crossxtex/DirectXTex/DirectXTexMisc.cpp
walbourn_cp c398ac1711 DirectXTex: Resolve SRGB handling problems with conversions
- Convert: TEX_FILTER_FORCE_NON_WIC, TEX_FILTER_FORCE_WIC, TEX_FILTER_RGB_COPY_RED/BLUE/GREEN
 - ComputeMSE flags for sRGB colorspace and channel ignore options
2013-04-16 17:51:36 -07:00

340 lines
11 KiB
C++

//-------------------------------------------------------------------------------------
// DirectXTexMisc.cpp
//
// DirectX Texture Library - Misc image operations
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// http://go.microsoft.com/fwlink/?LinkId=248926
//-------------------------------------------------------------------------------------
#include "directxtexp.h"
namespace DirectX
{
static const XMVECTORF32 g_Gamma22 = { 2.2f, 2.2f, 2.2f, 1.f };
//-------------------------------------------------------------------------------------
static HRESULT _ComputeMSE( _In_ const Image& image1, _In_ const Image& image2,
_Out_ float& mse, _Out_writes_opt_(4) float* mseV,
_In_ DWORD flags )
{
if ( !image1.pixels || !image2.pixels )
return E_POINTER;
assert( image1.width == image2.width && image1.height == image2.height );
assert( !IsCompressed( image1.format ) && !IsCompressed( image2.format ) );
const size_t width = image1.width;
ScopedAlignedArrayXMVECTOR scanline( reinterpret_cast<XMVECTOR*>( _aligned_malloc( (sizeof(XMVECTOR)*width)*2, 16 ) ) );
if ( !scanline )
return E_OUTOFMEMORY;
// Flags implied from image formats
switch( image1.format )
{
case DXGI_FORMAT_B8G8R8X8_UNORM:
flags |= CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= CMSE_IMAGE1_SRGB | CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= CMSE_IMAGE1_SRGB;
break;
}
switch( image2.format )
{
case DXGI_FORMAT_B8G8R8X8_UNORM:
flags |= CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_B8G8R8X8_UNORM_SRGB:
flags |= CMSE_IMAGE2_SRGB | CMSE_IGNORE_ALPHA;
break;
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_BC1_UNORM_SRGB:
case DXGI_FORMAT_BC2_UNORM_SRGB:
case DXGI_FORMAT_BC3_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
case DXGI_FORMAT_BC7_UNORM_SRGB:
flags |= CMSE_IMAGE2_SRGB;
break;
}
const uint8_t *pSrc1 = image1.pixels;
const size_t rowPitch1 = image1.rowPitch;
const uint8_t *pSrc2 = image2.pixels;
const size_t rowPitch2 = image2.rowPitch;
XMVECTOR acc = g_XMZero;
for( size_t h = 0; h < image1.height; ++h )
{
XMVECTOR* ptr1 = scanline.get();
if ( !_LoadScanline( ptr1, width, pSrc1, rowPitch1, image1.format ) )
return E_FAIL;
XMVECTOR* ptr2 = scanline.get() + width;
if ( !_LoadScanline( ptr2, width, pSrc2, rowPitch2, image2.format ) )
return E_FAIL;
for( size_t i = 0; i < width; ++i )
{
XMVECTOR v1 = *(ptr1++);
if ( flags & CMSE_IMAGE1_SRGB )
{
v1 = XMVectorPow( v1, g_Gamma22 );
}
XMVECTOR v2 = *(ptr2++);
if ( flags & CMSE_IMAGE2_SRGB )
{
v2 = XMVectorPow( v2, g_Gamma22 );
}
// sum[ (I1 - I2)^2 ]
XMVECTOR v = XMVectorSubtract( v1, v2 );
if ( flags & CMSE_IGNORE_RED )
{
v = XMVectorSelect( v, g_XMZero, g_XMMaskX );
}
if ( flags & CMSE_IGNORE_GREEN )
{
v = XMVectorSelect( v, g_XMZero, g_XMMaskY );
}
if ( flags & CMSE_IGNORE_BLUE )
{
v = XMVectorSelect( v, g_XMZero, g_XMMaskZ );
}
if ( flags & CMSE_IGNORE_ALPHA )
{
v = XMVectorSelect( v, g_XMZero, g_XMMaskW );
}
acc = XMVectorMultiplyAdd( v, v, acc );
}
pSrc1 += rowPitch1;
pSrc2 += rowPitch2;
}
// MSE = sum[ (I1 - I2)^2 ] / w*h
XMVECTOR d = XMVectorReplicate( float(image1.width * image1.height) );
XMVECTOR v = XMVectorDivide( acc, d );
if ( mseV )
{
XMStoreFloat4( reinterpret_cast<XMFLOAT4*>( mseV ), v );
mse = mseV[0] + mseV[1] + mseV[2] + mseV[3];
}
else
{
XMFLOAT4 _mseV;
XMStoreFloat4( &_mseV, v );
mse = _mseV.x + _mseV.y + _mseV.z + _mseV.w;
}
return S_OK;
}
//=====================================================================================
// Entry points
//=====================================================================================
//-------------------------------------------------------------------------------------
// Copies a rectangle from one image into another
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT CopyRectangle( const Image& srcImage, const Rect& srcRect, const Image& dstImage, DWORD filter, size_t xOffset, size_t yOffset )
{
if ( !srcImage.pixels || !dstImage.pixels )
return E_POINTER;
if ( IsCompressed( srcImage.format ) || IsCompressed( dstImage.format ) )
