bias = { 0.055f, 0.055f, 0.055f, 0.f };
static const XMVECTORF32 Gamma = { 2.4f, 2.4f, 2.4f, 1.f };
XMVECTOR V = XMVectorSaturate(srgb);
XMVECTOR V0 = XMVectorMultiply( V, ILinear );
XMVECTOR V1 = XMVectorPow( (V + Bias) * Scale, Gamma );
XMVECTOR select = XMVectorGreater( V, Cutoff );
V = XMVectorSelect( V0, V1, select );
return XMVectorSelect( srgb, V, g_XMSelect1110 );
}
_Use_decl_annotations_
bool _LoadScanlineLinear( XMVECTOR* pDestination, size_t count,
LPCVOID pSource, size_t size, DXGI_FORMAT format, DWORD flags )
{
assert( pDestination && count > 0 && (((uintptr_t)pDestination & 0xF) == 0) );
assert( pSource && size > 0 );
assert( IsValid(format) && !IsVideo(format) && !IsTypeless(format,false) && !IsCompressed(format) );
switch ( format )
{
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= TEX_FILTER_SRGB;
break;
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R32G32B32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
case DXGI_FORMAT_R16G16B16A16_UNORM:
case DXGI_FORMAT_R32G32_FLOAT:
case DXGI_FORMAT_R10G10B10A2_UNORM:
case DXGI_FORMAT_R11G11B10_FLOAT:
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R16G16_FLOAT:
case DXGI_FORMAT_R16G16_UNORM:
case DXGI_FORMAT_R32_FLOAT:
case DXGI_FORMAT_R8G8_UNORM:
case DXGI_FORMAT_R16_FLOAT:
case DXGI_FORMAT_R16_UNORM:
case DXGI_FORMAT_R8_UNORM:
case DXGI_FORMAT_R9G9B9E5_SHAREDEXP:
case DXGI_FORMAT_R8G8_B8G8_UNORM:
case DXGI_FORMAT_G8R8_G8B8_UNORM:
case DXGI_FORMAT_B5G6R5_UNORM:
case DXGI_FORMAT_B5G5R5A1_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM:
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
#endif
break;
default:
// can't treat A8, XR, Depth, SNORM, UINT, or SINT as sRGB
flags &= ~TEX_FILTER_SRGB;
break;
}
if ( _LoadScanline( pDestination, count, pSource, size, format ) )
{
// sRGB input processing (sRGB -> Linear RGB)
if ( flags & TEX_FILTER_SRGB_IN )
{
XMVECTOR* ptr = pDestination;
for( size_t i=0; i < count; ++i, ++ptr )
{
*ptr = SRGBToRGB( *ptr );
}
}
return true;
}
return false;
}
//-------------------------------------------------------------------------------------
// Convert scanline based on source/target formats
//-------------------------------------------------------------------------------------
struct ConvertData
{
DXGI_FORMAT format;
size_t datasize;
DWORD flags;
};
static const ConvertData g_ConvertTable[] = {
{ DXGI_FORMAT_R32G32B32A32_FLOAT, 32, CONVF_FLOAT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R32G32B32A32_UINT, 32, CONVF_UINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R32G32B32A32_SINT, 32, CONVF_SINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R32G32B32_FLOAT, 32, CONVF_FLOAT | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R32G32B32_UINT, 32, CONVF_UINT | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R32G32B32_SINT, 32, CONVF_SINT | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R16G16B16A16_FLOAT, 16, CONVF_FLOAT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R16G16B16A16_UNORM, 16, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R16G16B16A16_UINT, 16, CONVF_UINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R16G16B16A16_SNORM, 16, CONVF_SNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R16G16B16A16_SINT, 16, CONVF_SINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R32G32_FLOAT, 32, CONVF_FLOAT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R32G32_UINT, 32, CONVF_UINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R32G32_SINT, 32, CONVF_SINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_D32_FLOAT_S8X24_UINT, 32, CONVF_FLOAT | CONVF_DEPTH | CONVF_STENCIL },
{ DXGI_FORMAT_R10G10B10A2_UNORM, 10, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R10G10B10A2_UINT, 10, CONVF_UINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R11G11B10_FLOAT, 10, CONVF_FLOAT | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R8G8B8A8_UNORM, 8, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R8G8B8A8_UNORM_SRGB, 8, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R8G8B8A8_UINT, 8, CONVF_UINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R8G8B8A8_SNORM, 8, CONVF_SNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R8G8B8A8_SINT, 8, CONVF_SINT | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_R16G16_FLOAT, 16, CONVF_FLOAT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R16G16_UNORM, 16, CONVF_UNORM | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R16G16_UINT, 16, CONVF_UINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R16G16_SNORM, 16, CONVF_SNORM | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R16G16_SINT, 16, CONVF_SINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_D32_FLOAT, 32, CONVF_FLOAT | CONVF_DEPTH },
{ DXGI_FORMAT_R32_FLOAT, 32, CONVF_FLOAT | CONVF_R },
{ DXGI_FORMAT_R32_UINT, 32, CONVF_UINT | CONVF_R },
{ DXGI_FORMAT_R32_SINT, 32, CONVF_SINT | CONVF_R },
{ DXGI_FORMAT_D24_UNORM_S8_UINT, 32, CONVF_UNORM | CONVF_DEPTH | CONVF_STENCIL },
{ DXGI_FORMAT_R8G8_UNORM, 8, CONVF_UNORM | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R8G8_UINT, 8, CONVF_UINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R8G8_SNORM, 8, CONVF_SNORM | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R8G8_SINT, 8, CONVF_SINT | CONVF_R | CONVF_G },
{ DXGI_FORMAT_R16_FLOAT, 16, CONVF_FLOAT | CONVF_R },
{ DXGI_FORMAT_D16_UNORM, 16, CONVF_UNORM | CONVF_DEPTH },
{ DXGI_FORMAT_R16_UNORM, 16, CONVF_UNORM | CONVF_R },
{ DXGI_FORMAT_R16_UINT, 16, CONVF_UINT | CONVF_R },
{ DXGI_FORMAT_R16_SNORM, 16, CONVF_SNORM | CONVF_R },
{ DXGI_FORMAT_R16_SINT, 16, CONVF_SINT | CONVF_R },
{ DXGI_FORMAT_R8_UNORM, 8, CONVF_UNORM | CONVF_R },
{ DXGI_FORMAT_R8_UINT, 8, CONVF_UINT | CONVF_R },
{ DXGI_FORMAT_R8_SNORM, 8, CONVF_SNORM | CONVF_R },
{ DXGI_FORMAT_R8_SINT, 8, CONVF_SINT | CONVF_R },
{ DXGI_FORMAT_A8_UNORM, 8, CONVF_UNORM | CONVF_A },
{ DXGI_FORMAT_R1_UNORM, 1, CONVF_UNORM | CONVF_R },
{ DXGI_FORMAT_R9G9B9E5_SHAREDEXP, 9, CONVF_SHAREDEXP | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R8G8_B8G8_UNORM, 8, CONVF_UNORM | CONVF_PACKED | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_G8R8_G8B8_UNORM, 8, CONVF_UNORM | CONVF_PACKED | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_BC1_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC1_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC2_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC2_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC3_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC3_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC4_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R },
{ DXGI_FORMAT_BC4_SNORM, 8, CONVF_SNORM | CONVF_BC | CONVF_R },
{ DXGI_FORMAT_BC5_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G },
