This now takes advantage of the differences seen in generated decoder matrices
for first-order compared to second- and third-order, such that with the
appropriate frequency-dependent scaling applied to first-order content, the
result is identical with a higher-order decoder matrix compared to a first-
order matrix for the same layout.
Unsigned 32-bit offsets actually have some potential overhead on 64-bit targets
for pointer/array accesses due to rules on integer wrapping. No idea how much
impact it has in practice, but it's nice to be correct about it.
This should improve positional quality for relatively low cost. Full HRTF
rendering still only uses first-order since the only use of the dry buffer
there is for first-order content (B-Format buffers, effects).
Last time this attempted to average the HRIRs according to their contribution
to a given B-Format channel as if they were loudspeakers, as well as averaging
the HRIR delays. The latter part resulted in the loss of the ITD (inter-aural
time delay), a key component of HRTF.
This time, the HRIRs are averaged similar to above, except instead of averaging
the delays, they're applied to the resulting coefficients (for example, a delay
of 8 would apply the HRIR starting at the 8th sample of the target HRIR). This
does roughly double the IR length, as the largest delay is about 35 samples
while the filter is normally 32 samples. However, this is still smaller the
original data set IR (which was 256 samples), it also only needs to be applied
to 4 channels for first-order ambisonics, rather than the 8-channel cube. So
it's doing twice as much work per sample, but only working on half the number
of samples.
Additionally, since the resulting HRIRs no longer rely on an extra delay line,
a more efficient HRTF mixing function can be made that doesn't use one. Such a
function can also avoid the per-sample stepping parameters the original uses.
Currently incomplete, as second- and third-order output will not correctly
handle B-Format input buffers. A standalone up-sampler will be needed, similar
to the high-quality decoder.
Also, output is ACN ordering with SN3D normalization. A config option will
eventually be provided to change this if desired.
Instead of looping over all the coefficients for each channel with multiplies,
when we know only one will have a non-0 factor for ambisonic mixing buffers,
just index the one with a non-0 factor.
By default, stereo outputs using UHJ, which renders to a B-Format buffer that
gets run through a UHJ encoder for output. It may also output using pair-wise
panning, which pans between -30 and +30 degrees with the speakers at the two
ends. In both cases, the stereo coefficients are ignored.
Mono, having only one output channel, can realistically only attenuate its
channel. Turning the volume up and down accomplishes the same result.