return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED );
// Validate rectangle/offset
if ( !srcRect.w || !srcRect.h || ( (srcRect.x + srcRect.w) > srcImage.width ) || ( (srcRect.y + srcRect.h) > srcImage.height ) )
{
return E_INVALIDARG;
}
if ( ( (xOffset + srcRect.w) > dstImage.width ) || ( (yOffset + srcRect.h) > dstImage.height ) )
{
return E_INVALIDARG;
}
// Compute source bytes-per-pixel
size_t sbpp = BitsPerPixel( srcImage.format );
if ( !sbpp )
return E_FAIL;
if ( sbpp < 8 )
{
// We don't support monochrome (DXGI_FORMAT_R1_UNORM)
return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED );
}
const uint8_t* pEndSrc = srcImage.pixels + srcImage.rowPitch*srcImage.height;
const uint8_t* pEndDest = dstImage.pixels + dstImage.rowPitch*dstImage.height;
// Round to bytes
sbpp = ( sbpp + 7 ) / 8;
const uint8_t* pSrc = srcImage.pixels + (srcRect.y * srcImage.rowPitch) + (srcRect.x * sbpp);
if ( srcImage.format == dstImage.format )
{
// Direct copy case (avoid intermediate conversions)
uint8_t* pDest = dstImage.pixels + (yOffset * dstImage.rowPitch) + (xOffset * sbpp);
const size_t copyW = srcRect.w * sbpp;
for( size_t h=0; h < srcRect.h; ++h )
{
if ( ( (pSrc+copyW) > pEndSrc ) || (pDest > pEndDest) )
return E_FAIL;
memcpy_s( pDest, pEndDest - pDest, pSrc, copyW );
pSrc += srcImage.rowPitch;
pDest += dstImage.rowPitch;
}
return S_OK;
}
// Compute destination bytes-per-pixel (not the same format as source)
size_t dbpp = BitsPerPixel( dstImage.format );
if ( !dbpp )
return E_FAIL;
if ( dbpp < 8 )
{
// We don't support monochrome (DXGI_FORMAT_R1_UNORM)
return HRESULT_FROM_WIN32( ERROR_NOT_SUPPORTED );
}
// Round to bytes
dbpp = ( dbpp + 7 ) / 8;
uint8_t* pDest = dstImage.pixels + (yOffset * dstImage.rowPitch) + (xOffset * dbpp);
ScopedAlignedArrayXMVECTOR scanline( reinterpret_cast<XMVECTOR*>( _aligned_malloc( (sizeof(XMVECTOR)*srcRect.w), 16 ) ) );
if ( !scanline )
return E_OUTOFMEMORY;
const size_t copyS = srcRect.w * sbpp;
const size_t copyD = srcRect.w * dbpp;
for( size_t h=0; h < srcRect.h; ++h )
{
if ( ( (pSrc+copyS) > pEndSrc) || ((pDest+copyD) > pEndDest) )
return E_FAIL;
if ( !_LoadScanline( scanline.get(), srcRect.w, pSrc, copyS, srcImage.format ) )
return E_FAIL;
_ConvertScanline( scanline.get(), srcRect.w, dstImage.format, srcImage.format, filter );
if ( !_StoreScanline( pDest, copyD, dstImage.format, scanline.get(), srcRect.w ) )
return E_FAIL;
pSrc += srcImage.rowPitch;
pDest += dstImage.rowPitch;
}
return S_OK;
}
//-------------------------------------------------------------------------------------
// Computes the Mean-Squared-Error (MSE) between two images
//-------------------------------------------------------------------------------------
_Use_decl_annotations_
HRESULT ComputeMSE( const Image& image1, const Image& image2, float& mse, float* mseV, DWORD flags )
{
if ( !image1.pixels || !image2.pixels )
return E_POINTER;
if ( image1.width != image2.width || image1.height != image2.height )
return E_INVALIDARG;
if ( IsCompressed(image1.format) )
{
if ( IsCompressed(image2.format) )
{
// Case 1: both images are compressed, expand to RGBA32F
ScratchImage temp1;
HRESULT hr = Decompress( image1, DXGI_FORMAT_R32G32B32A32_FLOAT, temp1 );
if ( FAILED(hr) )
return hr;
ScratchImage temp2;
hr = Decompress( image2, DXGI_FORMAT_R32G32B32A32_FLOAT, temp2 );
if ( FAILED(hr) )
return hr;
const Image* img1 = temp1.GetImage(0,0,0);
const Image* img2 = temp2.GetImage(0,0,0);
if ( !img1 || !img2 )
return E_POINTER;
return _ComputeMSE( *img1, *img2, mse, mseV, flags );
}
else
{
// Case 2: image1 is compressed, expand to RGBA32F
ScratchImage temp;
HRESULT hr = Decompress( image1, DXGI_FORMAT_R32G32B32A32_FLOAT, temp );
if ( FAILED(hr) )
return hr;
const Image* img = temp.GetImage(0,0,0);
if ( !img )
return E_POINTER;
return _ComputeMSE( *img, image2, mse, mseV, flags );
}
}
else
{
if ( IsCompressed(image2.format) )
{
// Case 3: image2 is compressed, expand to RGBA32F
ScratchImage temp;
HRESULT hr = Decompress( image2, DXGI_FORMAT_R32G32B32A32_FLOAT, temp );
if ( FAILED(hr) )
return hr;
const Image* img = temp.GetImage(0,0,0);
if ( !img )
return E_POINTER;
return _ComputeMSE( image1, *img, mse, mseV, flags );
}
else
{
// Case 4: neither image is compressed
return _ComputeMSE( image1, image2, mse, mseV, flags );
}
}
}
}; // namespace