{ DXGI_FORMAT_BC5_SNORM, 8, CONVF_SNORM | CONVF_BC | CONVF_R | CONVF_G },
{ DXGI_FORMAT_B5G6R5_UNORM, 5, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_B5G5R5A1_UNORM, 5, CONVF_UNORM | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_B8G8R8A8_UNORM, 8, CONVF_UNORM | CONVF_BGR | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_B8G8R8X8_UNORM, 8, CONVF_UNORM | CONVF_BGR | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM, 10, CONVF_UNORM | CONVF_XR | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_B8G8R8A8_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BGR | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_B8G8R8X8_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BGR | CONVF_R | CONVF_G | CONVF_B },
{ DXGI_FORMAT_BC6H_UF16, 16, CONVF_FLOAT | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC6H_SF16, 16, CONVF_FLOAT | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC7_UNORM, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
{ DXGI_FORMAT_BC7_UNORM_SRGB, 8, CONVF_UNORM | CONVF_BC | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
#ifdef DXGI_1_2_FORMATS
{ DXGI_FORMAT_B4G4R4A4_UNORM, 4, CONVF_UNORM | CONVF_BGR | CONVF_R | CONVF_G | CONVF_B | CONVF_A },
#endif
};
#pragma prefast( suppress : 25004, "Signature must match bsearch_s" );
static int __cdecl _ConvertCompare( void *context, const void* ptr1, const void *ptr2 )
{
UNREFERENCED_PARAMETER(context);
const ConvertData *p1 = reinterpret_cast<const ConvertData*>(ptr1);
const ConvertData *p2 = reinterpret_cast<const ConvertData*>(ptr2);
if ( p1->format == p2->format ) return 0;
else return (p1->format < p2->format ) ? -1 : 1;
}
_Use_decl_annotations_
DWORD _GetConvertFlags( DXGI_FORMAT format )
{
#ifdef _DEBUG
// Ensure conversion table is in ascending order
assert( _countof(g_ConvertTable) > 0 );
DXGI_FORMAT lastvalue = g_ConvertTable[0].format;
for( size_t index=1; index < _countof(g_ConvertTable); ++index )
{
assert( g_ConvertTable[index].format > lastvalue );
lastvalue = g_ConvertTable[index].format;
}
#endif
ConvertData key = { format, 0 };
const ConvertData* in = (const ConvertData*) bsearch_s( &key, g_ConvertTable, _countof(g_ConvertTable), sizeof(ConvertData),
_ConvertCompare, 0 );
return (in) ? in->flags : 0;
}
_Use_decl_annotations_
void _ConvertScanline( XMVECTOR* pBuffer, size_t count, DXGI_FORMAT outFormat, DXGI_FORMAT inFormat, DWORD flags )
{
assert( pBuffer && count > 0 && (((uintptr_t)pBuffer & 0xF) == 0) );
assert( IsValid(outFormat) && !IsVideo(outFormat) && !IsTypeless(outFormat) );
assert( IsValid(inFormat) && !IsVideo(inFormat) && !IsTypeless(inFormat) );
if ( !pBuffer )
return;
#ifdef _DEBUG
// Ensure conversion table is in ascending order
assert( _countof(g_ConvertTable) > 0 );
DXGI_FORMAT lastvalue = g_ConvertTable[0].format;
for( size_t index=1; index < _countof(g_ConvertTable); ++index )
{
assert( g_ConvertTable[index].format > lastvalue );
lastvalue = g_ConvertTable[index].format;
}
#endif
// Determine conversion details about source and dest formats
ConvertData key = { inFormat, 0 };
const ConvertData* in = (const ConvertData*) bsearch_s( &key, g_ConvertTable, _countof(g_ConvertTable), sizeof(ConvertData),
_ConvertCompare, 0 );
key.format = outFormat;
const ConvertData* out = (const ConvertData*) bsearch_s( &key, g_ConvertTable, _countof(g_ConvertTable), sizeof(ConvertData),
_ConvertCompare, 0 );
if ( !in || !out )
{
assert(false);
return;
}
assert( _GetConvertFlags( inFormat ) == in->flags );
assert( _GetConvertFlags( outFormat ) == out->flags );
// Handle SRGB filtering modes
switch ( inFormat )
{
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= TEX_FILTER_SRGB_IN;
break;
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
flags &= ~TEX_FILTER_SRGB_IN;
break;
}
switch ( outFormat )
{
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= TEX_FILTER_SRGB_OUT;
break;
case DXGI_FORMAT_A8_UNORM:
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
flags &= ~TEX_FILTER_SRGB_OUT;
break;
}
if ( (flags & (TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT)) == (TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT) )
{
flags &= ~(TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT);
}
// sRGB input processing (sRGB -> Linear RGB)
if ( flags & TEX_FILTER_SRGB_IN )
{
if ( !(in->flags & CONVF_DEPTH) && ( (in->flags & CONVF_FLOAT) || (in->flags & CONVF_UNORM) ) )
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i, ++ptr )
{
*ptr = SRGBToRGB( *ptr );
}
}
}
// Handle conversion special cases
DWORD diffFlags = in->flags ^ out->flags;
if ( diffFlags != 0)
{
if ( out->flags & CONVF_UNORM )
{
if ( in->flags & CONVF_SNORM )
{
// SNORM -> UNORM
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorMultiplyAdd( v, g_XMOneHalf, g_XMOneHalf );
}
}
else if ( in->flags & CONVF_FLOAT )
{
// FLOAT -> UNORM
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorSaturate( v );
}
}
}
else if ( out->flags & CONVF_SNORM )
{
if ( in->flags & CONVF_UNORM )
{
// UNORM -> SNORM
static XMVECTORF32 two = { 2.0f, 2.0f, 2.0f, 2.0f };
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorMultiplyAdd( v, two, g_XMNegativeOne );
}
}
else if ( in->flags & CONVF_FLOAT )
{
// FLOAT -> SNORM
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorClamp( v, g_XMNegativeOne, g_XMOne );
}
}
}
// !CONVF_A -> CONVF_A is handled because LoadScanline ensures alpha defaults to 1.0 for no-alpha formats
// CONVF_PACKED cases are handled because LoadScanline/StoreScanline handles packing/unpacking
if ( ((out->flags & CONVF_RGBA_MASK) == CONVF_A) && !(in->flags & CONVF_A) )
{
// !CONVF_A -> A format
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorSplatX( v );
}
}
else if ( ((in->flags & CONVF_RGBA_MASK) == CONVF_A) && !(out->flags & CONVF_A) )
{
// A format -> !CONVF_A
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
*ptr++ = XMVectorSplatW( v );
}
}
else if ( (in->flags & CONVF_RGB_MASK) == CONVF_R )
{
if ( (out->flags & CONVF_RGB_MASK) == (CONVF_R|CONVF_G|CONVF_B) )
{
// R format -> RGB format
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSplatX( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1110 );
}
}
else if ( (out->flags & CONVF_RGB_MASK) == (CONVF_R|CONVF_G) )
{
// R format -> RG format
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSplatX( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1100 );
}
}
}
else if ( (in->flags & CONVF_RGB_MASK) == (CONVF_R|CONVF_G|CONVF_B) )
{
if ( (out->flags & CONVF_RGB_MASK) == CONVF_R )
{
// RGB format -> R format
switch( flags & ( TEX_FILTER_RGB_COPY_RED | TEX_FILTER_RGB_COPY_GREEN | TEX_FILTER_RGB_COPY_BLUE ) )
{
case TEX_FILTER_RGB_COPY_RED:
// Leave data unchanged and the store will handle this...
