AuroraOpenALSoft/Alc/ALu.c

1321 lines
45 KiB
C
Raw Normal View History

2007-11-14 02:02:18 +00:00
/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2007-11-14 02:02:18 +00:00
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
2009-02-02 19:18:33 +00:00
#include <assert.h>
2007-11-14 02:02:18 +00:00
#include "alMain.h"
#include "alSource.h"
#include "alBuffer.h"
#include "alListener.h"
#include "alAuxEffectSlot.h"
#include "alu.h"
#include "bs2b.h"
#include "hrtf.h"
#include "static_assert.h"
2007-11-14 02:02:18 +00:00
#include "midi/base.h"
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
struct ChanMap {
enum Channel channel;
ALfloat angle;
};
/* Cone scalar */
2012-08-11 13:20:24 +00:00
ALfloat ConeScale = 1.0f;
/* Localized Z scalar for mono sources */
ALfloat ZScale = 1.0f;
2013-11-04 21:44:46 +00:00
extern inline ALfloat minf(ALfloat a, ALfloat b);
extern inline ALfloat maxf(ALfloat a, ALfloat b);
extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
2013-11-27 08:30:13 +00:00
extern inline ALdouble mind(ALdouble a, ALdouble b);
extern inline ALdouble maxd(ALdouble a, ALdouble b);
extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
2013-11-04 21:44:46 +00:00
extern inline ALuint minu(ALuint a, ALuint b);
extern inline ALuint maxu(ALuint a, ALuint b);
extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
extern inline ALint mini(ALint a, ALint b);
extern inline ALint maxi(ALint a, ALint b);
extern inline ALint clampi(ALint val, ALint min, ALint max);
extern inline ALint64 mini64(ALint64 a, ALint64 b);
extern inline ALint64 maxi64(ALint64 a, ALint64 b);
extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
2013-05-29 05:27:07 +00:00
static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
{
outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
}
2013-05-29 05:27:07 +00:00
static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
{
return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
inVector1[2]*inVector2[2];
}
2013-05-29 05:27:07 +00:00
static inline void aluNormalize(ALfloat *inVector)
{
ALfloat lengthsqr = aluDotproduct(inVector, inVector);
if(lengthsqr > 0.0f)
{
ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
inVector[0] *= inv_length;
inVector[1] *= inv_length;
inVector[2] *= inv_length;
}
}
2013-05-29 05:27:07 +00:00
static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
2007-11-14 02:02:18 +00:00
{
ALfloat temp[4] = {
vector[0], vector[1], vector[2], w
};
2007-11-14 02:02:18 +00:00
vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
2007-11-14 02:02:18 +00:00
}
static ALvoid CalcListenerParams(ALlistener *Listener)
{
ALfloat N[3], V[3], U[3], P[3];
/* AT then UP */
N[0] = Listener->Forward[0];
N[1] = Listener->Forward[1];
N[2] = Listener->Forward[2];
aluNormalize(N);
V[0] = Listener->Up[0];
V[1] = Listener->Up[1];
2012-10-13 06:35:00 +00:00
V[2] = Listener->Up[2];
aluNormalize(V);
/* Build and normalize right-vector */
aluCrossproduct(N, V, U);
aluNormalize(U);
Listener->Params.Matrix[0][0] = U[0];
Listener->Params.Matrix[0][1] = V[0];
Listener->Params.Matrix[0][2] = -N[0];
Listener->Params.Matrix[0][3] = 0.0f;
Listener->Params.Matrix[1][0] = U[1];
Listener->Params.Matrix[1][1] = V[1];
Listener->Params.Matrix[1][2] = -N[1];
Listener->Params.Matrix[1][3] = 0.0f;
Listener->Params.Matrix[2][0] = U[2];
Listener->Params.Matrix[2][1] = V[2];
Listener->Params.Matrix[2][2] = -N[2];
Listener->Params.Matrix[2][3] = 0.0f;
Listener->Params.Matrix[3][0] = 0.0f;
Listener->Params.Matrix[3][1] = 0.0f;
Listener->Params.Matrix[3][2] = 0.0f;
Listener->Params.Matrix[3][3] = 1.0f;
P[0] = Listener->Position[0];
P[1] = Listener->Position[1];
P[2] = Listener->Position[2];
aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
Listener->Params.Matrix[3][0] = -P[0];
Listener->Params.Matrix[3][1] = -P[1];
Listener->Params.Matrix[3][2] = -P[2];
Listener->Params.Velocity[0] = Listener->Velocity[0];
Listener->Params.Velocity[1] = Listener->Velocity[1];
Listener->Params.Velocity[2] = Listener->Velocity[2];
aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
}
2014-08-21 10:24:48 +00:00
ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
{
static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
2012-02-10 07:52:20 +00:00
static const struct ChanMap StereoMap[2] = {
{ FrontLeft, DEG2RAD(-30.0f) },
{ FrontRight, DEG2RAD( 30.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap StereoWideMap[2] = {
{ FrontLeft, DEG2RAD(-90.0f) },
{ FrontRight, DEG2RAD( 90.0f) }
};
2012-02-10 07:52:20 +00:00
static const struct ChanMap RearMap[2] = {
{ BackLeft, DEG2RAD(-150.0f) },
{ BackRight, DEG2RAD( 150.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap QuadMap[4] = {
{ FrontLeft, DEG2RAD( -45.0f) },
{ FrontRight, DEG2RAD( 45.0f) },
{ BackLeft, DEG2RAD(-135.0f) },
{ BackRight, DEG2RAD( 135.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X51Map[6] = {
{ FrontLeft, DEG2RAD( -30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
2012-02-10 07:52:20 +00:00
{ LFE, 0.0f },
{ BackLeft, DEG2RAD(-110.0f) },
{ BackRight, DEG2RAD( 110.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X61Map[7] = {
{ FrontLeft, DEG2RAD(-30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
2012-02-10 07:52:20 +00:00
{ LFE, 0.0f },
{ BackCenter, DEG2RAD(180.0f) },
{ SideLeft, DEG2RAD(-90.0f) },
{ SideRight, DEG2RAD( 90.0f) }
2012-02-10 07:52:20 +00:00
};
static const struct ChanMap X71Map[8] = {
{ FrontLeft, DEG2RAD( -30.0f) },
{ FrontRight, DEG2RAD( 30.0f) },
{ FrontCenter, DEG2RAD( 0.0f) },
2012-02-10 07:52:20 +00:00
{ LFE, 0.0f },
{ BackLeft, DEG2RAD(-150.0f) },
{ BackRight, DEG2RAD( 150.0f) },
{ SideLeft, DEG2RAD( -90.0f) },
{ SideRight, DEG2RAD( 90.0f) }
2012-02-10 07:52:20 +00:00
};
ALCdevice *Device = ALContext->Device;
ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
ALbufferlistitem *BufferListItem;
2010-11-27 08:15:07 +00:00
enum FmtChannels Channels;
ALfloat DryGain, DryGainHF, DryGainLF;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALint NumSends, Frequency;
const struct ChanMap *chans = NULL;
2011-05-15 09:12:42 +00:00
ALint num_channels = 0;
ALboolean DirectChannels;
ALfloat hwidth = 0.0f;
ALfloat Pitch;
ALint i, j, c;
2010-11-27 02:01:29 +00:00
/* Get device properties */
2011-10-12 05:30:58 +00:00
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
2010-11-27 02:01:29 +00:00
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
2010-11-27 02:01:29 +00:00
/* Get source properties */
2012-04-20 04:46:29 +00:00
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
DirectChannels = ALSource->DirectChannels;
2014-08-21 10:24:48 +00:00
voice->Direct.OutBuffer = Device->DryBuffer;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = NULL;
else
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = Slot->WetBuffer;
}
2010-11-27 02:01:29 +00:00
/* Calculate the stepping value */
2010-11-27 08:15:07 +00:00
Channels = FmtMono;
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
2010-11-28 21:08:51 +00:00
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
2014-08-21 10:24:48 +00:00
voice->Step = MAX_PITCH<<FRACTIONBITS;
2010-11-27 01:47:43 +00:00
else
{
2014-08-21 10:24:48 +00:00
voice->Step = fastf2i(Pitch*FRACTIONONE);
if(voice->Step == 0)
voice->Step = 1;
2010-11-27 01:47:43 +00:00
}
2010-11-27 08:15:07 +00:00
Channels = ALBuffer->FmtChannels;
break;
}
BufferListItem = BufferListItem->next;
}
2010-11-27 02:01:29 +00:00
/* Calculate gains */
DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF = ALSource->Direct.GainHF;
DryGainLF = ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
2012-04-27 07:45:42 +00:00
WetGainHF[i] = ALSource->Send[i].GainHF;
WetGainLF[i] = ALSource->Send[i].GainLF;
}
switch(Channels)
{
case FmtMono:
chans = MonoMap;
2011-05-15 09:12:42 +00:00
num_channels = 1;
break;
case FmtStereo:
if(!(Device->Flags&DEVICE_WIDE_STEREO))
{
/* HACK: Place the stereo channels at +/-90 degrees when using non-
* HRTF stereo output. This helps reduce the "monoization" caused
* by them panning towards the center. */
if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
chans = StereoWideMap;
else
chans = StereoMap;
}
else
{
chans = StereoWideMap;
hwidth = DEG2RAD(60.0f);
}
num_channels = 2;
break;
case FmtRear:
chans = RearMap;
2011-05-15 09:12:42 +00:00
num_channels = 2;
break;
case FmtQuad:
chans = QuadMap;
2011-05-15 09:12:42 +00:00
num_channels = 4;
break;
case FmtX51:
chans = X51Map;
2011-05-15 09:12:42 +00:00
num_channels = 6;
break;
case FmtX61:
chans = X61Map;
2011-05-15 09:12:42 +00:00
num_channels = 7;
break;
case FmtX71:
chans = X71Map;
2011-05-15 09:12:42 +00:00
num_channels = 8;
break;
}
if(DirectChannels != AL_FALSE)
{
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[c];
for(j = 0;j < MaxChannels;j++)
2014-06-13 18:42:04 +00:00
gains[j].Target = 0.0f;
}
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[c];
2014-09-11 00:53:01 +00:00
for(i = 0;i < (ALint)Device->NumSpeakers;i++)
{
2014-09-11 00:53:01 +00:00
enum Channel chan = Device->Speaker[i].ChanName;
if(chan == chans[c].channel)
{
2014-06-13 18:42:04 +00:00
gains[chan].Target = DryGain;
break;
}
}
}
2014-08-21 10:24:48 +00:00
if(!voice->Direct.Moving)
{
for(i = 0;i < num_channels;i++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 0;
voice->Direct.Moving = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
2014-06-13 18:42:04 +00:00
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
2014-06-13 18:42:04 +00:00
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 64;
}
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
}
else if(Device->Hrtf)
2011-05-15 09:12:42 +00:00
{
for(c = 0;c < num_channels;c++)
{
if(chans[c].channel == LFE)