break;
case TEX_FILTER_RGB_COPY_GREEN:
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSplatY( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1110 );
}
}
break;
case TEX_FILTER_RGB_COPY_BLUE:
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSplatZ( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1110 );
}
}
break;
default:
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVector3Dot( v, g_Grayscale );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1110 );
}
}
break;
}
}
else if ( (out->flags & CONVF_RGB_MASK) == (CONVF_R|CONVF_G) )
{
// RGB format -> RG format
switch( flags & ( TEX_FILTER_RGB_COPY_RED | TEX_FILTER_RGB_COPY_GREEN | TEX_FILTER_RGB_COPY_BLUE ) )
{
case TEX_FILTER_RGB_COPY_RED | TEX_FILTER_RGB_COPY_BLUE:
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSwizzle<0,2,0,2>( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1100 );
}
}
break;
case TEX_FILTER_RGB_COPY_GREEN | TEX_FILTER_RGB_COPY_BLUE:
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i )
{
XMVECTOR v = *ptr;
XMVECTOR v1 = XMVectorSwizzle<1,2,3,0>( v );
*ptr++ = XMVectorSelect( v, v1, g_XMSelect1100 );
}
}
break;
case TEX_FILTER_RGB_COPY_RED | TEX_FILTER_RGB_COPY_GREEN:
default:
// Leave data unchanged and the store will handle this...
break;
}
}
}
}
// sRGB output processing (Linear RGB -> sRGB)
if ( flags & TEX_FILTER_SRGB_OUT )
{
if ( !(out->flags & CONVF_DEPTH) && ( (out->flags & CONVF_FLOAT) || (out->flags & CONVF_UNORM) ) )
{
XMVECTOR* ptr = pBuffer;
for( size_t i=0; i < count; ++i, ++ptr )
{
*ptr = RGBToSRGB( *ptr );
}
}
}
}
//-------------------------------------------------------------------------------------
// Dithering
//-------------------------------------------------------------------------------------
// 4X4X4 ordered dithering matrix
static const float g_Dither[] =
{
// (z & 3) + ( (y & 3) * 8) + (x & 3)
0.468750f, -0.031250f, 0.343750f, -0.156250f, 0.468750f, -0.031250f, 0.343750f, -0.156250f,
-0.281250f, 0.218750f, -0.406250f, 0.093750f, -0.281250f, 0.218750f, -0.406250f, 0.093750f,
0.281250f, -0.218750f, 0.406250f, -0.093750f, 0.281250f, -0.218750f, 0.406250f, -0.093750f,
-0.468750f, 0.031250f, -0.343750f, 0.156250f, -0.468750f, 0.031250f, -0.343750f, 0.156250f,
};
static const XMVECTORF32 g_Scale16pc = { 65535.f, 65535.f, 65535.f, 65535.f };
static const XMVECTORF32 g_Scale15pc = { 32767.f, 32767.f, 32767.f, 32767.f };
static const XMVECTORF32 g_Scale10pc = { 1023.f, 1023.f, 1023.f, 3.f };
static const XMVECTORF32 g_Scale8pc = { 255.f, 255.f, 255.f, 255.f };
static const XMVECTORF32 g_Scale7pc = { 127.f, 127.f, 127.f, 127.f };
static const XMVECTORF32 g_Scale565pc = { 31.f, 63.f, 31.f, 1.f };
static const XMVECTORF32 g_Scale5551pc = { 31.f, 31.f, 31.f, 1.f };
static const XMVECTORF32 g_Scale4pc = { 15.f, 15.f, 15.f, 15.f };
static const XMVECTORF32 g_ErrorWeight3 = { 3.f/16.f, 3.f/16.f, 3.f/16.f, 3.f/16.f };
static const XMVECTORF32 g_ErrorWeight5 = { 5.f/16.f, 5.f/16.f, 5.f/16.f, 5.f/16.f };
static const XMVECTORF32 g_ErrorWeight1 = { 1.f/16.f, 1.f/16.f, 1.f/16.f, 1.f/16.f };
static const XMVECTORF32 g_ErrorWeight7 = { 7.f/16.f, 7.f/16.f, 7.f/16.f, 7.f/16.f };
#define STORE_SCANLINE( type, scalev, clampzero, norm, itype, mask, row, bgr ) \
if ( size >= sizeof(type) ) \
{ \
type * __restrict dest = reinterpret_cast<type*>(pDestination); \
for( size_t i = 0; i < count; ++i ) \
{ \
ptrdiff_t index = static_cast<ptrdiff_t>( ( row & 1 ) ? ( count - i - 1 ) : i ); \
ptrdiff_t delta = ( row & 1 ) ? -2 : 0; \
\
XMVECTOR v = sPtr[ index ]; \
if ( bgr ) { v = XMVectorSwizzle<2, 1, 0, 3>( v ); } \
if ( norm && clampzero ) v = XMVectorSaturate( v ) ; \
else if ( clampzero ) v = XMVectorClamp( v, g_XMZero, scalev ); \
else if ( norm ) v = XMVectorClamp( v, g_XMNegativeOne, g_XMOne ); \
else v = XMVectorClamp( v, -scalev + g_XMOne, scalev ); \
v = XMVectorAdd( v, vError ); \
if ( norm ) v = XMVectorMultiply( v, scalev ); \
\
XMVECTOR target; \
if ( pDiffusionErrors ) \
{ \
target = XMVectorRound( v ); \
vError = XMVectorSubtract( v, target ); \
if (norm) vError = XMVectorDivide( vError, scalev ); \
\
/* Distribute error to next scanline and next pixel */ \
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError ); \
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError ); \
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError ); \
vError = XMVectorMultiply( vError, g_ErrorWeight7 ); \
} \
else \
{ \
/* Applied ordered dither */ \
target = XMVectorAdd( v, ordered[ index & 3 ] ); \
target = XMVectorRound( v ); \
} \
\
target = XMVectorMin( scalev, target ); \