{
/* Skip LFE */
2014-08-21 10:24:48 +00:00
voice->Direct.Mix.Hrtf.Params[c].Delay[0] = 0;
voice->Direct.Mix.Hrtf.Params[c].Delay[1] = 0;
for(i = 0;i < HRIR_LENGTH;i++)
{
2014-08-21 10:24:48 +00:00
voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
}
}
else
{
/* Get the static HRIR coefficients and delays for this
* channel. */
2011-10-12 05:30:58 +00:00
GetLerpedHrtfCoeffs(Device->Hrtf,
0.0f, chans[c].angle, 1.0f, DryGain,
2014-08-21 10:24:48 +00:00
voice->Direct.Mix.Hrtf.Params[c].Coeffs,
voice->Direct.Mix.Hrtf.Params[c].Delay);
}
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 0;
voice->Direct.Moving = AL_TRUE;
voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
2014-06-13 18:42:04 +00:00
gains[j].Target = 0.0f;
}
2014-09-11 00:53:01 +00:00
DryGain *= lerp(1.0f, 1.0f/sqrtf((float)Device->NumSpeakers), hwidth/F_PI);
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[c];
2014-06-13 18:42:04 +00:00
ALfloat Target[MaxChannels];
2012-04-26 07:59:17 +00:00
/* Special-case LFE */
if(chans[c].channel == LFE)
{
2014-06-13 18:42:04 +00:00
gains[chans[c].channel].Target = DryGain;
continue;
}
ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain, Target);
2014-06-13 18:42:04 +00:00
for(i = 0;i < MaxChannels;i++)
gains[i].Target = Target[i];
}
2014-08-21 10:24:48 +00:00
if(!voice->Direct.Moving)
{
for(i = 0;i < num_channels;i++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 0;
voice->Direct.Moving = AL_TRUE;
}
else
{
for(i = 0;i < num_channels;i++)
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[i];
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
2014-06-13 18:42:04 +00:00
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
2014-06-13 18:42:04 +00:00
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 64;
}
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
}
for(i = 0;i < NumSends;i++)
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Target = WetGain[i];
if(!voice->Send[i].Moving)
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Current = voice->Send[i].Gain.Target;
voice->Send[i].Gain.Step = 1.0f;
voice->Send[i].Counter = 0;
voice->Send[i].Moving = AL_TRUE;
}
else
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
ALfloat cur = maxf(voice->Send[i].Gain.Current, FLT_EPSILON);
ALfloat trg = maxf(voice->Send[i].Gain.Target, FLT_EPSILON);
2014-03-23 23:11:21 +00:00
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
2014-03-23 23:11:21 +00:00
else
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Step = 1.0f;
voice->Send[i].Gain.Current = cur;
voice->Send[i].Counter = 64;
2014-03-23 23:11:21 +00:00
}
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
voice->Direct.Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
for(c = 0;c < num_channels;c++)
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Filters[c].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
}
}
2014-08-21 10:24:48 +00:00
ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
2007-11-14 02:02:18 +00:00
{
ALCdevice *Device = ALContext->Device;
ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
2011-05-06 09:53:22 +00:00
ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
2009-04-13 09:50:40 +00:00
ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
ALfloat DopplerFactor, SpeedOfSound;
2010-09-12 07:10:33 +00:00
ALfloat AirAbsorptionFactor;
ALfloat RoomAirAbsorption[MAX_SENDS];
ALbufferlistitem *BufferListItem;
ALfloat Attenuation;
2009-04-12 03:04:46 +00:00
ALfloat RoomAttenuation[MAX_SENDS];
ALfloat MetersPerUnit;
ALfloat RoomRolloffBase;
2009-04-12 03:04:46 +00:00
ALfloat RoomRolloff[MAX_SENDS];
ALfloat DecayDistance[MAX_SENDS];
ALfloat DryGain;
ALfloat DryGainHF;
ALfloat DryGainLF;
ALboolean DryGainHFAuto;
ALfloat WetGain[MAX_SENDS];
ALfloat WetGainHF[MAX_SENDS];
ALfloat WetGainLF[MAX_SENDS];
ALboolean WetGainAuto;
ALboolean WetGainHFAuto;
ALfloat Pitch;
ALuint Frequency;
ALint NumSends;
ALint i, j;
2007-11-14 02:02:18 +00:00
DryGainHF = 1.0f;
DryGainLF = 1.0f;
for(i = 0;i < MAX_SENDS;i++)
{
WetGainHF[i] = 1.0f;
WetGainLF[i] = 1.0f;
}
2012-04-26 07:59:17 +00:00
/* Get context/device properties */
DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
NumSends = Device->NumAuxSends;
Frequency = Device->Frequency;
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Get listener properties */
ListenerGain = ALContext->Listener->Gain;
MetersPerUnit = ALContext->Listener->MetersPerUnit;
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Get source properties */
2012-04-20 04:46:29 +00:00
SourceVolume = ALSource->Gain;
MinVolume = ALSource->MinGain;
MaxVolume = ALSource->MaxGain;
Pitch = ALSource->Pitch;
Position[0] = ALSource->Position[0];
Position[1] = ALSource->Position[1];
Position[2] = ALSource->Position[2];
Direction[0] = ALSource->Orientation[0];
Direction[1] = ALSource->Orientation[1];
Direction[2] = ALSource->Orientation[2];
Velocity[0] = ALSource->Velocity[0];
Velocity[1] = ALSource->Velocity[1];
Velocity[2] = ALSource->Velocity[2];
MinDist = ALSource->RefDistance;
MaxDist = ALSource->MaxDistance;
Rolloff = ALSource->RollOffFactor;
2012-08-11 13:20:24 +00:00
InnerAngle = ALSource->InnerAngle;
OuterAngle = ALSource->OuterAngle;
AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
2011-09-11 08:18:57 +00:00
DryGainHFAuto = ALSource->DryGainHFAuto;
WetGainAuto = ALSource->WetGainAuto;
WetGainHFAuto = ALSource->WetGainHFAuto;
RoomRolloffBase = ALSource->RoomRolloffFactor;
2014-08-21 10:24:48 +00:00
voice->Direct.OutBuffer = Device->DryBuffer;
for(i = 0;i < NumSends;i++)
{
ALeffectslot *Slot = ALSource->Send[i].Slot;
if(!Slot && i == 0)
Slot = Device->DefaultSlot;
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
{
Slot = NULL;
RoomRolloff[i] = 0.0f;
DecayDistance[i] = 0.0f;
2011-07-12 05:07:37 +00:00
RoomAirAbsorption[i] = 1.0f;
}
else if(Slot->AuxSendAuto)
{
RoomRolloff[i] = RoomRolloffBase;
if(IsReverbEffect(Slot->EffectType))
{
RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
SPEEDOFSOUNDMETRESPERSEC;
RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
}
else
{
DecayDistance[i] = 0.0f;
2011-07-12 05:07:37 +00:00
RoomAirAbsorption[i] = 1.0f;
}
}
else
{
/* If the slot's auxiliary send auto is off, the data sent to the
* effect slot is the same as the dry path, sans filter effects */
RoomRolloff[i] = Rolloff;
DecayDistance[i] = 0.0f;
RoomAirAbsorption[i] = AIRABSORBGAINHF;
}
if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = NULL;
else
2014-08-21 10:24:48 +00:00
voice->Send[i].OutBuffer = Slot->WetBuffer;
}
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Transform source to listener space (convert to head relative) */
2012-04-20 04:46:29 +00:00
if(ALSource->HeadRelative == AL_FALSE)
{
2013-05-22 22:11:39 +00:00
ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
2012-04-26 07:59:17 +00:00
/* Transform source vectors */
aluMatrixVector(Position, 1.0f, Matrix);
aluMatrixVector(Direction, 0.0f, Matrix);
aluMatrixVector(Velocity, 0.0f, Matrix);
}
else
2011-10-30 12:49:17 +00:00
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
/* Offset the source velocity to be relative of the listener velocity */
Velocity[0] += ListenerVel[0];
Velocity[1] += ListenerVel[1];
Velocity[2] += ListenerVel[2];
2011-10-30 12:49:17 +00:00
}
SourceToListener[0] = -Position[0];
SourceToListener[1] = -Position[1];
SourceToListener[2] = -Position[2];
aluNormalize(SourceToListener);
aluNormalize(Direction);
2007-11-14 02:02:18 +00:00
2012-04-26 07:59:17 +00:00
/* Calculate distance attenuation */
Distance = sqrtf(aluDotproduct(Position, Position));
ClampedDist = Distance;
2010-10-10 11:00:50 +00:00
Attenuation = 1.0f;
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = 1.0f;
switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
ALContext->DistanceModel)
{
case InverseDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case InverseDistance:
if(MinDist > 0.0f)
{
if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
for(i = 0;i < NumSends;i++)
{
if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
}
}
break;
case LinearDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
2007-11-14 02:02:18 +00:00
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case LinearDistance:
if(MaxDist != MinDist)
{
Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
Attenuation = maxf(Attenuation, 0.0f);
for(i = 0;i < NumSends;i++)
{
RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
}
}
break;
2007-11-14 02:02:18 +00:00
case ExponentDistanceClamped:
ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
if(MaxDist < MinDist)
2007-11-14 02:02:18 +00:00
break;
2012-04-26 07:59:17 +00:00
/*fall-through*/
case ExponentDistance:
if(ClampedDist > 0.0f && MinDist > 0.0f)
{
Attenuation = powf(ClampedDist/MinDist, -Rolloff);
for(i = 0;i < NumSends;i++)
RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
}
break;
2007-11-14 02:02:18 +00:00
case DisableDistance:
ClampedDist = MinDist;
break;
}
2009-04-12 03:27:55 +00:00
2012-04-26 07:59:17 +00:00
/* Source Gain + Attenuation */
2011-06-18 23:45:26 +00:00
DryGain = SourceVolume * Attenuation;
for(i = 0;i < NumSends;i++)
WetGain[i] = SourceVolume * RoomAttenuation[i];
2011-06-18 23:45:26 +00:00
2012-04-26 07:59:17 +00:00
/* Distance-based air absorption */
2012-03-18 15:09:59 +00:00
if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
{
2012-03-18 15:09:59 +00:00
ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
for(i = 0;i < NumSends;i++)
WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
}
2007-11-14 02:02:18 +00:00
if(WetGainAuto)
{
ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
/* Apply a decay-time transformation to the wet path, based on the
* attenuation of the dry path.