target = XMVectorMax( (clampzero) ? g_XMZero : ( -scalev + g_XMOne ), target ); \
\
XMFLOAT4A tmp; \
XMStoreFloat4A( &tmp, target ); \
\
auto dPtr = &dest[ index ]; \
dPtr->x = static_cast<itype>( tmp.x ) & mask; \
dPtr->y = static_cast<itype>( tmp.y ) & mask; \
dPtr->z = static_cast<itype>( tmp.z ) & mask; \
dPtr->w = static_cast<itype>( tmp.w ) & mask; \
} \
return true; \
} \
return false;
#define STORE_SCANLINE2( type, scalev, clampzero, norm, itype, mask, row ) \
/* The 2 component cases are always bgr=false */ \
if ( size >= sizeof(type) ) \
{ \
type * __restrict dest = reinterpret_cast<type*>(pDestination); \
for( size_t i = 0; i < count; ++i ) \
{ \
ptrdiff_t index = static_cast<ptrdiff_t>( ( row & 1 ) ? ( count - i - 1 ) : i ); \
ptrdiff_t delta = ( row & 1 ) ? -2 : 0; \
\
XMVECTOR v = sPtr[ index ]; \
if ( norm && clampzero ) v = XMVectorSaturate( v ) ; \
else if ( clampzero ) v = XMVectorClamp( v, g_XMZero, scalev ); \
else if ( norm ) v = XMVectorClamp( v, g_XMNegativeOne, g_XMOne ); \
else v = XMVectorClamp( v, -scalev + g_XMOne, scalev ); \
v = XMVectorAdd( v, vError ); \
if ( norm ) v = XMVectorMultiply( v, scalev ); \
\
XMVECTOR target; \
if ( pDiffusionErrors ) \
{ \
target = XMVectorRound( v ); \
vError = XMVectorSubtract( v, target ); \
if (norm) vError = XMVectorDivide( vError, scalev ); \
\
/* Distribute error to next scanline and next pixel */ \
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError ); \
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError ); \
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError ); \
vError = XMVectorMultiply( vError, g_ErrorWeight7 ); \
} \
else \
{ \
/* Applied ordered dither */ \
target = XMVectorAdd( v, ordered[ index & 3 ] ); \
target = XMVectorRound( v ); \
} \
\
target = XMVectorMin( scalev, target ); \
target = XMVectorMax( (clampzero) ? g_XMZero : ( -scalev + g_XMOne ), target ); \
\
XMFLOAT4A tmp; \
XMStoreFloat4A( &tmp, target ); \
\
auto dPtr = &dest[ index ]; \
dPtr->x = static_cast<itype>( tmp.x ) & mask; \
dPtr->y = static_cast<itype>( tmp.y ) & mask; \
} \
return true; \
} \
return false;
#define STORE_SCANLINE1( type, scalev, clampzero, norm, mask, row, selectw ) \
/* The 1 component cases are always bgr=false */ \
if ( size >= sizeof(type) ) \
{ \
type * __restrict dest = reinterpret_cast<type*>(pDestination); \
for( size_t i = 0; i < count; ++i ) \
{ \
ptrdiff_t index = static_cast<ptrdiff_t>( ( row & 1 ) ? ( count - i - 1 ) : i ); \
ptrdiff_t delta = ( row & 1 ) ? -2 : 0; \
\
XMVECTOR v = sPtr[ index ]; \
if ( norm && clampzero ) v = XMVectorSaturate( v ) ; \
else if ( clampzero ) v = XMVectorClamp( v, g_XMZero, scalev ); \
else if ( norm ) v = XMVectorClamp( v, g_XMNegativeOne, g_XMOne ); \
else v = XMVectorClamp( v, -scalev + g_XMOne, scalev ); \
v = XMVectorAdd( v, vError ); \
if ( norm ) v = XMVectorMultiply( v, scalev ); \
\
XMVECTOR target; \
if ( pDiffusionErrors ) \
{ \
target = XMVectorRound( v ); \
vError = XMVectorSubtract( v, target ); \
if (norm) vError = XMVectorDivide( vError, scalev ); \
\
/* Distribute error to next scanline and next pixel */ \
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError ); \
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError ); \
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError ); \
vError = XMVectorMultiply( vError, g_ErrorWeight7 ); \
} \
else \
{ \
/* Applied ordered dither */ \
target = XMVectorAdd( v, ordered[ index & 3 ] ); \
target = XMVectorRound( v ); \
} \
\
target = XMVectorMin( scalev, target ); \
target = XMVectorMax( (clampzero) ? g_XMZero : ( -scalev + g_XMOne ), target ); \
\
dest[ index ] = static_cast<type>( (selectw) ? XMVectorGetW( target ) : XMVectorGetX( target ) ) & mask; \
} \
return true; \
} \
return false;
#pragma warning(push)
#pragma warning( disable : 4127 )
_Use_decl_annotations_
bool _StoreScanlineDither( LPVOID pDestination, size_t size, DXGI_FORMAT format,
XMVECTOR* pSource, size_t count, float threshold, size_t y, size_t z, XMVECTOR* pDiffusionErrors )
{
assert( pDestination && size > 0 );
assert( pSource && count > 0 && (((uintptr_t)pSource & 0xF) == 0) );
assert( IsValid(format) && !IsVideo(format) && !IsTypeless(format) && !IsCompressed(format) );
XMVECTOR ordered[4];
if ( pDiffusionErrors )
{
// If pDiffusionErrors != 0, then this function performs error diffusion dithering (aka Floyd-Steinberg dithering)
// To avoid the need for another temporary scanline buffer, we allow this function to overwrite the source buffer in-place
// Given the intended usage in the conversion routines, this is not a problem.