*
* Using the apparent distance, based on the distance attenuation, the
* initial decay of the reverb effect is calculated and applied to the
* wet path.
*/
for(i = 0;i < NumSends;i++)
{
if(DecayDistance[i] > 0.0f)
WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
}
}
/* Calculate directional soundcones */
Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
2012-04-26 07:59:17 +00:00
if(Angle > InnerAngle && Angle <= OuterAngle)
{
ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
2012-04-20 04:46:29 +00:00
ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
}
else if(Angle > OuterAngle)
{
2012-04-20 04:46:29 +00:00
ConeVolume = ALSource->OuterGain;
2011-05-06 09:53:22 +00:00
ConeHF = ALSource->OuterGainHF;
}
else
{
ConeVolume = 1.0f;
ConeHF = 1.0f;
}
2008-01-16 05:57:50 +00:00
DryGain *= ConeVolume;
if(WetGainAuto)
{
for(i = 0;i < NumSends;i++)
WetGain[i] *= ConeVolume;
}
if(DryGainHFAuto)
DryGainHF *= ConeHF;
if(WetGainHFAuto)
{
for(i = 0;i < NumSends;i++)
2011-08-13 13:58:05 +00:00
WetGainHF[i] *= ConeHF;
}
2012-04-26 07:59:17 +00:00
/* Clamp to Min/Max Gain */
DryGain = clampf(DryGain, MinVolume, MaxVolume);
for(i = 0;i < NumSends;i++)
WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
2010-03-08 06:12:33 +00:00
2012-04-26 07:59:17 +00:00
/* Apply gain and frequency filters */
DryGain *= ALSource->Direct.Gain * ListenerGain;
DryGainHF *= ALSource->Direct.GainHF;
DryGainLF *= ALSource->Direct.GainLF;
for(i = 0;i < NumSends;i++)
{
2012-04-27 07:45:42 +00:00
WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
WetGainHF[i] *= ALSource->Send[i].GainHF;
WetGainLF[i] *= ALSource->Send[i].GainLF;
2007-11-14 02:02:18 +00:00
}
2012-04-26 07:59:17 +00:00
/* Calculate velocity-based doppler effect */
if(DopplerFactor > 0.0f)
{
const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
2010-10-10 11:00:50 +00:00
ALfloat VSS, VLS;
if(SpeedOfSound < 1.0f)
{
DopplerFactor *= 1.0f/SpeedOfSound;
SpeedOfSound = 1.0f;
}
VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
}
BufferListItem = ATOMIC_LOAD(&ALSource->queue);
while(BufferListItem != NULL)
{
ALbuffer *ALBuffer;
if((ALBuffer=BufferListItem->buffer) != NULL)
{
2012-04-26 07:59:17 +00:00
/* Calculate fixed-point stepping value, based on the pitch, buffer
* frequency, and output frequency. */
2010-11-28 21:08:51 +00:00
Pitch = Pitch * ALBuffer->Frequency / Frequency;
if(Pitch > (ALfloat)MAX_PITCH)
2014-08-21 10:24:48 +00:00
voice->Step = MAX_PITCH<<FRACTIONBITS;
2010-11-27 01:47:43 +00:00
else
{
2014-08-21 10:24:48 +00:00
voice->Step = fastf2i(Pitch*FRACTIONONE);
if(voice->Step == 0)
voice->Step = 1;
2010-11-27 01:47:43 +00:00
}
break;
}
BufferListItem = BufferListItem->next;
}
if(Device->Hrtf)
{
2012-04-26 07:59:17 +00:00
/* Use a binaural HRTF algorithm for stereo headphone playback */
ALfloat delta, ev = 0.0f, az = 0.0f;
ALfloat radius = ALSource->Radius;
ALfloat dirfact = 1.0f;
if(Distance > FLT_EPSILON)
{
ALfloat invlen = 1.0f/Distance;
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
2012-04-26 07:59:17 +00:00
/* Calculate elevation and azimuth only when the source is not at
* the listener. This prevents +0 and -0 Z from producing
* inconsistent panning. Also, clamp Y in case FP precision errors
* cause it to land outside of -1..+1. */
ev = asinf(clampf(Position[1], -1.0f, 1.0f));
az = atan2f(Position[0], -Position[2]*ZScale);
}
if(radius > Distance)
dirfact *= Distance / radius;
2012-04-26 07:59:17 +00:00
/* Check to see if the HRIR is already moving. */
2014-08-21 10:24:48 +00:00
if(voice->Direct.Moving)
{
2012-04-26 07:59:17 +00:00
/* Calculate the normalized HRTF transition factor (delta). */
2014-08-21 10:24:48 +00:00
delta = CalcHrtfDelta(voice->Direct.Mix.Hrtf.Gain, DryGain,
voice->Direct.Mix.Hrtf.Dir, Position);
2012-04-26 07:59:17 +00:00
/* If the delta is large enough, get the moving HRIR target
* coefficients, target delays, steppping values, and counter. */
if(delta > 0.001f)
{
ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
2014-08-21 10:24:48 +00:00
ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
voice->Direct.Mix.Hrtf.Params[0].Coeffs, voice->Direct.Mix.Hrtf.Params[0].Delay,
voice->Direct.Mix.Hrtf.Params[0].CoeffStep, voice->Direct.Mix.Hrtf.Params[0].DelayStep
);
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = counter;
voice->Direct.Mix.Hrtf.Gain = DryGain;
voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
}
}
else
{
2012-04-26 07:59:17 +00:00
/* Get the initial (static) HRIR coefficients and delays. */
GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
2014-08-21 10:24:48 +00:00
voice->Direct.Mix.Hrtf.Params[0].Coeffs,
voice->Direct.Mix.Hrtf.Params[0].Delay);
voice->Direct.Counter = 0;
voice->Direct.Moving = AL_TRUE;
voice->Direct.Mix.Hrtf.Gain = DryGain;
voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
}
2014-08-21 10:24:48 +00:00
voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_TRUE;
}
else
{
2014-08-21 10:24:48 +00:00
MixGains *gains = voice->Direct.Mix.Gains[0];
2012-04-28 20:06:16 +00:00
for(j = 0;j < MaxChannels;j++)
2014-06-13 18:42:04 +00:00
gains[j].Target = 0.0f;
2012-04-28 20:06:16 +00:00
/* Normalize the length, and compute panned gains. */
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 14:33:13 +00:00
if(!(Distance > FLT_EPSILON))
{
2014-10-01 04:50:29 +00:00
ALfloat gain = 1.0f / sqrtf((float)Device->NumSpeakers);
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 14:33:13 +00:00
for(i = 0;i < (ALint)Device->NumSpeakers;i++)
{
enum Channel chan = Device->Speaker[i].ChanName;
gains[chan].Target = gain;
}
}
else
{
ALfloat radius = ALSource->Radius;
2014-06-13 18:42:04 +00:00
ALfloat Target[MaxChannels];
ALfloat invlen = 1.0f/maxf(Distance, radius);
Position[0] *= invlen;
Position[1] *= invlen;
Position[2] *= invlen;
Use an ambisonics-based panning method For mono sources, third-order ambisonics is utilized to generate panning gains. The general idea is that a panned mono sound can be encoded into b-format ambisonics as: w[i] = sample[i] * 0.7071; x[i] = sample[i] * dir[0]; y[i] = sample[i] * dir[1]; ... and subsequently rendered using: output[chan][i] = w[i] * w_coeffs[chan] + x[i] * x_coeffs[chan] + y[i] * y_coeffs[chan] + ...; By reordering the math, channel gains can be generated by doing: gain[chan] = 0.7071 * w_coeffs[chan] + dir[0] * x_coeffs[chan] + dir[1] * y_coeffs[chan] + ...; which then get applied as normal: output[chan][i] = sample[i] * gain[chan]; One of the reasons to use ambisonics for panning is that it provides arguably better reproduction for sounds emanating from between two speakers. As well, this makes it easier to pan in all 3 dimensions, with for instance a "3D7.1" or 8-channel cube speaker configuration by simply providing the necessary coefficients (this will need some work since some methods still use angle-based panpot, particularly multi-channel sources). Unfortunately, the math to reliably generate the coefficients for a given speaker configuration is too costly to do at run-time. They have to be pre- generated based on a pre-specified speaker arangement, which means the config options for tweaking speaker angles are no longer supportable. Eventually I hope to provide config options for custom coefficients, which can either be generated and written in manually, or via alsoft-config from user-specified speaker positions. The current default set of coefficients were generated using the MATLAB scripts (compatible with GNU Octave) from the excellent Ambisonic Decoder Toolbox, at https://bitbucket.org/ambidecodertoolbox/adt/
2014-09-30 14:33:13 +00:00
ComputeDirectionalGains(Device, Position, DryGain, Target);
2014-06-13 18:42:04 +00:00
for(j = 0;j < MaxChannels;j++)
gains[j].Target = Target[j];
2012-04-28 20:06:16 +00:00
}
2014-08-21 10:24:48 +00:00
if(!voice->Direct.Moving)
{
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
gains[j].Current = gains[j].Target;
gains[j].Step = 1.0f;
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 0;
voice->Direct.Moving = AL_TRUE;
}
else
{
for(j = 0;j < MaxChannels;j++)
{
2014-06-13 18:42:04 +00:00
ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
2014-06-13 18:42:04 +00:00
gains[j].Step = powf(trg/cur, 1.0f/64.0f);
else
2014-06-13 18:42:04 +00:00
gains[j].Step = 1.0f;
gains[j].Current = cur;
}
2014-08-21 10:24:48 +00:00
voice->Direct.Counter = 64;
}
2014-08-21 10:24:48 +00:00
voice->IsHrtf = AL_FALSE;
2007-11-14 02:02:18 +00:00
}
for(i = 0;i < NumSends;i++)
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Target = WetGain[i];