XMVECTOR* ptr = pSource;
const XMVECTOR* err = pDiffusionErrors + 1;
for( size_t i=0; i < count; ++i )
{
// Add contribution from previous scanline
XMVECTOR v = XMVectorAdd( *ptr, *err++ );
*ptr++ = v;
}
// Reset errors for next scanline
memset( pDiffusionErrors, 0, sizeof(XMVECTOR)*(count+2) );
}
else
{
// If pDiffusionErrors == 0, then this function performs ordered dithering
XMVECTOR dither = XMLoadFloat4( reinterpret_cast<const XMFLOAT4*>( g_Dither + (z & 3) + ( (y & 3) * 8 ) ) );
ordered[0] = XMVectorSplatX( dither );
ordered[1] = XMVectorSplatY( dither );
ordered[2] = XMVectorSplatZ( dither );
ordered[3] = XMVectorSplatW( dither );
}
const XMVECTOR* __restrict sPtr = pSource;
if ( !sPtr )
return false;
XMVECTOR vError = XMVectorZero();
switch( format )
{
case DXGI_FORMAT_R16G16B16A16_UNORM:
STORE_SCANLINE( XMUSHORTN4, g_Scale16pc, true, true, uint16_t, 0xFFFF, y, false )
case DXGI_FORMAT_R16G16B16A16_UINT:
STORE_SCANLINE( XMUSHORT4, g_Scale16pc, true, false, uint16_t, 0xFFFF, y, false )
case DXGI_FORMAT_R16G16B16A16_SNORM:
STORE_SCANLINE( XMSHORTN4, g_Scale15pc, false, true, int16_t, 0xFFFF, y, false )
case DXGI_FORMAT_R16G16B16A16_SINT:
STORE_SCANLINE( XMSHORT4, g_Scale15pc, false, false, int16_t, 0xFFFF, y, false )
case DXGI_FORMAT_R10G10B10A2_UNORM:
STORE_SCANLINE( XMUDECN4, g_Scale10pc, true, true, uint16_t, 0x3FF, y, false )
case DXGI_FORMAT_R10G10B10A2_UINT:
STORE_SCANLINE( XMUDEC4, g_Scale10pc, true, false, uint16_t, 0x3FF, y, false )
case DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM:
if ( size >= sizeof(XMUDEC4) )
{
static const XMVECTORF32 Scale = { 510.0f, 510.0f, 510.0f, 3.0f };
static const XMVECTORF32 Bias = { 384.0f, 384.0f, 384.0f, 0.0f };
static const XMVECTORF32 MinXR = { -0.7529f, -0.7529f, -0.7529f, 0.f };
static const XMVECTORF32 MaxXR = { 1.2529f, 1.2529f, 1.2529f, 1.0f };
XMUDEC4 * __restrict dest = reinterpret_cast<XMUDEC4*>(pDestination);
for( size_t i = 0; i < count; ++i )
{
ptrdiff_t index = static_cast<ptrdiff_t>( ( y & 1 ) ? ( count - i - 1 ) : i );
ptrdiff_t delta = ( y & 1 ) ? -2 : 0;
XMVECTOR v = XMVectorClamp( sPtr[ index ], MinXR, MaxXR );
v = XMVectorMultiplyAdd( v, Scale, vError );
XMVECTOR target;
if ( pDiffusionErrors )
{
target = XMVectorRound( v );
vError = XMVectorSubtract( v, target );
vError = XMVectorDivide( vError, Scale );
// Distribute error to next scanline and next pixel
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError );
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError );
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError );
vError = XMVectorMultiply( vError, g_ErrorWeight7 );
}
else
{
// Applied ordered dither
target = XMVectorAdd( v, ordered[ index & 3 ] );
target = XMVectorRound( v );
}
target = XMVectorAdd( target, Bias );
target = XMVectorClamp( target, g_XMZero, g_Scale10pc );
XMFLOAT4A tmp;
XMStoreFloat4A( &tmp, target );
auto dPtr = &dest[ index ];
dPtr->x = static_cast<uint16_t>( tmp.x ) & 0x3FF;
dPtr->y = static_cast<uint16_t>( tmp.y ) & 0x3FF;
dPtr->z = static_cast<uint16_t>( tmp.z ) & 0x3FF;
dPtr->w = static_cast<uint16_t>( tmp.w );
}
return true;
}
return false;
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
STORE_SCANLINE( XMUBYTEN4, g_Scale8pc, true, true, uint8_t, 0xFF, y, false )
case DXGI_FORMAT_R8G8B8A8_UINT:
STORE_SCANLINE( XMUBYTE4, g_Scale8pc, true, false, uint8_t, 0xFF, y, false )
case DXGI_FORMAT_R8G8B8A8_SNORM:
STORE_SCANLINE( XMBYTEN4, g_Scale7pc, false, true, int8_t, 0xFF, y, false )
case DXGI_FORMAT_R8G8B8A8_SINT:
STORE_SCANLINE( XMBYTE4, g_Scale7pc, false, false, int8_t, 0xFF, y, false )
case DXGI_FORMAT_R16G16_UNORM:
STORE_SCANLINE2( XMUSHORTN2, g_Scale16pc, true, true, uint16_t, 0xFFFF, y )
case DXGI_FORMAT_R16G16_UINT:
STORE_SCANLINE2( XMUSHORT2, g_Scale16pc, true, false, uint16_t, 0xFFFF, y )
case DXGI_FORMAT_R16G16_SNORM:
STORE_SCANLINE2( XMSHORTN2, g_Scale15pc, false, true, int16_t, 0xFFFF, y )
case DXGI_FORMAT_R16G16_SINT:
STORE_SCANLINE2( XMSHORT2, g_Scale15pc, false, false, int16_t, 0xFFFF, y )
case DXGI_FORMAT_D24_UNORM_S8_UINT:
if ( size >= sizeof(uint32_t) )
{
static const XMVECTORF32 Clamp = { 1.f, 255.f, 0.f, 0.f };
static const XMVECTORF32 Scale = { 16777215.f, 1.f, 0.f, 0.f };
static const XMVECTORF32 Scale2 = { 16777215.f, 255.f, 0.f, 0.f };
uint32_t * __restrict dest = reinterpret_cast<uint32_t*>(pDestination);
for( size_t i = 0; i < count; ++i )
{
ptrdiff_t index = static_cast<ptrdiff_t>( ( y & 1 ) ? ( count - i - 1 ) : i );
ptrdiff_t delta = ( y & 1 ) ? -2 : 0;
XMVECTOR v = XMVectorClamp( sPtr[ index ], g_XMZero, Clamp );
v = XMVectorAdd( v, vError );
v = XMVectorMultiply( v, Scale );
XMVECTOR target;
if ( pDiffusionErrors )
{
target = XMVectorRound( v );
vError = XMVectorSubtract( v, target );
vError = XMVectorDivide( vError, Scale );
// Distribute error to next scanline and next pixel
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError );
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError );
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError );
vError = XMVectorMultiply( vError, g_ErrorWeight7 );
}
else
{
// Applied ordered dither
target = XMVectorAdd( v, ordered[ index & 3 ] );
target = XMVectorRound( v );
}
target = XMVectorClamp( target, g_XMZero, Scale2 );
XMFLOAT4A tmp;
XMStoreFloat4A( &tmp, target );
auto dPtr = &dest[ index ];
*dPtr = (static_cast<uint32_t>( tmp.x ) & 0xFFFFFF)
| ((static_cast<uint32_t>( tmp.y ) & 0xFF) << 24);
}
return true;
}
return false;
case DXGI_FORMAT_R8G8_UNORM:
STORE_SCANLINE2( XMUBYTEN2, g_Scale8pc, true, true, uint8_t, 0xFF, y )
case DXGI_FORMAT_R8G8_UINT:
STORE_SCANLINE2( XMUBYTE2, g_Scale8pc, true, false, uint8_t, 0xFF, y )