if(!voice->Send[i].Moving)
{
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Current = voice->Send[i].Gain.Target;
voice->Send[i].Gain.Step = 1.0f;
voice->Send[i].Counter = 0;
voice->Send[i].Moving = AL_TRUE;
}
else
2014-03-23 23:11:21 +00:00
{
2014-08-21 10:24:48 +00:00
ALfloat cur = maxf(voice->Send[i].Gain.Current, FLT_EPSILON);
ALfloat trg = maxf(voice->Send[i].Gain.Target, FLT_EPSILON);
2014-03-23 23:11:21 +00:00
if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
2014-03-23 23:11:21 +00:00
else
2014-08-21 10:24:48 +00:00
voice->Send[i].Gain.Step = 1.0f;
voice->Send[i].Gain.Current = cur;
voice->Send[i].Counter = 64;
2014-03-23 23:11:21 +00:00
}
}
{
ALfloat gainhf = maxf(0.01f, DryGainHF);
ALfloat gainlf = maxf(0.01f, DryGainLF);
ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
2014-08-21 10:24:48 +00:00
voice->Direct.Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
for(i = 0;i < NumSends;i++)
{
ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
2014-08-21 10:24:48 +00:00
voice->Send[i].Filters[0].ActiveType = AF_None;
if(gainhf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
if(gainlf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
hfscale, 0.0f
);
ALfilterState_setParams(
2014-08-21 10:24:48 +00:00
&voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
lfscale, 0.0f
);
}
2007-11-14 02:02:18 +00:00
}
2013-05-29 05:27:07 +00:00
static inline ALint aluF2I25(ALfloat val)
2010-11-21 10:51:18 +00:00
{
/* Clamp the value between -1 and +1. This handles that with only a single branch. */
if(fabsf(val) > 1.0f)
2013-03-22 18:21:21 +00:00
val = (ALfloat)((0.0f < val) - (val < 0.0f));
/* Convert to a signed integer, between -16777215 and +16777215. */
return fastf2i(val*16777215.0f);
2010-11-21 10:51:18 +00:00
}
2013-05-29 05:27:07 +00:00
static inline ALfloat aluF2F(ALfloat val)
{ return val; }
2013-05-29 05:27:07 +00:00
static inline ALint aluF2I(ALfloat val)
{ return aluF2I25(val)<<7; }
2013-05-29 05:27:07 +00:00
static inline ALuint aluF2UI(ALfloat val)
{ return aluF2I(val)+2147483648u; }
2013-05-29 05:27:07 +00:00
static inline ALshort aluF2S(ALfloat val)
{ return aluF2I25(val)>>9; }
2013-05-29 05:27:07 +00:00
static inline ALushort aluF2US(ALfloat val)
2011-08-17 09:33:25 +00:00
{ return aluF2S(val)+32768; }
2013-05-29 05:27:07 +00:00
static inline ALbyte aluF2B(ALfloat val)
{ return aluF2I25(val)>>17; }
2013-05-29 05:27:07 +00:00
static inline ALubyte aluF2UB(ALfloat val)
{ return aluF2B(val)+128; }
2010-11-21 10:51:18 +00:00
#define DECL_TEMPLATE(T, func) \
static void Write_##T(ALCdevice *device, ALvoid **buffer, ALuint SamplesToDo) \
{ \
2013-05-22 22:11:39 +00:00
ALfloat (*restrict DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
const ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
2014-09-10 23:52:54 +00:00
const enum Channel *chans = device->ChannelName; \
ALuint i, j; \
\
for(j = 0;j < MaxChannels;j++) \
{ \
2014-09-10 23:52:54 +00:00
const enum Channel c = chans[j]; \
const ALfloat *in; \
2013-05-22 22:11:39 +00:00
T *restrict out; \
2012-03-03 18:31:27 +00:00
\
2014-09-10 23:52:54 +00:00
if(c == InvalidChannel) \
continue; \
\
2014-09-10 23:52:54 +00:00
in = DryBuffer[c]; \
out = (T*)(*buffer) + j; \
2012-03-03 18:31:27 +00:00
for(i = 0;i < SamplesToDo;i++) \
2014-09-10 23:52:54 +00:00
out[i*numchans] = func(in[i]); \
} \
*buffer = (char*)(*buffer) + SamplesToDo*numchans*sizeof(T); \
}
DECL_TEMPLATE(ALfloat, aluF2F)
DECL_TEMPLATE(ALuint, aluF2UI)
DECL_TEMPLATE(ALint, aluF2I)
DECL_TEMPLATE(ALushort, aluF2US)
DECL_TEMPLATE(ALshort, aluF2S)
DECL_TEMPLATE(ALubyte, aluF2UB)
DECL_TEMPLATE(ALbyte, aluF2B)
#undef DECL_TEMPLATE
2010-11-21 10:51:18 +00:00
ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
{
ALuint SamplesToDo;
ALeffectslot **slot, **slot_end;
2014-08-21 10:24:48 +00:00
ALvoice *voice, *voice_end;
ALCcontext *ctx;
2012-09-16 08:35:16 +00:00
FPUCtl oldMode;
ALuint i, c;
2010-11-21 10:51:18 +00:00
2012-09-16 08:35:16 +00:00
SetMixerFPUMode(&oldMode);
2010-11-21 10:51:18 +00:00
while(size > 0)
{
IncrementRef(&device->MixCount);
SamplesToDo = minu(size, BUFFERSIZE);
2012-09-11 13:32:42 +00:00
for(c = 0;c < MaxChannels;c++)
memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
2010-11-21 10:51:18 +00:00
ALCdevice_Lock(device);
V(device->Synth,process)(SamplesToDo, device->DryBuffer);
ctx = ATOMIC_LOAD(&device->ContextList);
while(ctx)
2010-11-21 10:51:18 +00:00
{
ALenum DeferUpdates = ctx->DeferUpdates;
ALenum UpdateSources = AL_FALSE;
if(!DeferUpdates)
UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
2012-10-09 13:19:36 +00:00
if(UpdateSources)
CalcListenerParams(ctx->Listener);
2012-10-09 13:19:36 +00:00
2012-04-26 07:59:17 +00:00
/* source processing */
2014-08-21 10:24:48 +00:00
voice = ctx->Voices;
voice_end = voice + ctx->VoiceCount;
while(voice != voice_end)
2010-11-21 10:51:18 +00:00
{
2014-08-21 10:24:48 +00:00
ALsource *source = voice->Source;
if(!source) goto next;
if(source->state != AL_PLAYING && source->state != AL_PAUSED)
2010-11-21 10:51:18 +00:00
{
2014-08-21 10:24:48 +00:00
voice->Source = NULL;
goto next;
2010-11-21 10:51:18 +00:00
}
if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
UpdateSources))
2014-08-21 10:24:48 +00:00
voice->Update(voice, source, ctx);
2010-11-21 10:51:18 +00:00
if(source->state != AL_PAUSED)
2014-08-21 10:24:48 +00:00
MixSource(voice, source, device, SamplesToDo);
next:
2014-08-21 10:24:48 +00:00
voice++;
2010-11-21 10:51:18 +00:00
}
/* effect slot processing */
slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
while(slot != slot_end)
2010-11-21 10:51:18 +00:00
{
if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,update)(device, *slot);
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer);
2010-11-21 10:51:18 +00:00
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
slot++;
2010-11-21 10:51:18 +00:00
}
ctx = ctx->next;
2010-11-21 10:51:18 +00:00
}
slot = &device->DefaultSlot;
if(*slot != NULL)
{
if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,update)(device, *slot);
2013-11-03 00:30:28 +00:00
V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
device->DryBuffer);
for(i = 0;i < SamplesToDo;i++)
(*slot)->WetBuffer[0][i] = 0.0f;
}
/* Increment the clock time. Every second's worth of samples is
* converted and added to clock base so that large sample counts don't
* overflow during conversion. This also guarantees an exact, stable
* conversion. */
device->SamplesDone += SamplesToDo;
device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
device->SamplesDone %= device->Frequency;
ALCdevice_Unlock(device);
2010-11-21 10:51:18 +00:00
if(device->Bs2b)
2010-11-21 10:51:18 +00:00
{
/* Apply binaural/crossfeed filter */
for(i = 0;i < SamplesToDo;i++)
{
2012-09-11 13:32:42 +00:00
float samples[2];
samples[0] = device->DryBuffer[FrontLeft][i];
samples[1] = device->DryBuffer[FrontRight][i];
bs2b_cross_feed(device->Bs2b, samples);
device->DryBuffer[FrontLeft][i] = samples[0];
device->DryBuffer[FrontRight][i] = samples[1];
}
2010-11-21 10:51:18 +00:00
}
if(buffer)
2010-11-21 10:51:18 +00:00
{
switch(device->FmtType)
{
case DevFmtByte:
Write_ALbyte(device, &buffer, SamplesToDo);
break;
case DevFmtUByte:
Write_ALubyte(device, &buffer, SamplesToDo);
break;
case DevFmtShort:
Write_ALshort(device, &buffer, SamplesToDo);
break;
case DevFmtUShort:
Write_ALushort(device, &buffer, SamplesToDo);
break;
case DevFmtInt:
Write_ALint(device, &buffer, SamplesToDo);
break;
case DevFmtUInt:
Write_ALuint(device, &buffer, SamplesToDo);
break;
case DevFmtFloat:
Write_ALfloat(device, &buffer, SamplesToDo);
break;
}
2010-11-21 10:51:18 +00:00
}
size -= SamplesToDo;
IncrementRef(&device->MixCount);
2010-11-21 10:51:18 +00:00
}
2012-09-16 08:35:16 +00:00
RestoreFPUMode(&oldMode);
2010-11-21 10:51:18 +00:00
}
ALvoid aluHandleDisconnect(ALCdevice *device)
{
ALCcontext *Context;
device->Connected = ALC_FALSE;
Context = ATOMIC_LOAD(&device->ContextList);
while(Context)
{
2014-08-21 10:24:48 +00:00
ALvoice *voice, *voice_end;
2014-08-21 10:24:48 +00:00
voice = Context->Voices;
voice_end = voice + Context->VoiceCount;
while(voice != voice_end)
{
2014-08-21 10:24:48 +00:00
ALsource *source = voice->Source;
voice->Source = NULL;
if(source && source->state == AL_PLAYING)
{
source->state = AL_STOPPED;
ATOMIC_STORE(&source->current_buffer, NULL);
source->position = 0;
source->position_fraction = 0;
}
2014-08-21 10:24:48 +00:00
voice++;
}
2014-08-21 10:24:48 +00:00
Context->VoiceCount = 0;
Context = Context->next;
}
}