case DXGI_FORMAT_R8G8_SNORM:
STORE_SCANLINE2( XMBYTEN2, g_Scale7pc, false, true, int8_t, 0xFF, y )
case DXGI_FORMAT_R8G8_SINT:
STORE_SCANLINE2( XMBYTE2, g_Scale7pc, false, false, int8_t, 0xFF, y )
case DXGI_FORMAT_D16_UNORM:
case DXGI_FORMAT_R16_UNORM:
STORE_SCANLINE1( uint16_t, g_Scale16pc, true, true, 0xFFFF, y, false )
case DXGI_FORMAT_R16_UINT:
STORE_SCANLINE1( uint16_t, g_Scale16pc, true, false, 0xFFFF, y, false )
case DXGI_FORMAT_R16_SNORM:
STORE_SCANLINE1( int16_t, g_Scale15pc, false, true, 0xFFFF, y, false )
case DXGI_FORMAT_R16_SINT:
STORE_SCANLINE1( int16_t, g_Scale15pc, false, false, 0xFFFF, y, false )
case DXGI_FORMAT_R8_UNORM:
STORE_SCANLINE1( uint8_t, g_Scale8pc, true, true, 0xFF, y, false )
case DXGI_FORMAT_R8_UINT:
STORE_SCANLINE1( uint8_t, g_Scale8pc, true, false, 0xFF, y, false )
case DXGI_FORMAT_R8_SNORM:
STORE_SCANLINE1( int8_t, g_Scale7pc, false, true, 0xFF, y, false )
case DXGI_FORMAT_R8_SINT:
STORE_SCANLINE1( int8_t, g_Scale7pc, false, false, 0xFF, y, false )
case DXGI_FORMAT_A8_UNORM:
STORE_SCANLINE1( uint8_t, g_Scale8pc, true, true, 0xFF, y, true )
case DXGI_FORMAT_B5G6R5_UNORM:
if ( size >= sizeof(XMU565) )
{
XMU565 * __restrict dest = reinterpret_cast<XMU565*>(pDestination);
for( size_t i = 0; i < count; ++i )
{
ptrdiff_t index = static_cast<ptrdiff_t>( ( y & 1 ) ? ( count - i - 1 ) : i );
ptrdiff_t delta = ( y & 1 ) ? -2 : 0;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( sPtr[ index ] );
v = XMVectorSaturate( v );
v = XMVectorAdd( v, vError );
v = XMVectorMultiply( v, g_Scale565pc );
XMVECTOR target;
if ( pDiffusionErrors )
{
target = XMVectorRound( v );
vError = XMVectorSubtract( v, target );
vError = XMVectorDivide( vError, g_Scale565pc );
// Distribute error to next scanline and next pixel
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError );
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError );
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError );
vError = XMVectorMultiply( vError, g_ErrorWeight7 );
}
else
{
// Applied ordered dither
target = XMVectorAdd( v, ordered[ index & 3 ] );
target = XMVectorRound( v );
}
target = XMVectorClamp( target, g_XMZero, g_Scale565pc );
XMFLOAT4A tmp;
XMStoreFloat4A( &tmp, target );
auto dPtr = &dest[ index ];
dPtr->x = static_cast<uint16_t>( tmp.x ) & 0x1F;
dPtr->y = static_cast<uint16_t>( tmp.y ) & 0x3F;
dPtr->z = static_cast<uint16_t>( tmp.z ) & 0x1F;
}
return true;
}
return false;
case DXGI_FORMAT_B5G5R5A1_UNORM:
if ( size >= sizeof(XMU555) )
{
XMU555 * __restrict dest = reinterpret_cast<XMU555*>(pDestination);
for( size_t i = 0; i < count; ++i )
{
ptrdiff_t index = static_cast<ptrdiff_t>( ( y & 1 ) ? ( count - i - 1 ) : i );
ptrdiff_t delta = ( y & 1 ) ? -2 : 0;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( sPtr[ index ] );
v = XMVectorSaturate( v );
v = XMVectorAdd( v, vError );
v = XMVectorMultiply( v, g_Scale5551pc );
XMVECTOR target;
if ( pDiffusionErrors )
{
target = XMVectorRound( v );
vError = XMVectorSubtract( v, target );
vError = XMVectorDivide( vError, g_Scale5551pc );
// Distribute error to next scanline and next pixel
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError );
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError );
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError );
vError = XMVectorMultiply( vError, g_ErrorWeight7 );
}
else
{
// Applied ordered dither
target = XMVectorAdd( v, ordered[ index & 3 ] );
target = XMVectorRound( v );
}
target = XMVectorClamp( target, g_XMZero, g_Scale5551pc );
XMFLOAT4A tmp;
XMStoreFloat4A( &tmp, target );
auto dPtr = &dest[ index ];
dPtr->x = static_cast<uint16_t>( tmp.x ) & 0x1F;
dPtr->y = static_cast<uint16_t>( tmp.y ) & 0x1F;
dPtr->z = static_cast<uint16_t>( tmp.z ) & 0x1F;
dPtr->w = ( XMVectorGetW( target ) > threshold ) ? 1 : 0;
}
return true;
}
return false;
case DXGI_FORMAT_B8G8R8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
STORE_SCANLINE( XMUBYTEN4, g_Scale8pc, true, true, uint8_t, 0xFF, y, true )
case DXGI_FORMAT_B8G8R8X8_UNORM:
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
if ( size >= sizeof(XMUBYTEN4) )
{
XMUBYTEN4 * __restrict dest = reinterpret_cast<XMUBYTEN4*>(pDestination);
for( size_t i = 0; i < count; ++i )
{
ptrdiff_t index = static_cast<ptrdiff_t>( ( y & 1 ) ? ( count - i - 1 ) : i );
ptrdiff_t delta = ( y & 1 ) ? -2 : 0;
XMVECTOR v = XMVectorSwizzle<2, 1, 0, 3>( sPtr[ index ] );
v = XMVectorSaturate( v );
v = XMVectorAdd( v, vError );
v = XMVectorMultiply( v, g_Scale8pc );
XMVECTOR target;
if ( pDiffusionErrors )
{
target = XMVectorRound( v );
vError = XMVectorSubtract( v, target );
vError = XMVectorDivide( vError, g_Scale8pc );
// Distribute error to next scanline and next pixel
pDiffusionErrors[ index-delta ] += XMVectorMultiply( g_ErrorWeight3, vError );
pDiffusionErrors[ index+1 ] += XMVectorMultiply( g_ErrorWeight5, vError );
pDiffusionErrors[ index+2+delta ] += XMVectorMultiply( g_ErrorWeight1, vError );
vError = XMVectorMultiply( vError, g_ErrorWeight7 );
}
else
{
// Applied ordered dither
target = XMVectorAdd( v, ordered[ index & 3 ] );
target = XMVectorRound( v );
}
target = XMVectorClamp( target, g_XMZero, g_Scale8pc );
XMFLOAT4A tmp;
XMStoreFloat4A( &tmp, target );
auto dPtr = &dest[ index ];
dPtr->x = static_cast<uint8_t>( tmp.x ) & 0xFF;
dPtr->y = static_cast<uint8_t>( tmp.y ) & 0xFF;
dPtr->z = static_cast<uint8_t>( tmp.z ) & 0xFF;
dPtr->w = 0;
}
return true;
}
return false;
#ifdef DXGI_1_2_FORMATS
case DXGI_FORMAT_B4G4R4A4_UNORM:
STORE_SCANLINE( XMUNIBBLE4, g_Scale4pc, true, true, uint8_t, 0xF, y, true )
#endif
default:
return _StoreScanline( pDestination, size, format, pSource, count, threshold );
}
}
#pragma warning(pop)
#undef STORE_SCANLINE
#undef STORE_SCANLINE2
#undef STORE_SCANLINE1
//-------------------------------------------------------------------------------------
// Selection logic for using WIC vs. our own routines
//-------------------------------------------------------------------------------------
static inline bool _UseWICConversion( _In_ DWORD filter, _In_ DXGI_FORMAT sformat, _In_ DXGI_FORMAT tformat,
_Out_ WICPixelFormatGUID& pfGUID, _Out_ WICPixelFormatGUID& targetGUID )
{
memcpy( &pfGUID, &GUID_NULL, sizeof(GUID) );
memcpy( &targetGUID, &GUID_NULL, sizeof(GUID) );
if ( filter & TEX_FILTER_FORCE_NON_WIC )
{
// Explicit flag indicates use of non-WIC code paths
return false;
}
if ( !_DXGIToWIC( sformat, pfGUID ) || !_DXGIToWIC( tformat, targetGUID ) )
{
// Source or target format are not WIC supported native pixel formats
return false;
}
if ( filter & TEX_FILTER_FORCE_WIC )
{
// Explicit flag to use WIC code paths, skips all the case checks below
return true;
}
if ( filter & TEX_FILTER_SEPARATE_ALPHA )
{
// Alpha is not premultiplied, so use non-WIC code paths
return false;
}
// Check for special cases
switch ( sformat )
{
case DXGI_FORMAT_R32G32B32A32_FLOAT:
case DXGI_FORMAT_R32G32B32_FLOAT:
case DXGI_FORMAT_R16G16B16A16_FLOAT:
switch( tformat )
{
case DXGI_FORMAT_R16_FLOAT:
case DXGI_FORMAT_R32_FLOAT:
case DXGI_FORMAT_D32_FLOAT:
// WIC converts via UNORM formats and ends up converting colorspaces for these cases
case DXGI_FORMAT_A8_UNORM:
// Conversion logic for these kinds of textures is unintuitive for WIC code paths
return false;
}
break;
case DXGI_FORMAT_R16_FLOAT:
switch( tformat )
{
case DXGI_FORMAT_R32_FLOAT:
case DXGI_FORMAT_D32_FLOAT:
// WIC converts via UNORM formats and ends up converting colorspaces for these cases
case DXGI_FORMAT_A8_UNORM:
// Conversion logic for these kinds of textures is unintuitive for WIC code paths
return false;
}
break;
case DXGI_FORMAT_A8_UNORM:
// Conversion logic for these kinds of textures is unintuitive for WIC code paths
return false;
default:
switch( tformat )
{
case DXGI_FORMAT_A8_UNORM:
// Conversion logic for these kinds of textures is unintuitive for WIC code paths
return false;
}
}
// Check for implicit color space changes
if ( IsSRGB( sformat ) )
filter |= TEX_FILTER_SRGB_IN;
if ( IsSRGB( tformat ) )
filter |= TEX_FILTER_SRGB_OUT;
if ( (filter & (TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT)) == (TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT) )
{
filter &= ~(TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT);
}
DWORD wicsrgb = _CheckWICColorSpace( pfGUID, targetGUID );
if ( wicsrgb != (filter & (TEX_FILTER_SRGB_IN|TEX_FILTER_SRGB_OUT)) )
{
// WIC will perform a colorspace conversion we didn't request
return false;
}
return true;
}
//-------------------------------------------------------------------------------------
// Convert the source image using WIC
//-------------------------------------------------------------------------------------
static HRESULT _ConvertUsingWIC( _In_ const Image& srcImage, _In_ const WICPixelFormatGUID& pfGUID,
_In_ const WICPixelFormatGUID& targetGUID,
_In_ DWORD filter, _In_ float threshold, _In_ const Image& destImage )
{
assert( srcImage.width == destImage.width );
assert( srcImage.height == destImage.height );
IWICImagingFactory* pWIC = _GetWIC();
if ( !pWIC )
return E_NOINTERFACE;
ScopedObject<IWICFormatConverter> FC;
HRESULT hr = pWIC->CreateFormatConverter( &FC );
if ( FAILED(hr) )
return hr;
// Note that WIC conversion ignores the TEX_FILTER_SRGB_IN and TEX_FILTER_SRGB_OUT flags,
// but also always assumes UNORM <-> FLOAT conversions are changing color spaces sRGB <-> scRGB
BOOL canConvert = FALSE;
hr = FC->CanConvert( pfGUID, targetGUID, &canConvert );
if ( FAILED(hr) || !canConvert )
{
// This case is not an issue for the subset of WIC formats that map directly to DXGI
return E_UNEXPECTED;
}
ScopedObject<IWICBitmap> source;
hr = pWIC->CreateBitmapFromMemory( static_cast<UINT>( srcImage.width ), static_cast<UINT>( srcImage.height ), pfGUID,
static_cast<UINT>( srcImage.rowPitch ), static_cast<UINT>( srcImage.slicePitch ),
srcImage.pixels, &source );
if ( FAILED(hr) )
return hr;
hr = FC->Initialize( source.Get(), targetGUID, _GetWICDither( filter ), 0, threshold * 100.f, WICBitmapPaletteTypeCustom );
if ( FAILED(hr) )
return hr;
hr = FC->CopyPixels( 0, static_cast<UINT>( destImage.rowPitch ), static_cast<UINT>( destImage.slicePitch ), destImage.pixels );
if ( FAILED(hr) )
return hr;
return S_OK;
}
//-------------------------------------------------------------------------------------
// Convert the source image (not using WIC)
//-------------------------------------------------------------------------------------
static HRESULT _Convert( _In_ const Image& srcImage, _In_ DWORD filter, _In_ const Image& destImage, _In_ float threshold, _In_ size_t z )
{
assert( srcImage.width == destImage.width );
assert( srcImage.height == destImage.height );
const uint8_t *pSrc = srcImage.pixels;
uint8_t *pDest = destImage.pixels;
if ( !pSrc || !pDest )
return E_POINTER;
size_t width = srcImage.width;
if ( filter & TEX_FILTER_DITHER_DIFFUSION )
{
// Error diffusion dithering (aka Floyd-Steinberg dithering)
ScopedAlignedArrayXMVECTOR scanline( reinterpret_cast<XMVECTOR*>( _aligned_malloc( (sizeof(XMVECTOR)*(width*2 + 2)), 16 ) ) );
if ( !scanline )
return E_OUTOFMEMORY;
XMVECTOR* pDiffusionErrors = scanline.get() + width;
memset( pDiffusionErrors, 0, sizeof(XMVECTOR)*(width+2) );
for( size_t h = 0; h < srcImage.height; ++h )
{
if ( !_LoadScanline( scanline.get(), width, pSrc, srcImage.rowPitch, srcImage.format ) )
return E_FAIL;
_ConvertScanline( scanline.get(), width, destImage.format, srcImage.format, filter );
if ( !_StoreScanlineDither( pDest, destImage.rowPitch, destImage.format, scanline.get(), width, threshold, h, z, pDiffusionErrors ) )
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += destImage.rowPitch;
}
}
else
{
ScopedAlignedArrayXMVECTOR scanline( reinterpret_cast<XMVECTOR*>( _aligned_malloc( (sizeof(XMVECTOR)*width), 16 ) ) );
if ( !scanline )
return E_OUTOFMEMORY;
if ( filter & TEX_FILTER_DITHER )
{
// Ordered dithering
for( size_t h = 0; h < srcImage.height; ++h )
{
if ( !_LoadScanline( scanline.get(), width, pSrc, srcImage.rowPitch, srcImage.format ) )
return E_FAIL;
_ConvertScanline( scanline.get(), width, destImage.format, srcImage.format, filter );
if ( !_StoreScanlineDither( pDest, destImage.rowPitch, destImage.format, scanline.get(), width, threshold, h, z, nullptr ) )
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += destImage.rowPitch;
}
}
else
{
// No dithering
for( size_t h = 0; h < srcImage.height; ++h )
{
if ( !_LoadScanline( scanline.get(), width, pSrc, srcImage.rowPitch, srcImage.format ) )
return E_FAIL;
_ConvertScanline( scanline.get(), width, destImage.format, srcImage.format, filter );
if ( !_StoreScanline( pDest, destImage.rowPitch, destImage.format, scanline.get(), width, threshold ) )
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += destImage.rowPitch;
}
}
}
return S_OK;
}
//=====================================================================================
// Entry-points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Convert image
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT Convert( const Image& srcImage, DXGI_FORMAT format, DWORD filter, float threshold, ScratchImage& image )
{
if ( (srcImage.format == format) || !IsValid( format ) )
return E_INVALIDARG;
if ( !srcImage.pixels )
return E_POINTER;
if ( IsCompressed(srcImage.format) || IsCompressed(format)
|| IsVideo(srcImage.format) || IsVideo(format)
|| IsTypeless(srcImage.format) || IsTypeless(format) )
return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED );
#ifdef _M_X64
if ( (srcImage.width > 0xFFFFFFFF) || (srcImage.height > 0xFFFFFFFF) )
return E_INVALIDARG;
#endif
HRESULT hr = image.Initialize2D( format, srcImage.width, srcImage.height, 1, 1 );
if ( FAILED(hr) )
return hr;
const Image *rimage = image.GetImage( 0, 0, 0 );
if ( !rimage )
{
image.Release();
return E_POINTER;
}
WICPixelFormatGUID pfGUID, targetGUID;
if ( _UseWICConversion( filter, srcImage.format, format, pfGUID, targetGUID ) )
{
hr = _ConvertUsingWIC( srcImage, pfGUID, targetGUID, filter, threshold, *rimage );
}
else
{
hr = _Convert( srcImage, filter, *rimage, threshold, 0 );
}
if ( FAILED(hr) )
{
image.Release();
return hr;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Convert image (complex)
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT Convert( const Image* srcImages, size_t nimages, const TexMetadata& metadata,
DXGI_FORMAT format, DWORD filter, float threshold, ScratchImage& result )
{
if ( !srcImages || !nimages || (metadata.format == format) || !IsValid(format) )
return E_INVALIDARG;
if ( IsCompressed(metadata.format) || IsCompressed(format)
|| IsVideo(metadata.format) || IsVideo(format)
|| IsTypeless(metadata.format) || IsTypeless(format) )
return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED );
#ifdef _M_X64
if ( (metadata.width > 0xFFFFFFFF) || (metadata.height > 0xFFFFFFFF) )
return E_INVALIDARG;
#endif
TexMetadata mdata2 = metadata;
mdata2.format = format;
HRESULT hr = result.Initialize( mdata2 );
if ( FAILED(hr) )
return hr;
if ( nimages != result.GetImageCount() )
{
result.Release();
return E_FAIL;
}
const Image* dest = result.GetImages();
if ( !dest )
{
result.Release();
return E_POINTER;
}
WICPixelFormatGUID pfGUID, targetGUID;
bool usewic = _UseWICConversion( filter, metadata.format, format, pfGUID, targetGUID );
switch (metadata.dimension)
{
case TEX_DIMENSION_TEXTURE1D:
case TEX_DIMENSION_TEXTURE2D:
for( size_t index=0; index < nimages; ++index )
{
const Image& src = srcImages[ index ];
if ( src.format != metadata.format )
{
result.Release();
return E_FAIL;
}
#ifdef _M_X64
if ( (src.width > 0xFFFFFFFF) || (src.height > 0xFFFFFFFF) )
return E_FAIL;
#endif
const Image& dst = dest[ index ];
assert( dst.format == format );
if ( src.width != dst.width || src.height != dst.height )
{
result.Release();
return E_FAIL;
}
if ( usewic )
{
hr = _ConvertUsingWIC( src, pfGUID, targetGUID, filter, threshold, dst );
}
else
{
hr = _Convert( src, filter, dst, threshold, 0 );
}
if ( FAILED(hr) )
{
result.Release();
return hr;
}
}
break;
case TEX_DIMENSION_TEXTURE3D:
{
size_t index = 0;
size_t d = metadata.depth;
for( size_t level = 0; level < metadata.mipLevels; ++level )
{
for( size_t slice = 0; slice < d; ++slice, ++index )
{
if ( index >= nimages )
return E_FAIL;
const Image& src = srcImages[ index ];
if ( src.format != metadata.format )
{
result.Release();
return E_FAIL;
}
#ifdef _M_X64
if ( (src.width > 0xFFFFFFFF) || (src.height > 0xFFFFFFFF) )
return E_FAIL;
#endif
const Image& dst = dest[ index ];
assert( dst.format == format );
if ( src.width != dst.width || src.height != dst.height )
{
result.Release();
return E_FAIL;
}
if ( usewic )
{
hr = _ConvertUsingWIC( src, pfGUID, targetGUID, filter, threshold, dst );
}
else
{
hr = _Convert( src, filter, dst, threshold, slice );
}
if ( FAILED(hr) )
{
result.Release();
return hr;
}
}
if ( d > 1 )
d >>= 1;
}
}
break;
default:
return E_FAIL;
}
return S_OK;
}
}; // namespace